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Introduction: Depression is a prevalent mental disorder, and early screening and

treatment are crucial for detecting depression. However, there are still some

limitations in the currently proposed deepmodels based on audio-video data, for

example, it is difficult to effectively extract and select useful multimodal

information and features from audio-video data, and very few studies have

been able to focus on three dimensions of information: time, channel, and

space at the same time in depression detection. In addition, there are challenges

in utilizing other tasks to enhance prediction accuracy. The resolution of these

issues is crucial for constructing models of depression detection.

Methods: In this paper, we propose a multi-task representation learning based

on vision and audio for depression detection model (DepITCM).The model

comprises three main modules: a data preprocessing module, the Inception-

Temporal-Channel Principal Component Analysis Module(ITCM Encoder), and a

multi-task learning module. To efficiently extract rich feature representations

from audio and video data, the ITCM Encoder employs a staged feature

extraction strategy, transitioning from global to local features. This approach

enables the capture of global features while emphasizing the fusion of temporal,

channel, and spatial information in finer detail. Furthermore, inspired by multi-

task learning strategies, this paper enhances the primary task of depression

classification by incorporating a secondary task (regression task) to improve

overall performance.

Results: We conducted experiments on the AVEC2017 and AVEC2019 datasets.

The results show that, in the classification task, our method achieved an F1 score

of 0.823 and a classification accuracy of 0.823 on the AVEC2017 dataset, and an

F1 score of 0.816 and a classification accuracy of 0.810 on the AVEC2019 dataset.

In the regression task, the RMSE was 6.10 (AVEC2017) and 4.89 (AVEC2019),

respectively. These results demonstrate that our method outperforms most

existing methods in both classification and regression tasks. Furthermore, we

demonstrate that the model proposed in this paper can effectively improve the

performance of depression detection when using multi-task learning.

Discussion: Although depression detection through multimodality has shown

good results in previous studies. However, multi-task learning can utilize the

complementary information between different tasks. Therefore, our work

combines multimodal and multi-task learning to improve the accuracy of
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depression detection. Previous studies have mostly focused on the extraction of

global features while ignoring the importance of local features. Based on the

problems of previous studies, we have made corresponding improvements to

provide a more comprehensive and effective solution for depression detection.
KEYWORDS
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1 Introduction

Depression is a common mental illness. According to theWorld

Health Organization (WHO), depression will be the leading

problem in the global burden of disease by 2030 (1). Depression

tends to exhibit symptoms such as mental ill-health, depressed

mood, diminished interest and pleasure, and in severe cases,

patients with depression may exhibit symptoms of self-harm and

suicide (2). Therefore, early detection and treatment of depressed

individuals is crucial. To assist clinicians effectively, the initial step

in treating depression involves assessing whether an individual is

depressed. Currently, the clinical diagnosis of depression relies on

non-laboratory methods, which are conducted through structured

or semi-structured interviews, during which the clinician assesses

the patient’s psychological state based on standardized depression

scales (e.g., the HAMD) (3) and communicates with the patient.

However, this method is subjective and influenced by the clinician’s

experience and the patient’s cooperation. In addition to linguistic

differences, depressed individuals exhibit nonverbal characteristics

such as painful expressions, low voice tone, drooping corners of the

mouth, and slow movements. These subtle changes, described using

the Facial Action Coding System (FACS), can be challenging for

clinicians to detect accurately. The advent of deep learning

techniques offers promise in overcoming these challenges.

This paper explores the application of deep learning techniques

to integrate visual and audio features in depression detection.

Currently, depression detection is mainly categorized into

unimodal and multi-modal based depression recognition studies.

In single-modality-based depression recognition research, Melo

et al. (4) introduced the Multiscale Spatiotemporal Network(MSN),

An Affective Disorder Estimation (ADE) method for depression

detection using 3D convolutional neural networks (CNNs).MSN

initially applies multiscale convolution to encode spatio-temporal

information and then integrates the multiscale information.

Carneiro et al. (5) introduced the Maximization and Differentiation

Network(MDN), a method that captures smooth facial changes using

maximization blocks and encodes sudden facial change difference

blocks to explore multiscale information. Jiang et al. (6) introduced

an automatic classification method for depressed speech and

analyzed the classification performance of speech features such as
02
rhyme and spectrum in depression recognition. Dong et al. (7)

introduced a hierarchical depression detection model. The model

extracts features through a pre-trained deep residual network

(ResNet). Although the above method focuses on global features, it

lacks the extraction of local features. Tao et al. (8) introduced an

efficient, low-covariance multimodal integrated spatio-temporal

converter framework(DepMSTAT), a method for depression

detection using spatio-temporal attention. DepMSTAT, although it

takes into account spatio-temporal information in the data, ignores

the fact that the different channels represent different objects and

should be assigned different weights. In the related work summarized

above, we found that previous studies have mainly focused on the

extraction of global features and neglected the importance of local

features, and fewer studies have given equal importance to both.

In multi-modality-based depression recognition research,

Ceccarelli et al. (9) introduced the Adaptive Nonlinear Judgment

Classifier, a decision-level fusion strategy based on feed-forward

neural networks. Yin et al. (10) proposed a multimodal approach

for depression detection using a recursive neural structure that

integrates visual, audio, and textual modalities, validated with the

AVEC2019 dataset. Fang et al. (11) introduced a multimodal fusion

model with multi-level attention mechanism (MFM-Att), a method

that combines Long Short-Term Memory Forgetting Networks

(LSTMs) and Feature Fusion Networks (FFNs) for depression

detection. Wang et al. (12) introduced multi-modal feature layer

fusion model based on attention mechanisms (MFF-Att), a tandem

model that uses multilayer CNNs and LSTMs. In the related work

summarized above, multimodal tasks have shown better

recognition results in depression recognition. However, these

studies neglected the existence of certain complementary

information between different tasks, which can improve the

accuracy and generalization ability of the model.

This paper explores the application of deep learning techniques

to integrate visual and audio features in depression detection.

Previous studies have mainly focused on the extraction of global

features, ignoring the importance of local features, and few studies

have paid equal attention to the two. At the same time.in the process

of local feature extraction, few studies focus on features in the three

dimensions of time channel and space at the same time. The

channel features provide fine-grained information of visual and
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audio data, and the temporal features of facial expressions express

the trend of emotional changes. Spatial features describe the

interrelationship between these details in different parts to convey

the emotional state of a given moment, Therefore, it is an urgent

problem to be solved in the detection of depression while

emphasizing the global features and enhancing the extraction and

integration of local features. The main contributions of this paper

are as follows:
Fron
• First, we propose a multi-task representation learning based on

vision and audio for depression detection model

(DepITCM).The model features the Inception-Temporal-

Channel Principal Component Analysis Module(ITCM

Encoder) as its pivotal component, which integrates the

Inception Dilated Convolution and the Temporal-Channel

Principal Component Analysis Module (TCPCA). The

TCPCA module comprises Temporal Attention and

Channel Principal Component Analysis (CPCA). The

proposed method extracts global features while emphasizing

the key semantic information of visual and audio data,

focusing on the fusion of temporal, channel, and spatial

dimensions. This approach enables a better understanding of

individuals’ emotional states and facilitates early detection and

intervention in depressive symptoms.

• Secondly, this paper also adopts a multi-task representation

learning strategy, because a current study (13) has

demonstrated that multi-task learning can improve the

effectiveness of depression detection. Therefore, we apply

both multimodal and multi-task learning to the DepITCM

model, leveraging the complementary information from

different tasks to enhance the accuracy of depression detection.

• Finally, we validate on the AVEC2017 and AVEC2019

datasets. We demonstrate the performance of the

proposed method in multi-task learning. In addition, we

conducted ablation experiments to verify the effectiveness

of each component of the model proposed in this paper.
The research structure of this paper is shown in Figure 1. The

rest of the sections are described below. Section 2 describes the

dataset and the proposed depression detection method. The

corresponding experimental results are given in Section 3. The

proposed method is discussed in Section 4. Finally, Section 5

summarizes the whole paper.
tiers in Psychiatry 03
2 Materials and methods

2.1 Datasets and preprocessing

Although previous studies (14, 15), have been developed for the

AVEC2017 and AVEC2019 datasets, none of them explored the

depression detection task from a non-verbal perspective, as most of

the approaches used textual recordings in their models. In this

paper, we focus on depression detection using visuals and sounds.

2.1.1 AVEC 2017 dataset
The AVEC2017 (DAIC-WOZ) dataset (16) is a multimodal

dataset consisting of clinical interviews for depression assessment.

The dataset consists of 189 subjects, where the training, validation,

and test sets contain data from 107, 35, and 47 participants,

respectively. The visual data for each subject included 2D and 3D

facial keypoints (Facial Landmarks), coordinates of eye gaze (Gaze),

histogram of facial orientation gradient features (HOG), head pose

data (Head Pose, HP), and facial action units (Action Units, AU);

the audio data were extracted using the COVAREP toolbox (17)

extracted features of the original audio file, recorded at 16 kHz,

including both COVAREP and FORMANT features.

We refer to (11) for preprocessing the AVEC2017 dataset. For

the audio preprocessing process, firstly for each subject, COVAREP

features were extracted from the raw data and processed based on

the conversation start and end times as well as the participant’s

conversation tags. Then, the COVAREP features were normalized

to ensure a similar scale and range between different features.

Finally, non-speech frames and lines with response durations of

less than 1 second were removed. To ensure the consistency of the

data, it was padded with zeros to give it a uniform duration. For the

visual preprocessing process, the data is first subsampled at 0.3-

second intervals. Then, frames that were not successfully detected

were deleted and the number of frames in each subject’s data was

counted, recording the maximum and minimum frames to ensure

consistency when processing and analyzing the data.

2.1.2 AVEC 2019 dataset
The AVEC2019 (E-DAIC) dataset (18) is an extended version of

AVEC2017 (DAIC-WOZ). The dataset consists of 275 subjects with

163, 56, and 56 samples in the training, validation, and test sets,

respectively. The AVEC2019 dataset includes head pose data (Head

Pose, HP), facial action units (Action Units, AU), and coordinates
FIGURE 1

The research structure of this paper.
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of eye gaze (Gaze) among the visual features; the audio data use

dataset provided by the extended Geneva Minimalistic Acoustic

Parameter Set (eGeMAPS) (19), which contains 88 feature values of

the audio, covering acoustic dimensions such as spectrogram,

power, cepstrum and speech quality of the audio. In addition to

this, the Mel-scale Frequency Cepstral Coefficients (MFCC) of the

audio are also used. For the AVEC2019 preprocessing approach,

this paper uses the method provided by the AVEC 2019 DDS (20).

For audio modalities we used Extended Geneva Minimalistic

Acoustic Parameter Set(eGeMAPS) and MFCC; for visual

modalities we used head pose data (Head Pose, HP), facial action

units (Action Units, AU), and coordinates of eye gaze (Gaze).

The labeling files for both the AVEC2017 and AVEC2019

datasets contain PHQ scores for all samples, with scores ranging

from 0 to 24. This also includes a binary value for whether or not the

sample is depressed, with a PHQ value in the range of [10, 24]

representing having a depressive disorder, and a score in the range

of [0, 9] being normal.
2.2 Feature selection

After completing the preprocessing, the features in such

samples have very little variation and contribute very little to the

classification and regression tasks, considering that there are cases

such as noise or long pauses in the data, and they do not have

enough variation across samples to distinguish between different

values of the target variable. Therefore, in this study, we measure the

importance of the features by calculating the variance of the features

and filtering out the features with low variance. The formula for

calculating the variance of features is:

Var(X) =
1
no

n

i=1
(Xi − m)2 (1)
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Where Var(X) denotes the variance of feature X, Xi is the feature

value of the ith sample, µ is the mean value of feature X, and n is the

total number of samples. In this paper, the threshold is set to 10 to

filter out features with variance lower than 10, retaining only high

variance features that contribute more significantly to the

classification and regression tasks.
2.3 Proposed methodology

Our proposed research framework is shown in Figure 2. After

completing data preprocessing and feature screening, we

constructed DepITCM to accomplish the task of automatic

identification of depression. This section describes the

architectural approach of DepITCM. DepITCM consists of an

ITCM encoder and a multi-task learning module. Among them,

the role of the ITCM encoder is to extract the visual and audio

features. To leverage the complementarity between the tasks and

improve the overall performance of the model, we also added the

multi-task learning module to DepITCM.

2.3.1 ITCM Encoder
The structure of the feature extraction module ITCM Encoder is

shown in Figure 3. The ITCM Encoder consists of two main

modules: the Inception Dilated Conv and the TCPCA module.

The Inception Dilated Conv is designed to extract global features of

the data, synthesizing multi-scale long-range information from

visual and audio modalities. The TCPCA module is then used to

further extract key information, focusing particularly on the fusion

of information in the temporal, channel, and spatial dimensions.

This approach enables our model to effectively mine feature

information from both audio and visual data, providing a more

comprehensive understanding and characterization of the

emotional features of depressed patients.
FIGURE 2

The general framework of DepITCM. The raw data first undergoes a data preprocessing stage, then global and local key features are extracted using
ITCM Encoder. Finally the multi-task learning module receives the feature sequence representation and performs regression and classification tasks.
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2.3.1.1 Inception Dilated Convolution

To learn the global information, we propose Inception Dilated

Convolution, which introduces expansion factors to the

convolutional layer (Conv) in the Inception structure (21) to

complement the global information and increase the model

diversity. The information is aggregated by the Maxpool layer

after the Inception Dilated Conv. Taking visual modality as an

example, Inception Dilated Convolution uses parallel 1 × 1

convolution, 3×3 convolution, and 5×5 convolution, and 3×3

Maxpool layer for computation as follows:

IDC(x) = Contact (f 1�1(x), f 3�3(x), f 5�5(x), f 1�1(Maxpool (x)))

(2)

where x denotes the input of Inception Dilated Convolution,

Contact refers to the splicing of features by dimension, and f 1�1,

f 3�3, and f 5�5 denote 1� 1 convolution, 3� 3 convolution, and

5� 5 convolution, respectively.

The final feature Feature is calculated by combining stacking of

Inception Dilated Convolution and Maxpool as follows:

Feature(x) = maxpool (IDR(x)) (3)
2.3.1.2 TCPCA module

To enhance local information, various local attention

mechanisms have been proposed. Squeeze-and-Excitation

Networks (SENet) (22) explicitly establishes dependencies

between feature channels to facilitate learning relationships

between different feature channels. Convolutional Block

Attention Module (CBAM) (23), while integrating both

channel attention and spatial attention, enforces a consistent

distribution of spatial attention across all channels of an output

feature. In contrast, Channel Prior Convolutional Attention

(CPCA) (24) employs mul t i - s ca l e deep ly separab l e

convolutional modules to constitute spatial attention, which
Frontiers in Psychiatry 05
can dynamically distribute the attention weights in both

channel and spatial dimensions, thus better integrating the

information of feature channels and spatial locations. In this

regard, we adopt CPCA to enhance local features and solve the

problem of information loss caused by simple crosstalk, so that

the model can better focus on local features. These attention

mechanisms construct a mapping method between global

information and locally important information, by which local

features are extracted and used to enhance the original features.

Meanwhile, these attention mechanisms can be directly

integrated into the backbone network without the need for a

separate network.

Considering the importance of temporal information in

sequence learning tasks, we introduced the temporal attention

module before CPCA. This module captures the dependencies in

the temporal dimension, thereby enhancing temporal information

extraction and improving detection accuracy. Additionally, we

conducted ablation experiments on CBAM and CPCA modules to

verify their contributions. The TCPCA module is specifically

calculated as follows:

Given a feature sequence Fin, the TCPCA module sequentially

calculates the temporal attention module TAM(Fin), channel attention

module CAM(Fin), and spatial attention module SAM(Fin). The entire

computation process is as follows:

F0 = TAM(Fin)⊗ F (4)

F00 = CAM(Fin)⊗ F 0 (5)

F‴ = SAM(Fin)⊗ F00 (6)

Here, F, F0, F00 respectively denote the input features after

processing with the temporal attention module (TAM), channel

attention module (CAM), and spatial attention module (SAM). The

operator ⊗ represents element-wise multiplication.
FIGURE 3

The detailed structure of ITCM encoder.
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The temporal attention module (TAM) is calculated as follows:

TAM(Fin) = s  (MLP(AvgPooltime(Fin)) + MLP(MaxPooltime(Fin))) (7)

Where Fin denotes the input to the TAM, s denotes the sigmoid

activation function, MLP denotes the fully connected neural

network, and AvgPooltime and MaxPooltime denote average

pooling and maximum pooling operations along the temporal

dimension, respectively. The CPCA attention mechanism is

mainly composed of two key components, namely, the Channel

Attention Module (CAM) and the Spatial Attention Module (SAM).

The processing flow of the CPCA module is as follows:

CAM(Fin) = s (MLP(AvgPoolchannel(Fin)) + MLP(MaxPoolchannel(Fin)))

(8)

Where Fin denotes the input to CPCA, s denotes the sigmoid

activation function, MLP denotes the fully connected neural

network, and AvgPoolchannel and MaxPoolchannel denote the

average pooling and maximum pooling along the channel

dimension. The SAM is computed as follows:

SAM(Fin) = Conv1�1 o
3

i=0
Branchi(DwConv(Fin))

 !
(9)

where DwConv represents a deep convolution, and Branchi, i ∈
0, 1, 2, 3f g represents the ith branch.
2.4 Multi-task learning

Considering that the shared feature extraction layer can

improve the richness of feature representation and the

complementary information between different tasks can improve

the generalization ability of the model, in this regard, we added an

auxiliary task (regression task) to augment the main task of

depression classification. For the purpose of multi-task learning,

after feature extraction, the obtained features are sent to the FC

block to perform the multi-task learning task.

The multi-task loss function in the training phase can be

expressed as:

Loss = a · Lre + b · Lcl (10)

where Lre and Lcl are the loss functions for PHQ-8 regression

and binary classification, respectively. a and b are designed to utilize

the coefficients between these two tasks, which can be set as

hyperparameters. In this study, a is set to 0.7 and b is set to 0.3.

Specifically, we use the commonly used cross-entropy loss function

as the loss function for the binary classification task, which can be

expressed as:

Lc1 =
1
No

N

i=1
½yilog (ŷ i) + (1 − yi) log(1 − ŷ i)� (11)

where N is the number of samples, yi is the true label of the i

-th sample, and ŷ i is the predicted probability of the i-th
Frontiers in Psychiatry 06
sample. The loss function of the PHQ-8 regression can be

expressed as:

Lre =
1
No

N

i=1
(yi − ŷ i)

2 (12)

where N is the sample size, yi and ŷ i the true and predicted

PHQ-8 scores of the i-th sample, respectively.
3 Results

To validate the effectiveness of DepITCM, we conducted

experimental validation on the AVEC2017 and AVEC2019

datasets. Additionally, we aimed to demonstrate that the

proposed model is applicable to depression detection and that the

multi-task learning strategy can improve the accuracy of depression

detection. We conducted comparison experiments, multi-task

learning experiments, and ablation experiments. The model

proposed in this paper is built using the Keras framework. All

experiments are trained and tested on NVIDIA GeForce A800

GPUs. For the classification task, we use accuracy, F1 score, recall,

and precision as evaluation criteria; for the regression task, MAE

and RMSE are used as evaluation criteria.
3.1 Comparison with existing models

For the AVEC 2017 dataset, most of the previous studies (12)

only used Action Units and 3D facial landmark for depression

detection, unlike these methods, we also captured two visual

features, Head Pose and Eye Gaze, to enrich the feature

representation; for audio modality this paper captured COVAREP

and FORMANT two features; for the AVEC 2019 dataset, we follow

the methods provided by AVEC 2019 DDS to capture visual and

audio features. Tables 1, 2 show the results of performance

comparison between the method proposed in this paper and other

methods on AVEC 2017 and AVEC 2019 datasets, respectively.
3.2 Multi-task learning experiments

To verify whether the proposed model benefits from multi-task

learning, we compared the results of single-task learning andmulti-task

learning. In the regression task, we classified the regression output

according to the five levels of the official PHQ-8 scale (0-4, 5-9, 10-14,

15-19, 20 and above), and these levels served as the evaluation criterion

for the regression task. As shown in Table 3, multi-task representation

learning outperforms single-task learning in both classification and

regression tasks. This indicates that shared features have a positive

impact on both classification and regression tasks, demonstrating that

the proposed model benefits from multi-task learning and effectively

enhances depression detection performance.
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3.3 Ablation experiments

3.3.1 Verification of the effectiveness of
each module

To validate the effect of the DepITCM model on depression

recognition ability, we designed four model structures to explore the

importance of each module in DepITCM. (i) Inception: We use the

Inception structure to extract modality-specific features, then

concatenate all features and finally apply a fully connected layer

for depression detection. This model is primarily used to verify the

performance of the standard Inception module in feature

extraction; (ii) Inception+TCPCA: This model extracts features

using Inception, then fuses the extracted features through the

TCPCA module for depression detection. It is used to validate the

role of the TCPCA module in enhancing local features; (iii)

Inception Dilated Convolution (IDC): This model extracts

features using the IDC module, concatenates the extracted

features, and then applies a fully connected layer for depression

detection. It is used to verify the effectiveness of the IDC module in

capturing global features; (v) DepITCM, which consists of two main

modules, IDC and TCPCA. In addition to this, we also verified the

effect of replacing the CPCA module in DepITCM with CBAM.
Frontiers in Psychiatry 07
Table 4 presents the depression detection performance of four

different model architectures on the AVEC2017 and AVEC2019

datasets. The performance of Inception for depression detection is

relatively poor, likely due to the sparsity of convolutions and the

limitations of the receptive field imposed by the convolution kernel

size, making standard convolutions unable to effectively capture

global dependencies in time-series data. Next, by comparing pairs of

models, namely Inception vs. Inception+TCPCA and Inception vs.

IDC, significant performance improvements can be observed in

Table 4. The IDC module increases the receptive field through

dilated convolutions, effectively capturing global temporal patterns

without increasing computational complexity. The TCPCA module

enhances local feature representations by combining temporal

attention and channel feature enhancement, making the features

more representative. This demonstrates that the IDC and TCPCA

modules complement each other in the DepITCM model and are

key to its performance improvement.

3.3.2 The impact of TAM and CPCA order
on performance

To further investigate the impact of the sequence of the TAM and

CPCA modules on model performance, we designed two experiments:
TABLE 2 Comparison of the performance of DepITCM on AVEC 2019 datasets with other methods in recent years.

Method
Classification Regression

F1 Precision Recall Accuracy RMSE MAE

Ringeval et al. (18) – – – – 6.37 –

Saggu et al. (14) – – – – 5.36 4.32

Sun et al. (31) – – – – 3.78 –

Gimeno et al. (28) 0.56 0.59 0.58 – – –

Li et al. (32) – – – 0.79 4.80 4.58

DepITCM (Ours) 0.816 0.813 0.806 0.810 4.89 4.62
Bold data indicates the best performing results.
TABLE 1 Comparison of the performance of DepITCM on AVEC 2017 datasets with other methods in recent years.

Method
Classification Regression

F1 Precision Recall Accuracy RMSE MAE

Ringeval et al. (25) – – – – 6.62 5.52

Pan et al. (26) – – – – 5.49 4.55

Fang et al. (11) – – – – 5.20 4.12

Kumar et al. (27) 0.63 – – – 6.35 5.38

Gimeno et al. (28) 0.67 0.68 0.66 – – –

Wei et al. (29) 0.61 0.78 0.50 – 6.06 5.06

Tiwary et al. (30) 0.746 0.667 0.667 0.771 – –

DepITCM (Ours) 0.823 0.860 0.801 0.823 6.10 5.21
Bold data indicates the best performing results.
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one where TAM is placed before CPCA (TAM-CPCA), and another

where CPCA is placed before TAM (CPCA-TAM). The experimental

results are presented in Table 5. The results demonstrate that the model

achieves better performance when TAM precedes CPCA, indicating

that enhancing temporal features first with TAM facilitates more

efficient optimization of channel and spatial features by the

subsequent CPCA module.
4 Discussion

Previously conducted studies have illustrated the feasibility of

using vision and audio for depression detection (5–8), have focused

on the extraction of global information, which is consistent with our

study. However, they neglected the importance of local features.

The method proposed by (9) has the ability to fuse the spatio-

temporal information in the data, compared with the method

proposed in this paper, we not only focus on the spatio-temporal

information, but also emphasize the extraction of the channel

information, and we can dynamically allocate the attention weight

in the spatial dimension, to refine the extraction of the local

features. Although (12) focuses on both global and local

information, it mainly concentrates on the temporal dimension
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and has relatively few local features extracted. To address these

issues, we propose DepITCM. DepITCM can comprehensively

integrate global information and extract features in time, channel,

and spatial dimensions. In addition, we design ablation experiments

to demonstrate the effectiveness of each module in DepITCM.

In addition, we designed ablation experiments to demonstrate

the effectiveness of each module in DepITCM. In the ablation

experiments, we set up control groups for the main modules, IDC

and TCPCA. The results show that IDC and TCPCA, as feature

encoders, effectively extract global and local features of the

modalities, significantly improving the performance of the

DepITCM model.

We also demonstrated the superiority of multi-task learning

over single-task learning. By incorporating the multi-task learning

strategy into the model, we can more effectively utilize the

complementary information between different tasks, further

enhancing the accuracy and generalization ability of depression

detection. Experimental results indicate that DepITCM with multi-

task learning outperforms single-task learning across different tasks,

proving the effectiveness of multi-task learning and its role in

improving model performance.

In practical applications, DepITCM has the potential to be

integrated into systems related to depression treatment monitoring,
TABLE 4 Performance of different structural models on AVEC 2017 and AVEC 2019 datasets.

Datasets Method
Classification Regression

F1 Precision Recall Accuracy RMSE MAE

AVEC 2017

Inception 0.705 0.702 0.716 0.693 6.97 6.09

Inception+TCPCA 0.774 0.783 0.781 0.784 6.31 5.44

IDC 0.736 0.746 0.725 0.721 6.74 5.83

DepITCM-CBAM (Ours) 0.798 0.805 0.783 0.786 6.30 5.36

DepITCM (Ours) 0.823 0.860 0.801 0.823 6.10 5.21

AVEC 2019

Inception 0.686 0.692 0.701 0.668 6.02 5.39

Inception+TCPCA 0.776 0.782 0.762 0.764 5.23 4.92

IDC 0.728 0.733 0.732 0.711 5.61 5.18

DepITCM-CBAM (Ours) 0.798 0.805 0.783 0.786 6.30 5.36

DepITCM (Ours) 0.816 0.813 0.806 0.810 4.89 4.62
Bold data indicates the best performing results.
TABLE 3 Comparison of Single-Task and Multi-Task results based on accuracy, RMSE, and other metrics.

Tasks
AVEC 2017 AVEC 2019

F1 Acc RMSE MAE F1 Acc RMSE MAE

Single-Task 0.815 0.811 6.18 5.28 0.796 0.803 4.96 4.71

Multi-Task 0.823 0.823 6.10 5.21 0.816 0.810 4.89 4.62
Where Single-Task refers to training the PHQ-8 regression task or classification task alone, and Multi-Task refers to training both the PHQ-8 regression task and classification task. Acc refers to
the accuracy rate. Bolded data indicate the best performing results.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1466507
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhang et al. 10.3389/fpsyt.2024.1466507
supplemental assessments, and online health assessments. Its

multimodal nature allows the model to synthesize and analyze

multiple signals in real time in a clinical setting, thereby supporting

physicians inmore accurate diagnosis. For example, in a clinical setting,

the model can be used to assist in the early screening of patients with

depression and provide objective quantitative metrics. In addition, the

multi-task learning strategy enhances the model’s adaptability and

generalization ability in different environments, enabling it to meet the

needs of different clinical scenarios and patients. This is of great

significance to the field of mental health, especially the

objectivization and real-time nature of depression detection.

Compared to current state-of-the-art methods, DepITCM

outperforms these methods in classification metrics on the AVEC

2017 and AVEC 2019 datasets, but does not fully surpass all

advanced methods in regression task evaluation metrics. For

example, Fang et al. (11) proposed MFM-Att, which strengthens

the interaction and complementarity between modalities through

multi-level fusion (FFN + AttFN). This strategy extracts

information from different levels , ful ly uti l iz ing the

complementary nature of different modalities and providing

richer emotional information. In contrast, our method focuses

more on feature extraction, employing a staged feature extraction

strategy that first extracts global features and then local features,

allowing for a more comprehensive understanding and

representation of the emotional features of depression patients.

As shown in Table 4, the staged feature extraction strategy achieved

good results, demonstrating its effectiveness. Pan et al. (26)

proposed the Audio-Visual Attention Network (AVA-

DepressNet), which, due to differences in pretraining objectives

and datasets, uses a multi-stage pretraining strategy. In the first

stage, the visual encoder is pretrained using the CelebA dataset to

capture general facial features, and in the second stage, the model is

further fine-tuned using the AVEC dataset to capture depression-

related features. Moreover, the multi-stage pretraining objectives

effectively enhance the model’s ability to represent both general

features and task-specific features. As a result, AVA-DepressNet

outperforms our method in the regression task. Furthermore, Saggu

et al. (14) proposed DepressNet, which introduces text modality due

to the modality differences, providing more comprehensive

information support that allows it to capture richer depressive

features. As a result, DepressNet outperforms our method in the

regression task. The text modality can compensate for the
Frontiers in Psychiatry 09
limitations of visual and audio modalities in terms of overt

behavioral features by capturing implicit emotional tendencies,

psychological hints, and other hidden information in

language expression.

Currently, DepITCM only integrates visual and audio modalities.

In the future, it may be beneficial to incorporate additional

modalities, such as text. Previous studies (10, 33–37), have shown

that combining visual, audio, and text modalities can provide multi-

angle deep learning models for depression detection. Therefore, how

to effectively integrate this multimodal information remains an

important issue worth further exploration. Moreover, although the

model’s performance has shown significant improvements in the

experiments, further validation on broader datasets and in real-world

scenarios is needed to ensure its reliability.
5 Conclusion

To develop a method that can help clinicians detect depression

objectively and quickly, this paper constructs a depression detection

model (DepITCM) based on multi-task representation learning

with vision and audio. Among them, the IDC integrates the

global information of the data, while the TCPCA module

effectively enhances the local information, extracts the temporal

information, and integrates the channel and spatial features, which

enhances the representational ability of DepITCM. The

experimental results show that the DepITCM model achieves a

significant performance improvement compared with the existing

methods in recent years, and can comprehensively extract multi-

modal information. In addition, in the ablation experiments, we

verified that the two sub-modules have a positive effect on the

generalization ability of DepITCM, proving the effectiveness of the

proposed sub-modules. Finally, DepITCM outperforms single-task

learning in all multi-task learning experiments, proving that the

shared feature extraction layer can improve the richness of feature

representation. In conclusion, the method proposed in this paper

advances the development of intelligent systems for mental health

to a certain extent, and the method is promising as a potential tool

for clinicians and researchers. However, the method proposed in

this paper still has room for improvement in recognition accuracy.

Future work will focus on optimizing the model structure and

incorporating additional modal information.
TABLE 5 The impact of TAM and CPCA order on performance.

Datasets Order
Classification Regression

F1 Precision Recall Accuracy RMSE MAE

AVEC 2017
CPCA-TAM 0.802 0.845 0.780 0.795 6.30 5.50

TAM-CPCA 0.823 0.860 0.801 0.823 6.10 5.21

AVEC 2019
CPCA-TAM 0.781 0.803 0.775 0.790 5.24 4.89

TAM-CPCA 0.816 0.813 0.806 0.810 4.89 4.62
Bold data indicates the best performing results.
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