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Background: Previous studies based on resting-state functional magnetic

resonance imaging(rs-fMRI) and voxel-based morphometry (VBM) have

demonstrated significant abnormalities in brain structure and resting-state

functional brain activity in patients with early-onset schizophrenia (EOS),

compared with healthy controls (HCs), and these alterations were closely

related to the pathogenesis of EOS. However, previous studies suffer from the

limitations of small sample sizes and high heterogeneity of results. Therefore, the

present study aimed to effectively integrate previous studies to identify common

and specific brain functional and structural abnormalities in patients with EOS.

Methods: The PubMed, Web of Science, Embase, Chinese National Knowledge

Infrastructure (CNKI), and WanFang databases were systematically searched to

identify publications on abnormalities in resting-state regional functional brain

activity and gray matter volume (GMV) in patients with EOS. Then, we utilized the

Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software

to conduct a whole-brain voxel meta-analysis of VBM and rs-fMRI studies,

respectively, and followed by multimodal overlapping on this basis to

comprehensively identify brain structural and functional abnormalities in

patients with EOS.

Results: A total of 27 original studies (28 datasets) were included in the present

meta-analysis, including 12 studies (13 datasets) related to resting-state

functional brain activity (496 EOS patients, 395 HCs) and 15 studies (15

datasets) related to GMV (458 EOS patients, 531 HCs). Overall, in the functional

meta-analysis, patients with EOS showed significantly increased resting-state

functional brain activity in the left middle frontal gyrus (extending to the triangular

part of the left inferior frontal gyrus) and the right caudate nucleus. On the other

hand, in the structural meta-analysis, patients with EOS showed significantly

decreased GMV in the right superior temporal gyrus (extending to the right

rolandic operculum), the right middle temporal gyrus, and the temporal pole

(superior temporal gyrus).
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Conclusion: This meta-analysis revealed that some regions in the EOS exhibited

significant structural or functional abnormalities, such as the temporal gyri,

prefrontal cortex, and striatum. These findings may help deepen our

understanding of the underlying pathophysiological mechanisms of EOS and

provide potential biomarkers for the diagnosis or treatment of EOS.
KEYWORDS
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Introduction

Schizophrenia is a severe psychiatric disorder characterized by

high disabling and progressive development, and the main clinical

symptoms are positive symptoms (e.g. hallucinations, delusions,

etc.), negative symptoms (e.g. affective apathy, impoverished

thinking, etc.), and cognitive impairment (1). The World Health

Organization (WHO) reported that schizophrenia affected

approximately 24 million people or 1 in 300 people (0.32%)

worldwide in 2022 (2). Schizophrenia has become a major public

health problem worldwide, causing serious harm to patients and

their families, as well as a heavy economic burden on society and

government. Specifically, compared with the general population,

patients with schizophrenia have a 2.08 times increased risk of

death (3), and their mean life expectancy is shortened by about 15

years (4). On the other hand, patients with schizophrenia often

suffer from social exclusion and human rights violations, which may

extend to their family members (5). In addition, the combined

direct and indirect economic burden of schizophrenia in the United

States exceeded $340 billion (6). As mentioned above, the dangers

of schizophrenia are obvious, over the past decades, despite

extensive basic and clinical studies on schizophrenia by many

researchers, the pathophysiological mechanisms of schizophrenia

remain unclear, and effective treatments are still lacking. In

response to the above problems, many researchers have put

forward different hypotheses in an attempt to reveal the

pathophysiological mechanisms of schizophrenia, among which

the widely accepted view is that schizophrenia is related to

alterations in the neural developmental trajectory of the brain due

to abnormalities in the action of genetic, environmental and other

factors (7). Early-onset schizophrenia (EOS) is a subgroup of

schizophrenia that is defined as the first onset of symptoms of

schizophrenia before the age of 18. EOS accounts for approximately

5% of all schizophrenia cases and is characterized by higher genetic

susceptibility, more atypical and severe symptomatology, and

poorer therapeutic response to antipsychotic medications

compared with adult-onset schizophrenia (8–10). Notably, EOS is

less affected by potential confounders such as antipsychotic

medications, life events, and the social environment (11).

Therefore, conducting studies on patients with EOS provides a
02
unique perspective on schizophrenia research and may be helpful

in the exploration of the pathophysiological mechanisms

of schizophrenia.

With the development of neuroimaging techniques, resting-state

functional magnetic resonance imaging (rs-fMRI) and voxel-based

morphometry (VBM) have been widely used in the studies of

functional and structural brain abnormalities in patients with EOS.

Rs-fMRI can be used to detect the spontaneous activity of neurons in

the brain when subjects are not performing any specific task or

receiving any external stimulation, and it can effectively avoid

instability caused by subjects performing specific tasks (12–14).

Hence, rs-fMRI provides a powerful tool for the exploration of

resting-state regional functional brain activity in patients with EOS.

The alterations of resting-state regional functional brain activity can

be represented by indicators such as amplitude of low-frequency

fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity

(ReHo) and cerebral blood flow (CBF). Among which, ALFF

indirectly reflects regional functional brain activity by measuring

the total power of blood oxygenation level-dependent (BOLD) signals

in the low frequency range (15). fALFF reflects the relative

contribution of oscillations in the low frequency range to the

overall detectable frequency range (16). ReHo is an assessment of

the synchronization between a given voxel and a neighboring voxel

time-series through the consistency of the Kendall’s coefficient of

concordance (17). In addition, CBF can be quantified by fMRI,

single-photon emission computed tomography (SPECT) and

positron emission tomography (PET) using the arterial spin

labelling (ASL) technique (18). Previous studies based on the above

methodologies had identified significant abnormalities in resting-

state regional functional brain activity in patients with EOS versus

healthy controls (HCs). However, there was high heterogeneity in

these results. For example, some studies have reported significantly

increased resting-state regional functional brain activity in prefrontal

cortex (PFC) in patients with EOS (19–21), however, other studies

have observed significant decreased resting-state functional activity in

PFC (22, 23). In addition, it has been identified that patients with EOS

have both regions of increased and decreased resting-state regional

functional brain activity in the PFC (24).

In addition to the abnormalities in resting-state functional brain

activity, previous studies had revealed significant anatomical
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abnormalities in patients with EOS.VBM is an automated whole-

brain technique capable of assessing regional grey matter volume

(GMV) alterations without bias (25). GMV, as a structural marker

that is relatively stable over time, can reflect to a certain extent the

structural basis behind alterations in functional brain activity (26).

Similarly, there were discrepancies in the results of the VBM

studies. For instance, some previous VBM studies shown

decreased regional GMV in the inferior temporal gyrus in

patients with EOS (27–29), yet another study reported increased

GMV in the inferior temporal gyrus in patients with EOS (30). The

inconsistency in the results of the VBM and rs-fMRI studies

described above may be attributed to the limited sample size of

the studies, the heterogeneity of the study methodology (e.g.,

different inclusion and exclusion criteria, different methods of

data analysis, etc.), and the heterogeneity of the study subjects

(e.g., different duration of the disease, severity of the disease, and

medication status, etc.).

Hence, the present study aimed to explore the most reliable and

consistent structural and functional brain abnormalities in EOS by

systematically reviewing and effectively integrating previous studies

on resting-state regional functional brain activity and GMV

conducted on EOS patients. Alterations in functional brain

activity and structural abnormalities are closely related, so

another aim of the present study was to explore whether there is

a corresponding structural basis for brain regions with abnormal

resting-state functional brain activity in patients with EOS. In brief,

the present study began with separate meta-analysis of rs-fMRI

studies and VBM studies, followed by multimodal overlapping on

this basis. We then conducted a validation subgroup meta-analysis

after excluding uncorrected for statistics to test the robustness of the

results of the main meta-analyses. We also performed subgroup

meta-analyses of the rs-fMRI studies and the VBM studies,

respectively, to investigate whether there are different functional

and structural abnormalities in patients with EOS in different

disease statuses. Specifically, two subgroup meta-analyses

were included (studies of patients with first-episode EOS and

studies of patients with drug-naive EOS). Finally, we conducted

meta-regression analyses to explore potential associations of

clinical variables (age, sex, years of education, duration of

illness, and symptom severity scores) with the results of the

main meta-analyses. Based on the evidence from previous

studies, we speculated that the brain regions in which EOS

patients develop abnormalities in GMV and resting-state regional

functional brain activity are mainly located in the PFC, temporal

gyrus and striatum.
Methods

Literature search

This study followed the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) guidelines (31).

The current meta-analysis was registered with PROSPERO

(registration number: CRD42024544361). In the present study, we

conducted a systematic and comprehensive search for studies on
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VBM and rs-fMRI in patients with EOS published in PubMed, Web

of Science, Embase, Chinese National Knowledge Infrastructure

(CNKI) and WanFang databases through April 30, 2024, combined

with the following keywords:(“schizophrenia” OR “schizophrenics”

OR “schizophrenic disorder”) AND (“functional magnetic

resonance imaging” OR “fMRI” OR “resting-state” OR

“amplitude of low-frequency fluctuation” OR “ALFF” OR

“fractional ALFF” OR “fALFF” OR “regional homogeneity” OR

“ReHo”OR “cerebral blood flow”OR “CBF”OR “positron emission

tomography” OR “PET” OR “single photon emission computed

tomography” OR “SPECT” OR “arterial spin labeling” OR “ASL”

OR “voxel-based morphometry” OR “gray matter” OR “VBM”)

AND (“adolescent” OR “child” OR “early-onset”). In addition, the

references of the included studies and relevant review literature

were examined to avoid the omission of other relevant studies.
Study selection

Studies were included in the meta-analysis if they satisfied the

following criteria: (1) the study was original (rather than a review or

abstract, etc.) that was peer-reviewed for publication in English or

Chinese language journal; (2) the study subjects were formally

diagnosed with schizophrenia before the age of 18 according to

DSM, ICD or other criteria; (3) they analyzed resting-state

functional brain activity or GMV at the whole-brain level; (4)

they compared regional resting-state functional brain activity or

GMV between patients with EOS and HCs; (5) peak coordinates

based on whole-brain analysis were reported in three-dimensional

stereotactic coordinates [Talairach or Montreal Neurological

Institute (MNI)]; (6) If the study was a longitudinal or

intervention trial, only baseline data were included for analysis.

Exclusion criteria were: (1) patients with EOS were diagnosed

with comorbid neurological or other psychiatric disorders; (2) they

had fewer than 10 samples in a single group; (3) three-dimensional

stereotactic coordinates of the peak of the activation point were

unavailable, even after contacting the corresponding author by

email or telephone; (4) the baseline data were unavailable; (5) the

full-text could not be accessed; (6) If the data of different studies

partially or completely overlapped, only the study with larger

sample sizes and higher quality were included.
Data extraction

For each included study, we extracted the following

information: (1) peak coordinates and effect values (e.g., t-values,

etc.) of brain regions significantly different between patients with

EOS and HCs; (2) the demographic and clinical characteristics,

including sample size, gender, mean age, years of education,

diagnostic criteria, medication status, duration of the illness, and

PANSS scores; and (3) the imaging characteristics, including MRI

scanner, method of analysis, data processing and analysis software

used, the full width at half maximum (FWHM) parameter of the

smoothing kernel, slice thickness and statistical thresholds used in

brain imaging preprocessing.
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Quality assessment

We used a 10-point checklist based on previous meta-analyses

to assess the quality of each study included in the current meta-

analysis (32–34), which consisted of three modules including

demographic and clinical characteristics of patients and HCs,

methods of image acquisition and analysis, and quality of results

and conclusions. Specifically, scores of 0, 0.5, and 1 were assigned to

each item based on whether the criteria were not satisfied, partially

satisfied, or fully satisfied, with a total score of no more than 10

(Supplementary Table S1). The literature search, study selection,

data extraction, and quality assessment were performed

independently by two researchers (Lu Wang and Ruishan Liu).

Any discrepancies were resolved jointly by the third and fourth

researchers (Hongwei Li and Lihua Zhuo) for a final decision.
Data analyses

Voxel-wise meta-analyses for functional and
structural differences

We performed separate meta-analyses of brain regions with

significant differences in resting-state regional functional brain

activity (i.e., ALFF, fALFF, ReHo, and CBF) and structure (i.e.,

gray matter volume) between patients with EOS and HCs, using the

Seed-based d Mapping with Permutation of Subject Images (SDM-

PSI, version 6.23) (https://www.sdmproject.com/) software

following standard procedures. The procedures have been

described in detail in previous studies (35, 36). Briefly, we initially

created the corresponding text for each study and then entered the

peak coordinates and effect sizes of the extracted brain regions that

were significantly different between patients with EOS and HCs into

the corresponding text files. If the effect sizes reported in the

original studies were p-values or Z-values, we could convert them

to t-values using the SDM online converter. Meanwhile, if the

coordinates reported in Talairach space could be uniformly

transformed to MNI space by matrix transformation so that all

peak coordinates were in the same normalized space. We then

recreated the standardized MNI-based effect size maps (Hedges’

effect size) of contrast results for each dataset separately using an

anisotropic non-normalized Gaussian kernel. Next, the mean maps

were computed using the random-effects model, weighted by

sample size, intra-study variability, and between-study

heterogeneity, and multiple imputations were pooled using

Rubin’s rules. Finally, the maps were visualized by MRIcron

software (www.mricro.com/mricron/). In addition, the meta-

analyses were conducted with the default Gaussian kernel size

and thresholds of the SDM-PSI software [i.e., FWHM = 20 mm,

peak height Z > 1, p < 0.005 (uncorrected), cluster extent > 10

voxels], which have been validated to balance false positives and

false negatives optimally and to be approximate to the corrected

results (37–39).
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Multimodal meta-analysis

We overlapped the thresholded meta-analytic results-maps of

resting-state regional functional brain activity and brain GMV

alterations to localize brain regions presenting abnormalities both

at the functional and structural level in patients with EOS (i.e.,

examine the convergence of the results from different modalities). It

is worth noting that in the multimodal analysis, we used a more

stringent probability threshold (i.e., p < 0.0025) (40).
Subgroup meta-analyses

In the current study, to verify the reliability of the results of the

main meta-analyses, we conducted a validation subgroup analysis

after excluding studies with uncorrected statistics. Furthermore, to

explore the structural and functional changes in the brain of EOS

patients in different statuses, we performed the following two

subgroup analyses (1): the studies were conducted in patients

with drug-naive EOS; (2) the studies were conducted in patients

with first-episode EOS. The same thresholds were applied as for the

subgroup meta-analyses [i.e., peak height Z > 1, cluster range > 10

voxels, p < 0.005 (uncorrected)].
Analyses of jackknife sensitivity,
heterogeneity, and publication bias

In the present study, we used the whole-brain voxel-based

Jackknife sensitivity analysis, i.e. iteratively repeating the same

analysis after excluding one dataset at a time to evaluate the

stability and reproducibility of the main meta-analyses results (41,

42). If an abnormal brain region remains significant in all or most

studies, the result is considered highly reproducible and stable. We

used the I2 statistic to assess between-study heterogeneity of the

results, with I2 < 50% commonly indicating low heterogeneity (43).

In addition, to evaluate potential publication bias, in the present

study, funnel plots were created for visual inspection, and

publication bias was quantified by Egger’s test. Significant

publication bias was considered to exist if the p-value < 0.05 of

Egger’s test and the funnel plots were asymmetric (44, 45).
Meta-regression analyses

To explore the potential impact of clinical variables (including

mean age, percentage of females, years of education, illness

duration, and PANSS scores) on the results of the meta-analyses,

linear regression analyses were performed in the current study

within the EOS. We applied the more conservative thresholds (i.e., p

< 0.0005 and cluster extent > 10 voxels) recommended by previous

studies to minimize the reporting of spurious relationships (46, 47).
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Results

Included studies and sample characteristics

The flow chart for identifying and excluding studies is shown in

Figure 1. Through a systematic and comprehensive search and

review, we finally included 12 studies (13 datasets) for resting-state

regional functional brain activity and 15 studies (15 datasets) for

GMV. The total sample sizes of the functional meta-analysis were

891 subjects, including 496 EOS patients (57.06% females, mean age

=14.81 years) and 395 HCs (55.44% females, mean age =14.74

years), and there was no statistically significant difference

between the two groups on sex (c2 = 0.778, p=0.378) or age

(t=0.172, p=0.865). In patients with EOS, the mean duration of

illness was 5.74 months (range: 1.50-9.60 months), 86.49% were

drug-naive patients, and 83.87% were first-episode patients. In

addition, the mean quality score of the included studies was 9.04

(range:7.5-10.0).

The total sample sizes of the structural meta-analysis were 989

subjects, including 458 EOS patients (50.22% females, mean age

=16.30 years) and 531 HCs (46.14% females, mean age =16.11

years), and there was no statistically significant difference between

the two groups on sex (c2 = 1.639, p=0.200) or age (t=0.177,

p=0.861). In patients with EOS, the mean duration of illness was

5.76 months (range: 1.20-16.00 months), 50.66% were drug-naive

patients, and 77.29% were first-episode patients. Furthermore, the

mean quality score of the included studies was 8.80 (range:7.0-9.5).

The demographic and clinical characteristics, imaging

characteristics, and quality scores of the included studies are

presented in Supplementary Tables S2, S3.
Main voxel-wise meta-analyses

In the functional meta-analysis, resting-state functional

brain activity was significantly increased in the left middle frontal

gyrus (extending to the triangular part of the left inferior frontal

gyrus) and the right caudate nucleus in patients with EOS,

compared with HCs. However, no brain regions with significantly

decreased resting-state brain functional activity were observed

(Figure 2, Supplementary Table S4).

In the structural meta-analysis, GMV was significantly

decreased in the right superior temporal gyrus (extending to

the right rolandic operculum), the right middle temporal gyrus,

and the right temporal pole (superior temporal gyrus) in patients

with EOS, compared with HCs. No significantly increased GMV

was observed in patients with EOS (Figure 2, Supplementary

Table S5).
Multimodal meta-analysis

Brain regions with conjoint alterations in resting-state

functional brain activity and GMV were not observed in patients

with EOS, compared with HCs.
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Subgroup meta-analyses

First, we performed subgroup analyses after excluding studies of

uncorrected for statistics. To be specific, for resting-state functional

brain activity analysis (10 datasets), compared with HCs, patients

with EOS showed significantly increased resting-state functional

brain activity in the left middle frontal gyrus (extending to the

orbital part of the left inferior frontal gyrus), and right caudate

nucleus, while resting-state functional brain activity was

significantly decreased in the left superior temporal gyrus

(Supplementary Table S6, Supplementary Figure S1). For GMV

analysis (12 datasets), GMV was significantly decreased in the right

superior temporal gyrus in patients with EOS, compared with HCs

(Supplementary Table S7, Supplementary Figure S1).

Subgroup analyses of patients with first-episode EOS revealed

that compared with HCs, patients with first-episode EOS had

significantly increased resting-state regional functional brain

activity in the triangular part of the left inferior frontal gyrus

(extending to the left middle frontal gyrus) and significantly

decreased in the left postcentral gyrus (Supplementary Table S8,

Supplementary Figure S2). However, no brain regions with

significantly increased or decreased GMV were observed between

patients with first-episode EOS and HCs.

In addition, Subgroup analyses of patients with drug-naive EOS

indicated that patients with drug-naive EOS had significantly

increased resting-state regional functional brain activity in the left

middle frontal gyrus (extending to the triangular part of the left

inferior frontal gyrus and the orbital part of the left inferior frontal

gyrus) and right caudate nucleus, compared with HCs

(Supplementary Table S9, Supplementary Figure S2). Likewise, no

brain regions with significant increased or decreased GMV were

observed in patients with drug-naive EOS.
Analyses of jackknife sensitivity,
heterogeneity, and publication bias

The jackknife sensitivity analysis revealed high reliability and

reproducibility of the results of the functional and structural meta-

analysis. In the functional meta-analysis, jackknife sensitivity analysis

showed that alterations (i.e., decreased resting-state functional brain

activity) in the left middle frontal gyrus (extending to the triangular

part of the inferior frontal gyrus) and the right caudate nucleus

remained significant in all combinations. For the structural meta-

analysis, jackknife sensitivity analysis indicated that the most robust

data was the decreased GMV in the right superior temporal gyrus

(extending to the right rolandic operculum), which could be cross-

validated in at least 13 of all 15 datasets. In addition, the other results

were relatively robust, in which the right middle temporal gyrus could

be cross-validated in 8 of the 15 data sets, and the right temporal pole

could be cross-validated in 7 of the 15 data sets.

In both functional and structural meta-analyses, no significant

between-study heterogeneity (I2 < 50%) or publication bias (Egger’s

test, p > 0.05) was observed in all brain regions with significant

abnormal alterations (Supplementary Tables S4, S5).
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Meta-regression analyses

Meta-regression analyses demonstrated that there were no

significant linear associations between abnormal alterations in

resting-state regional functional brain activity or GMV and

clinical variables (including age, percentage of females, years of

education, illness duration, and disease severity scores) in patients

with EOS.
Discussion

To our knowledge, this is the first multimodal neuroimaging

meta-analysis of EOS patients applying the SDM-PSI meta-analysis

method. The main findings of the present study are as follows (1):

compared with HCs, patients with EOS had significantly increased

resting-state regional functional brain activity in the left middle
Frontiers in Psychiatry 06
frontal gyrus (extending to the triangular part of the left inferior

frontal gyrus) and the right caudate nucleus; (2) the brain regions

with significantly decreased GMV in patients with EOS were mainly

located in the right superior temporal gyrus (extending to the

rolandic operculum), the right middle temporal gyrus, and the

right temporal pole (superior temporal gyrus). (3) In the

multimodal meta-analysis, we failed to identify brain regions with

conjoint abnormalities in resting-state regional functional brain

activity and GMV in patients with EOS; (4) The results of jackknife

sensitivity analyses, heterogeneity analyses, and validation subgroup

analyses showed relatively high reliability and reproducibility of the

results of the main meta-analyses; (5) Meta-regression analyses

showed no significant linear associations between the major

structural and functional alterations in EOS patients and age,

gender, years of education, duration of illness, or severity of disease.

In the functional meta-analysis, we identified a significantly

increased regional spontaneous brain activity in the left middle
FIGURE 1

Flow diagram for the identification and exclusion of studies.
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frontal gyrus in patients with EOS, which was consistent with the

results of the previous studies (48, 49). The middle frontal gyrus is

one of the important constituent brain regions of the PFC, which is

closely related to working memory (50). Previous studies have

shown that working memory processes are often impaired in

patients with schizophrenia and their unaffected first-degree

relatives (51–53). In addition, abnormal activation patterns in the

middle frontal gyrus are frequently associated with attentional

control (54), and the top-down attentional control processes of

patients with schizophrenia are likewise particularly susceptible to

being impaired (55). On the other hand, neural activity in the left

middle frontal gyrus was significantly increased in patients with

schizophrenia during the processing of fearful faces (56).

Athanassiou et al. reported that abnormal activation of the left

middle frontal gyrus in suicidal patients with schizophrenia also

during emotional processing tasks (57), and significant cortical

thinning of the PFC was also observed in suicidal patients with

schizophrenia (58), suggesting that suicidal behaviors in patients

with schizophrenia may be related to the abnormal anatomical

structure and neural activity of the PFC. In summary, the PFC is

involved in the regulation of decision-making and executive

control, and in appropriate behaviors by integrating feeling and

emotional information (59, 60). The hyperactivation of functional

activity in the PFC found in the present study we speculate may be

due to a functional compensatory neural mechanism that the

organism develops after cognitive, emotional processing and

behavioral processes are impaired in patients with EOS, and

genetic factors may also influence some of these processes.

However, it is noteworthy that some studies reported significantly

decreased regional spontaneous functional activity in the PFC in

patients with EOS (23, 61). The possible reasons for this
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discrepancy are: (i) the irregular involvement of the PFC may not

be fully explained by an explicit failure of function in this region, but

perhaps reflects a dysfunction in the processes of cognitive control,

affective processing, and behavioral regulation themselves; (ii)

heterogeneity of the samples, moderating variables, and

performance on the task (62).

The triangular part of the inferior frontal gyrus belongs to

Broca’s area, the area where the motor speech center is located and

is closely related to the processing of verbal information and the

production of discourse (63, 64). Patients with schizophrenia often

suffer from extensive language disorders (65). Previous studies

revealed that abnormal activation of the left inferior frontal gyrus

was negatively correlated with increased use of transitive verbs in

continuous speech in patients with schizophrenia (66). It was also

found that patients with schizophrenia had hyperactivation of the

left inferior frontal gyrus during a speech task (67). In addition, a

significantly increased spontaneous neural activity in the triangular

part of the left inferior frontal gyrus was positively correlated with

the polygenic risk score (PRS) in patients with non-chronic

schizophrenia, and furthermore, glutamatergic-related genes

involved in synaptic organization and transmission were found to

be highly enriched in the PRS-schizophrenia genes (68). A previous

study revealed that glutamatergic neurotransmission may play an

important role in regulating speech processing and production (69).

On the other hand, the left inferior frontal gyrus of young people at

family high risk (FHR) for schizophrenia also showed

hyperenhancement due to semantic associations (70). Moreover,

significantly increased ReHo in the left inferior frontal gyrus

showed high sensitivity and specificity in distinguishing

treatment-resistant schizophrenia (TRS) from non-treatment-

resistant schizophrenia (NTRS) (71). Previous studies also
FIGURE 2

Meta-analyses results of difference between EOS and HCs. (A) resting-state regional functional activity difference between EOS and HCs, (B) GMV
difference between EOS and HCs. Regions with decreased resting-state regional functional activity or GMV are displayed in blue, and regions with
increased resting-state regional functional activity or GMV are displayed in red. The color bar indicates the maximum and minimum SDM-Z values.
EOS, early-onset schizophrenia; HCs, healthy controls; SDM, Seed-based d mapping; GMV, gray matter volume.
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revealed that a significantly increased functional activity in the

triangular part of the left inferior frontal gyrus also played an

important role in auditory verbal hallucinations (AVH) in the

schizophrenia (72). Besides that, a meta-analysis also showed that

a significant decreased in GMV in the left inferior frontal gyrus was

associated with the development of the AVH (73). In the present

study, we identified a significantly increased regional spontaneous

neural activity in the triangular part of the left inferior frontal gyrus

in patients with EOS, which is consistent with previous studies,

suggesting that abnormal neural activity in this region may be

involved in the pathogenesis of EOS, which may lead to language

deficits and hallucinations and may be a potential biomarker for

distinguishing among TRS, NTRS, and HCs and for predicting

neurobiological risk of the schizophrenia.

In addition, we also identified the presence of abnormally

increased spontaneous neural activity in the right caudate nucleus

in patients with EOS, which was consistent with previous findings

in patients with adult schizophrenia (74, 75). The caudate nucleus is

an important component of the striatum, the vast majority of which

is involved in constituting the dorsal striatum, while its ventral

portion is one of the components of the ventral striatum. Several

studies suggested that striatum dysfunction played a central role in

the pathophysiological mechanisms of schizophrenia (76–78). The

striatum mainly received dopaminergic neural projections from the

midbrain (especially the substantia nigra and ventral tegmental area

(79). Previous studies showed that striatal dopamine synthesis and

release were significantly enhanced in patients with schizophrenia

and were associated with positive symptoms of schizophrenia (80,

81). And the increased volume of the striatum may be the structural

basis for the hyperfunction of the striatal dopaminergic system in

the schizophrenia (82). Sorg et al. revealed that increased intrinsic

neural activity in the striatum of patients with schizophrenia

corresponded to symptom dimensions and disorder states, and

further identified a potential link between intrinsic neural activity in

the striatum and signaling in the dopamine pathway (83). An

animal study also found that intrinsic neural activity in the

striatum was modulated by dopamine levels (84). In addition,

abnormalities of spontaneous functional activity in the striatum

may cause dysfunction of the frontal cortex-thalamus-striatum-

midbrain circuit, leading to imbalances in the signaling of

neurotransmitters, such as dopamine, which can reduce the

signal-to-noise ratio of neural activity and impair cortical and

basal ganglia function resulting in the development of psychotic

symptoms (85, 86). However, it is worth noting that direct evidence

of the association of intrinsic neural activity in the striatum with

dopamine signaling is still lacking, which awaits further studies in

the future. Our findings similarly indicated that striatal dysfunction

may play a key role in the pathogenesis of schizophrenia and

provided evidence for the EOS aspect of the schizophrenia

dopamine hypothesis.

In the structural meta-analysis, the present study revealed that

compared with HCs, the regions with significantly decreased GMV

in patients with EOS were mainly located in the right superior

temporal gyrus (extending to the right rolandic operculum), the

right middle temporal gyrus, and the right temporal pole (superior

temporal gyrus). superior temporal gyrus plays a crucial role in
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auditory information processing, language processing and auditory

memory (87). Several previous studies showed a strong association

between GMV changes in superior temporal gyrus and auditory

verbal hallucinations (AVH) (88–90). To be specific, Zhang et al.

reported a negative correlation between decreased GMV in superior

temporal gyrus and the severity of AVH symptoms (91). Some

studies also revealed functional sub-regions of the superior

temporal gyrus, e.g. Heschl’s gyrus (primary auditory cortex) and

planum temporale were similarly altered, and further found that

both were associated with AVH and delusional behaviors in the

schizophrenia (92–94). In addition, in the present study, we also

identified that GMV abnormalities in the right superior temporal

gyrus extended to the right rolandic operculum. The rolandic

operculum is located in the frontal lobe and also plays a role in

auditory feedback processing, suggesting that decreased GMV in

the right rolandic operculum may be associated with abnormal

auditory feedback processing behind AVH (95). On the other hand,

previous VBM studies in adult schizophrenia patients with first-

episode and antipsychotic-naive also revealed significantly

decreased GMV in the right superior temporal gyrus (96, 97),

suggesting that GMV alterations in the right superior temporal

gyrus may be a stable biomarker for schizophrenia less susceptible

to time of onset. A structural meta-analysis showed that a

significantly decreased GMV in the right superior temporal gyrus

was similarly found in a population at high risk of clinical psychosis

(and later converted to psychosis) (98). Moreover, decreased GMV

in superior temporal gyrus was strongly associated with the severity

of negative and psychotic symptoms in schizophrenia patients (99).

However, unfortunately, the present study didn’t find a significant

association (at least not linearly) between GMV alterations and

schizophrenia symptoms severity, which may be explained by the

fact that most of the patients with EOS included in the present study

were first-episode patients (with a relatively short duration of

illness), the relatively small sample size or the inherent limitations

of cross-sectional studies as opposed to longitudinal studies (i.e.,

additional timepoints per subject may strengthen the observed

associations) (100). Previous studies also identified a positive

correlation between GMV alterations in the right superior

temporal gyrus and the PANSS total scores reduction ratio in

patients with schizophrenia after treatment with antipsychotic

medication (101, 102), suggesting that GMV alterations in the

right superior temporal gyrus may be a potential biomarker for

predicting the efficacy of schizophrenia drug therapy. Furthermore,

significant abnormalities in GMV of the right temporal pole

(superior temporal gyrus) were found in the present study. The

temporal pole is mainly involved in the integration of facial

information processing and emotional information processing

(103). Previous studies indicated lower GMV in the temporal pole

region in schizophrenia patients with a history of violent behaviors

compared to schizophrenia patients without a history of violent

behaviors (104). Therefore, we hypothesized that decreased GMV

in the temporal pole in schizophrenia may contribute to a higher

risk of violence by disturbing the process of integration of facial and

emotional information processing.

The middle temporal gyrus is also one of the vulnerable brain

regions in patients with schizophrenia (105), and the middle
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temporal gyrus plays a key role in language comprehension, semantic

reasoning, and integrating information from different semantic

systems (106, 107). Thus, patients with schizophrenia often have

extensive social cognitive deficits, especially in interpersonal

communication (108). In this study, we found that patients with

EOS also presented with a GMV deficit in the middle temporal gyrus,

which was similar to the results of previous studies (109, 110).

Moreover, it was also found that both patients with schizophrenia

and their first-degree unaffected siblings had significantly decreased

regional GMV in the left middle temporal gyrus relative to HCs and

that the mean GMV in the left middle temporal gyrus was a good

predictor in distinguishing patients/siblings fromHCs (111). Another

study identified a correlation between genetically determined IL-6

levels and decreased GMV in the middle temporal gyrus (112).

Furthermore, the association of decreased GMV in the right middle

temporal gyrus with the Val158Met polymorphism in the COMT

gene was also reported (113, 114). The above-mentioned studies

suggested that decreased GMV in the middle temporal gyrus

may be a potential endophenotype of schizophrenia with some

heritability and specificity. In addition, decreased GMV in the

middle temporal gyrus was associated with a poor prognosis in the

schizophrenia (115).
Limitation

The present study had some limitations. First, the present meta-

analysis was based on the peak coordinates and effect sizes of

significantly abnormal brain regions reported in the original studies

rather than the original statistical maps, which resulted in the loss of

some information and may have decreased the accuracy of the

results of the present study to some extent. Second, the majority of

subjects included in the present study were from the Chinese

population, which somewhat limited the generalizability of the

results to other populations. Third, because the vast majority of

the included studies were cross-sectional and we included only

baseline data for longitudinal studies, we were not able to determine

whether alterations in brain anatomical structure and function were

part of the pathogenesis of EOS or a consequence of the disease.

Fourth, since the original studies included in the present study were

limited and didn’t meet the criteria for subgroup analysis, we didn’t

perform a subgroup analysis of the different functional imaging

methods in the rs-fMRI studies, and more high-quality studies will

need to be included in the future to explore the impact of functional

imaging methods on the results of the main meta-analyses.

Furthermore, we conducted separate subgroup analyses of first-

episode EOS patients and drug-naive EOS patients which indicated

that alterations of resting-state regional functional brain activity in

patients with EOS seemed to be related not to the time of onset, or

the medication status, but to the disease itself. Finally, Finally, in the

subgroup analyses, some of the results were inconsistent with those

of the main meta-analyses, and we failed to identify brain regions

with significantly increased or decreased regional GMV either in the

subgroup analysis of patients with first-episode EOS or in the

subgroup analysis of patients with drug-naive EOS, possibly due

to the presence of some heterogeneities that were not captured by
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the present meta-analysis (e.g., type of antipsychotic medication

used, etc.), the limited inclusion of the sample sizes, the between-

subjects heterogeneity, and methodological heterogeneity among

the included studies (e.g., scanning methods and parameters,

methods of data processing and analysis, etc.). Hence, in the

future, studies with larger and more homogeneous samples are

needed to further validate the findings of the present study.
Conclusion

In summary, EOS showed significant abnormalities in resting-

state functional brain activity in the left middle frontal gyrus

(extending to the triangular part of the left inferior frontal gyrus)

and the right caudate nucleus, and significant gray matter structural

deficits in the right superior temporal gyrus (extending to the right

rolandic operculum), the right middle temporal gyrus, and the right

temporal pole (superior temporal gyrus). These findings may

contribute to our more comprehensive understanding of the

underlying pathophysiological mechanisms of schizophrenia and

provide potential biomarkers for the diagnosis, differential

diagnosis and treatment of schizophrenia.
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