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Background: Schizophrenia (SZ) is a severe mental disorder with complex

origins. Observational studies suggested that inflammatory factors may play a

role in the pathophysiology of SZ and we aim to investigate the potential genetic

connection between them by examining the causal impact of circulating

inflammatory proteins on SZ.

Methods:We utilized Mendelian randomization (MR) analysis to assess the causal

relationship between circulating inflammatory proteins and SZ and the GWAS

summary datasets were sourced from public databases. The SZ dataset

comprised 74,776 cases and 101,023 controls, while the summary results for

91 plasma proteins in 14,824 participants were obtained through the Olink Target

platform. Moreover, to identify and evaluate potential drug targets, we searched

the Drug-Gene Interaction Database (DGIdb).

Results: The results of the MR study confirmed that nine inflammatory proteins

had a causal effect on SZ. Among these proteins, IL1A (OR: 0.93), TNFB (OR:

0.94), TNFSF14 (OR: 0.96), and CD40 (OR: 0.95) exhibited protective effects

against SZ. Conversely, CCL23 (OR: 1.04), CCL19 (OR: 1.04), 4EBP1 (OR: 1.06),

TWEAK (OR: 1.08), and DNER (OR: 1.10) were associated with an increased risk of

SZ. TheMR-Egger and weightedmedianmethods also supported the direction of

these effects. According to the Gene-Drug analysis, LTA, IL1A, CD40, and 4EBP1

can serve as drug targets.

Conclusions: Our study established causal relationships between circulating

inflammatory proteins and SZ. It may be beneficial to personalize the

treatment of SZ by incorporating inflammation management into the

treatment regimen.
KEYWORDS
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1 Introduction

Schizophrenia (SZ) is a mental illness characterized by disordered

thought form and cognitive deficits, influenced by a combination of

genetic and environmental factors. Epidemiological studies indicate

that SZ affects about 1% of the worldwide population, posing

significant implications for global health (1, 2). SZ not only

adversely affects the physical and mental health of individuals but

also places a considerable burden on the social healthcare system. The

etiology of SZ is multifaceted, involving genetic predisposition,

prenatal infections, life pressure, and substance abuse, among other

factors (3). Moreover, disturbances in the immune-kynurenine

pathway play a significant role in treatment-resistant SZ (1, 4, 5).

Although current treatments for SZ include pharmacotherapy and

psychotherapy (4, 6), the prognosis is not encouraging due to the

severity of the illness, untimely intervention, poor medication

adherence, and lack of social support (7).

Inflammatory cytokines are pivotal in regulating neurogenesis,

synaptogenesis, and myelination, significantly impacting brain

development. However, excessive or prolonged inflammation can

disrupt these processes, leading to abnormal brain function and

neurodevelopmental disorders (8–10). Dysregulation of

inflammatory factors may cause neuronal damage and death,

resulting in long-term cognitive and behavioral disorders (11, 12).

For example, the involvement of inflammatory factors in the

development of optic neuritis and in predicting the progression of

multiple sclerosis provide evidence of their significance in

neurological diseases (13), while omega-3 polyunsaturated fatty

ac ids show promise in a l lev ia t ing cytokine- induced

neuroinflammation and neurotransmitter dysfunction in SZ (14).

Thus, the inflammatory cytokines play a prominent role in both

normal and pathological brain development. In terms of SZ,

inflammatory cytokines may act by influencing neuroinflammation

and neurotransmitter functions.

Some studies have established a close link between inflammatory

cytokines and SZ, such as Neutrophil Gelatinase-Associated Lipocalin

(NGAL) and Interferon-gamma (IFN-g), which are related

to cognitive dysfunctions in SZ, affecting the severity of the

disease (15, 16). Furthermore, elevated levels of pro-inflammatory

cytokines are believed to disrupt brain functions and neural signaling

pathways (17). For instance, interleukin-6 (IL-6) and tumor necrosis

factor-alpha (TNF-a) can undermine normal brain development,

leading to neuroinflammation, oxidative stress, and alterations in
Abbreviations: SZ, Schizophrenia; NGAL, Neutrophil Gelatinase-Associated

Lipocalin; TNF, tumor necrosis factor; MR, Mendelian Randomization; GWAS,

Genome-Wide Association Study; IVW, inverse variance weighted; IV,

instrumental variable; WM, Weighted Median; SNPs, single nucleotide

polymorphisms; TNFB, Tumor Necrosis Factor b; CCL23, C-C Motif

Chemokine Ligand 23; TNFSF14, Tumor Necrosis Factor Superfamily Member

14; TWEAK, Tumor Necrosis Factor-Related Weak Inducer of Apoptosis;

EIF4EBP1, Eukaryotic Translation Initiation Factor 4E Binding Protein 1;

DNER, Delta/Notch-Like EGF Repeat-Containing Transmembrane Protein;

LTA, Lymphotoxin A; DAMP, damage-associated molecular pattern; AD,

Alzheimer’s Disease; PD, Parkinson’s Disease.
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neurotransmitter signaling, which can be associated with the

pathophysiological process of SZ (4). While dysregulation of IL-6

and TNF-a observed in patients with SZ further confirms their

involvement in neuroinflammation, reinforcing this connection and

potentially serving as targets for therapeutic intervention (18, 19). In

addition, IL-1b shows a paradoxical effect, with SZ patients’microglia

displaying reduced responsiveness despite increased inflammation-

related gene expression, and elevated IL-1b levels are associated with

more severe depressive and negative symptoms, suggesting its

potential as a therapeutic target (20, 21). IL-18 is consistently

elevated in SZ, with alpha-linolenic acid (ALA) proposed to reduce

its levels (22), while IL-12 dysregulation correlates with worse

cognitive performance in first-episode psychosis patients [PMID:

37972880] (23). These cytokines highlight the intricate connection

between inflammation and SZ. Observational studies have unveiled a

connection between inflammatory cytokines and SZ, but the

initiation of SZ is affected by diverse factors, encompassing

socioeconomic elements and comorbidities. These intricate

elements curtail the precision of conventional research methods in

exploring the causal impact. Mendelian Randomization (MR) has

emerged as a crucial tool for evaluating disease causality due to its

distinctive feature of randomly assigning alleles. This characteristic

proves effective in circumventing confounding factors and reversing

causality (24–26). The strength of MR also lies in its foundation on

Genome-Wide Association Study (GWAS) summary data, providing

a more flexible and convenient approach to analyzing causality

between diseases (27). Therefore, we aimed to analyze the genetic

relationship between immunoproteins and SZ with the MR method.
2 Methods

2.1 Data source

The schizophrenia (SZ) GWAS datasets were originally

acquired and analyzed by Trubetskoy et al., and the results were

published in Nature in 2022 (28). These data include 74,776 cases

and 101,023 controls, making it one of the most comprehensive

GWAS studies on SZ to date (28). The populations of the dataset

include European (EUR), East Asian (ASN), African American

(AA), and Latino (LAT) ancestry, with EUR ancestry (53,386 cases

and 77,258 controls) accounting for approximately 70%.

The data for circulating inflammatory proteins were obtained

through the Olink Target platform, which analyzed 14,824

individuals of European descent (29). This GWAS study,

conducted by Zhao et al. and published in Nature Immunology in

2023, identified 180 protein quantitative trait loci (pQTLs)

associated with the levels of 91 plasma proteins (29). Full per-

protein GWAS summary statistics are available for download at

https://www.phpc.cam.ac.uk/ceu/proteins and the EBI GWAS

Catalog (accession numbers GCST90274758 to GCST90274848).

The studies related to the primary data involved in this study

have been ethically reviewed, and we only performed secondary

analyses of the existing data, so no additional ethical approval

was required.
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2.2 MR analysis

In this study, we used three models in the TwoSampleMR package

(version 0.5.6) to infer causality (30). The inverse variance weighted

(IVW) method was employed as the primary method, which enhances

the precision of results by weighting the estimated values from each

instrumental variable (IV) to reduce random error. Meanwhile, the

IVW model assumes that all IVs are valid and that their association

with the outcome is realized solely through exposure. To ensure the

reliability of the results, we also used the Weighted Median (WM) and

the MR-Egger model to complement the IVW (31, 32). The WM

method assigns greater weight to more precise IVs, providing causal

estimates even when some IVs are invalid, and the MR-Egger model

can assess and correct for biases caused by invalid IVs.

For sensitivity analysis, we used the intercept of MR-Egger

regression to evaluate horizontal pleiotropy (32). A significant non-

zero intercept in the MR-Egger regression suggests the presence of

horizontal pleiotropy, indicating that some IVs might influence the

outcome through pathways other than exposure. Moreover,

heterogeneity was assessed by Cochran’s Q test and the I (2)

statistic, where a P-value less than 0.05 and an I (2) greater than

0.25 were considered significant.

We selected single nucleotide polymorphisms (SNPs) associated

with the phenotype and significant across the genome from the

exposure dataset. To incorporate more validated IVs and improve

statistical efficacy, we set the threshold at P < 1×10-5. We used the 1000

Genomes Project Phase 3 (EUR) as the reference panel and pruned

these IVs using an r² threshold of 0.001 within a 10 Mb window. This

approach ensured that the SNPs used as IVs were independent,

enhancing the accuracy and reliability of the MR results.
2.3 Gene-drug interaction analysis

In order to identify and evaluate potential therapeutic targets or

mechanisms of drug action, we delved deeply into the existing

resources in the Drug-Gene Interaction Database (DGIdb) (33).

Interacting drug targets were identified by retrieving genes of

inflammatory cytokines that were determined by MR analysis and
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causally associated with SZ. This process provides a scientific basis

for the pharmacological treatment of SZ.

3 Results

3.1 MR analysis

Our MR analysis identified nine inflammatory proteins with a

significant causal relationship with SZ. A total of 32, 31, 34, 21, 39,

16, 20, 29, and 27 IVs were obtained from the exposure datasets for

LTA (TNFB, Tumor Necrosis Factor b), CCL23 (C-C Motif

Chemokine Ligand 23), TNFSF14 (Tumor Necrosis Factor

Superfamily Member 14), IL-1A (Interleukin 1 Alpha), TNFSF12

(TWEAK, Tumor Necrosis Factor-Related Weak Inducer of

Apoptosis), 4EBP1 (EIF4EBP1, Eukaryotic Translation Initiation

Factor 4E Binding Protein 1), CCL19 (C-C Motif Chemokine

Ligand 19), CD40, and DNER (Delta/Notch-Like EGF Repeat-

Containing Transmembrane Protein), respectively.

Specifically, LTA (OR: 0.94; 95% CI: [0.90-0.99]), IL1A (OR:

0.93; 95% CI: [0.88-0.99]), TNFSF14 (OR: 0.96; 95% CI: [0.92-

0.99]), and CD40 (OR: 0.95; 95% CI: [0.90-1.00]) are associated

with a reduced risk of SZ. While CCL23 (OR: 1.04; 95% CI: [1.01-

1.07]), 4EBP1 (OR: 1.06; 95% CI: [1.00-1.13]), TWEAK (OR: 1.08;

95% CI: [1.00-1.16]), CCL19 (OR: 1.04; 95% CI: [1.00-1.09]), and

DNER (OR: 1.10; 95% CI: [1.00-1.20]) may increase the risk of SZ

(Table 1, Figures 1–3). Importantly, both MR-Egger and weighted

median (WM) methods yielded consistent results in terms of the

direction of causal effects. (Supplementary Tables 1, 2)

In the sensitivity analysis, the results of the MR-Egger

regression indicated no significant horizontal pleiotropy, as

evidenced by a P-value greater than 0.05. However, Cochran’s Q

test and the I (2) statistic suggested the potential presence of

heterogeneity in the MR estimates (P < 0.05).
3.2 Gene-drug interaction analysis

After searching the DGIdb, we identified four inflammatory

proteins are drug targets, including LTA, IL1A, CD40, and 4EBP1.
TABLE 1 Causal effects of circulating inflammatory proteins on schizophrenia.

Exposure Outcome N_IV b (se) OR [95%CI] Q_P I2 P_pleiotropy P

LTA SZ 32 -0.058 (0.024) 0.94 [0.90-0.99] 7.64E-08 0.66 0.947 0.017

TNFSF14 SZ 34 -0.043 (0.019) 0.96 [0.92-0.99] 0.234 0.143 0.366 0.024

IL1A SZ 21 -0.068 (0.030) 0.93 [0.88-0.99] 0.025 0.414 0.212 0.025

CD40 SZ 20 -0.056 (0.027) 0.95 [0.90-1.00] 3.27E-04 0.598 0.079 0.04

CCL23 SZ 31 0.035 (0.015) 1.04 [1.01-1.07] 0.491 -0.016 0.193 0.019

TNFSF12 SZ 39 0.076 (0.037) 1.08 [1.00-1.16] 1.49E-13 0.728 0.202 0.037

EIF4EBP1 SZ 16 0.061 (0.029) 1.06 [1.00-1.13] 0.634 -0.192 0.981 0.039

CCL19 SZ 29 0.044 (0.022) 1.04 [1.00-1.09] 0.223 0.16 0.459 0.041

DNER SZ 27 0.092 (0.046) 1.10 [1.00-1.20] 1.50E-14 0.789 0.152 0.046
SZ, schizophrenia; OR, odds ratio; CI, confidence interval; N_IV, number of instrumental variables; Q_P, Cochran’s P-value of heterogeneity analysis.
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Specifically, LTA is targeted by Carbamazepine and Abacavir; IL1A is

targeted by Hydroxychloroquine, Rilonacept, and Olanzapine; CD40

is targeted by Hydroquinone, Streptozocin, and Fludarabine; and

4EBP1 serves as a target for Paclitaxel, which is used for treating

multiple diseases. Among these drugs, only Carbamazepine and

Olanzapine are used primarily for treatingmental disorders. (Table 2)
4 Discussion

While numerous studies have described the connection between

inflammation factors and SZ (4, 14, 15), research on their genetic

relationship is relatively scarce. Our study bridges this gap, and the

results of MR indicated that circulating inflammatory proteins

contribute to a genetic susceptibility to SZ.

In the study, we identified four inflammatory factors—LTA,

IL1A, TNFSF14, and CD40—that demonstrated a negative

correlation with SZ, suggesting a protective function against the

SZ. Conversely, CCL23, CCL19, 4EBP1, TWEAK, and DNER

exhibited a positive correlation, implying an increased risk of SZ.

These findings provide a crucial genetic perspective for gaining a

deeper understanding of the pathophysiological mechanisms

underlying SZ.

The CD40 and its ligand CD40L are transmembrane proteins

belonging to the tumor necrosis factor receptor (TNFR)

superfamily. CD40, acting as a cell surface receptor, protects SZ

by regulating immune responses and reducing neuroinflammation.

Research has indicated that prenatal immune activation can lead to

SZ by disrupting pathways associated with CD40, such as the

CD200-CD200R and CX3CL1-CX3CR1 pathways (34), and the

observed positive correlation between brain-derived neurotrophic

factor (BDNF) and CD40L in SZ patients suggests a protective effect

on neurons (35). Additionally, the elevated levels of soluble CD40L

found in both bipolar disorder and SZ indicate the change in the
Frontiers in Psychiatry 04
inflammatory system (36), which suggests that activating the CD40

signaling pathway could trigger the release of anti-inflammatory

cytokines and neuroprotective factors, potentially slowing the

development and progression of SZ.

Lymphotoxin A (LTA), also called TNFB, is a key cytokine

closely associated with SZ, primarily produced by lymphocytes

(37). It plays a significant role in brain functions such as

neurodevelopment and response to neural injury (38), and the

variations in the LTA gene have been linked to an increased risk of

developing SZ, particularly in the Korean population (39). Moreover,

LTA is believed to be linked to the neurodevelopmental hypothesis of

SZ, as it can prevent prenatal infections and mitigate the neurotoxic

effects of glutamate on neurons. LTA also has the ability to regulate

the synthesis and secretion of key cytokines (like IL-6 and TNF-a)
and neurotrophic factors, as well as influencing synaptic plasticity.

These functions not only modulate neuronal activities but may also

play a positive role in alleviating the symptoms of SZ (40).

Additionally, the expression of TNFB mRNA in white and gray

matter regions of the brain that are sensitive to excitotoxins,

particularly in key areas like the hippocampus, demonstrates a

direct neuroprotective effect on neurons (40, 41). This effect

is crucial for maintaining the health and balance of the nervous

system, especially in response to neural stress and injury.

TNFB also stimulates the release of the neurotransmitter nitric

oxide (NO), optimally regulating microglia and exerting a

neuroprotective effect (40, 42). This could be significant in

mitigating the development of SZ. Moreover, carbamazepine as an

antiepileptic drug is able to effectively improve the affective symptoms

of schizophrenia by affecting neurotransmitters (43). According to

the results of our gene-drug interaction analysis, it may work through

LTA as a target.

TNFSF14 is a member of the tumor necrosis factor (TNF)

superfamily (44). As a key immunoregulatory factor, TNFSF14 not

only acts as a pro-inflammatory agent enhancing immune
FIGURE 1

Volcano plot for the causal effects of circulating inflammatory proteins on schizophrenia. The red dots are for positive significant, gray for not
significant, and green for negative significant.
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FIGURE 2

Causal effects of nine circulating inflammatory proteins on schizophrenia. The trait on the x-axis denotes the exposure, the trait on the y-axis
denotes the outcomes, and each cross point represents an instrumental variant. The lines denote the effect sizes (b) of the MR analysis.
FIGURE 3

Forestplot for the causal effects of circulating inflammatory proteins on schizophrenia.
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responses but can also produce different effects by binding to

various receptors. When TNFSF14 binds to the LTB receptor, it

can activate T cells and promote their proliferation, working in

conjunction with other co-stimulatory molecules to elicit immune

responses. Whereas, TNFSF14 can act as an inhibitor when it binds

to the DcR3 receptor and modulates immune responses (45).

Moreover, our findings suggest that TNFSF14 has a protective

effect against SZ. Thus, the role of TNFSF14 in regulating the

neuroinflammation associated with SZ deserves further exploration.

IL1A is an important pro-inflammatory cytokine, not only

eliciting inflammatory responses via IL-1R1 but also functioning

as a damage-associated molecular pattern (DAMP) (46). Although

some genetic studies have suggested that IL1A is associated with

susceptibility to SZ, others have provided differing insights and

indicated that its dysfunction may be related to the pathogenesis

of schizophrenia (47). Our research showed that there is a

negative correlation between IL1A and SZ, potentially reducing

the risk of SZ. One possible mechanism for this association is

that IL1A enhances the body’s immune defense by promoting

the infiltration of immune cells such as neutrophils (46).

Additionally, IL1A may affect the development of SZ by

influencing neurotransmitter pathways such as glutamate and

GABA (48).

Olanzapine, targeting IL1A and serving as an atypical

antipsychotic, is widely used in the treatment of SZ. It improves

negative symptoms and cognition of SZ by regulating dopamine

release and physiologic brain activity (49). Hydroxychloroquine may

serve as an effective adjunctive medication for treating SZ by exerting

anti-inflammatory effects on pro-inflammatory factors (50, 51).

Therefore, exploring the protective mechanism of IL1A in SZ is a

direction with significant value.

Chemokines play a significant role in the central nervous system,

mediating the migration and transport of leukocytes and participating

in the regulation of neuroinflammation, neurotransmission, and

neuroendocrine functions (52, 53). CCL19 is a member of the CC

family of immune chemokines and enhances the immune responses of
Frontiers in Psychiatry 06
CD8+ cells and macrophages (52). It also binds to the chemokine

receptor CCR7, functioning in tissue immunity and inflammatory

responses (54). Elevated levels of chemokines such as CCL19 have been

found in neuroinflammatory diseases and psychiatric disorders such

as SZ, suggesting a potential link to it (53, 55, 56). Thus, dysregulation

of CCL19 levels may interfere with immune responses and

neuroinflammation, potentially leading to the pathophysiological

processes of SZ.

CCL23, also known as Chemokine b8-1 (Ckb8-1), Myeloid

Progenitor Inhibitory Factor 1 (MPIF-1), and Macrophage

Inflammatory Protein 3 (MIP-3), is a chemokine closely associated

with inflammatory responses (57, 58). This factor is primarily

secreted by macrophages and contributes to immune reactions

through mechanisms such as promoting the migration of immune

cells and stimulating the production of pro-inflammatory factors and

adhesion molecules (57–59). Elevated levels of CCL23 in

cerebrospinal fluid and serum, serving as inflammatory markers,

indicate its significant role in neuroinflammation and immune

dysregulation (54, 57). Additionally, the involvement of CCL23 in

neuroinflammation associated with neurodegenerative diseases such

as Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) also

provides corresponding evidence (58, 60). Therefore, by enhancing

neuroinflammatory levels, CCL23 may impact cellular functions and

brain structure, subsequently increasing the risk of SZ (61, 62).

Further investigation is required to elucidate the specific

mechanisms by which CCL23 may contribute to the pathogenesis

and progression of SZ.

4EBP1 is a key protein involved in protein synthesis and

regulation of neuronal function (63). The main mechanism of

4EBP1 is to reduce protein synthesis by inhibiting translation

initiation and reducing eIF4E activity (64). A study suggested that

treatment with MK-801 in experiments may alleviate the symptoms

of SZ by promoting protein translation. In this context, 4EBP1

inhibition of translation may alter the expression of key synaptic

proteins and neural signaling pathways involved in the pathogenesis

of SZ, and increase the risk of the disease (65).
TABLE 2 The results of Gene-Drug interaction.

Gene Drug Regulatory approval Drug indications Interaction score

LTA Carbamazepine Approved For treatment of bipolar disorder 0.67

LTA Abacavir Approved NA 1.41

IL1A Hydroxychloroquine Approved Antirheumatic agent 1.87

IL1A Rilonacept Approved Antiinflammatory agent,
DMARD

20.61

IL1A Olanzapine Approved Antipsychotic agent 0.31

CD40 Hydroquinone Approved NA 0.66

CD40 Streptozocin Approved NA

CD40 Fludarabine Approved Antineoplastic agent 0.59

4EBP1 Paclitaxel Approved For treatment of peripheral arterial disease
(PAD);
antineoplastic agent;
anti-inflammatory agent, DMARD

1.27
DMARD, Disease-Modifying Antirheumatic Drugs; NA, Not applicable.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1465291
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Cao et al. 10.3389/fpsyt.2024.1465291
TNFSF12, also known as TWEAK, is a transmembrane protein

of the TNF superfamily ligand group and is expressed in brain

tissue. TWEAK can disrupt the permeability of the blood-brain

barrier by promoting cytokine secretion, leading to brain tissue

damage (66). And as a cytokine involved in inflammation and

immune responses, TWEAK may play a key role in the

development of SZ by affecting neuroinflammation and synaptic

dysfunction (67). Changes in TWEAK levels observed in the serum

and cerebrospinal fluid of SZ patients further suggest its association

with the pathogenesis of the disease. The study has indicated that

lower TWEAK levels found in male patients may be related to

neurodevelopment, while higher serum levels of TWEAK might be

involved in inflammatory processes (67, 68). However, further

research is needed to determine the specific nature and

significance of this association.

Delta/Notch-like epidermal growth factor (EGF)-related

receptor (DNER) is specifically expressed in the central nervous

system and functions in its development (69). Primarily located

within dendritic cells, DNER acts as a receptor or ligand to alter

synaptic states, thereby mediating protein-protein interactions (69).

DNER also functions as a ligand in the Notch signaling pathway,

binding to Notch receptors and activating signal transduction to

regulate interactions between neurons and glial cells (70).

Additionally, DNER contributes to inhibiting the proliferation

of neural progenitor cells and promoting the maturation and

differentiation of glial cells (71). Different types of glial cells,

through mechanisms such as immune regulation, synaptic

pruning, and elimination, can cause brain dysfunction and

neurotransmitter dysregulation (72). Although current research

supports the result that DNER can elevate the risk of developing

SZ, more investigations are necessary to comprehensively

understand the specific mechanisms through which DNER

influences SZ.

In addition to acting independently, the inflammatory factor

CD40 can collaborate synergistically with 4EBP1, TNFSF14,

TWEAK, and DNER to regulate the recruitment and activation

of immune cells, thereby influencing the progression of SZ (73,

74). The interaction between CD40 and TNFSF14 can modulate

the signaling pathways of inflammatory responses (75). As

part of the TNF ligand family, CD40 also interacts with

TWEAK by affecting its expression and the activated Fn14-

TWEAK system can inhibit CD40 signaling (76). Furthermore,

regulation of CD40 affects DNER expression and signal

pathways with consequences for neuronal differentiation and

synaptic function (77).

CD40 also promotes the translation of its mRNA by isolating

4EBP1 (78). It induces the phosphorylation of 4EBP1 to segregate it

from eIF4E, enhancing translation initiation and leading to the

activation of immune responses and increased protein synthesis

(79). And dysregulation of 4EBP1 could disrupt CD40 signaling,

impairing immune function and increasing susceptibility

to diseases.
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5 Limitations

Despite the significant findings of our study, several limitations

should be noted. First, the summary datasets used in the MR

analysis primarily include individuals of European ancestry,

which may limit the generalizability of the results to other

populations. Future studies with more diverse datasets are needed

to validate these findings across different ethnic groups.

Second, while MR analysis is a powerful tool for inferring

causality, it is reliant on the assumption that the selected

instrumental variables (pQTLs) are valid and influence the

outcome solely through the exposure (inflammatory proteins).

Although we used complementary methods such as MR-Egger to

account for pleiotropy, the possibility of residual pleiotropy or

confounding cannot be entirely ruled out.

Third, heterogeneity was observed in some of the MR estimates,

suggesting potential variability in the effect of certain proteins on

schizophrenia. This heterogeneity may arise from differences in the

genetic instruments or underlying biology, and further research is

needed to explore these inconsistencies.

Lastly, the functional mechanisms through which the identified

proteins influence schizophrenia remain unclear. While we

identified potential drug targets, experimental studies are required

to validate these findings and explore the clinical relevance of

targeting these proteins in schizophrenia treatment.
6 Conclusions

In conclusion, our study establishes causal relationships

between circulating inflammatory proteins and schizophrenia,

identifying both protective and risk-associated factors. Using

Mendelian Randomization analysis, we found nine inflammatory

proteins, including IL-1A and TNF-a, that contribute to the genetic
susceptibility of schizophrenia.

These findings enhance our understanding of the role of

inflammation in schizophrenia and highlight potential therapeutic

targets, such as LTA and CD40, for future drug development.

Incorporating inflammation management into treatment

regimens may also improve outcomes for patients.

Further research is needed to validate these associations across

diverse populations and to explore the mechanisms through which

these proteins influence schizophrenia. Overall, our results

underscore the importance of inflammation in schizophrenia and

suggest new avenues for therapeutic strategies.
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neuritis in Turkish children and adolescents: A multicenter retrospective study. Mult
Scler Relat Disord. (2023) 81:105149. doi: 10.1016/j.msard.2023.105149

14. Zhang Y, Yin J, Yan H, Yan L, Li Y, Zhang C, et al. Correlations between omega-
3 fatty acids and inflammatory/glial abnormalities: the involvement of the membrane
and neurotransmitter dysfunction in schizophrenia. Front Cell Neurosci. (2023)
17:1163764. doi: 10.3389/fncel.2023.1163764

15. Sun X, Luo G, Li X, Wang J, Qiu Y, Li M, et al. The relationship between
inflammatory markers, clinical characteristics, and cognitive performance in drug-
naïve patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci. (2023) 274
(6):1365–74. doi: 10.1007/s00406-023-01677-9

16. Mohebalizadeh M, Babapour G, Maleki Aghdam M, Mohammadi T, Jafari R,
Shafiei-Irannejad V. Role of maternal immune factors in neuroimmunology of brain
development. Mol Neurobiol. (2023). doi: 10.1007/s12035-023-03749-2

17. Klein HC, Guest PC, Dobrowolny H, Steiner J. Inflammation and viral infection
as disease modifiers in schizophrenia. Front Psychiatry. (2023) 14:1231750.
doi: 10.3389/fpsyt.2023.1231750

18. Bejerot S, Eklund D, Hesser H, Hietala MA, Kariis T, Lange N, et al. Study
protocol for a randomized controlled trial with rituximab for psychotic disorder in
adults (RCT-Rits). BMC Psychiatry. (2023) 23:771. doi: 10.1186/s12888-023-05250-5

19. Lashgari NA, Roudsari NM, Shamsnia HS, Shayan M, Momtaz S, Abdolghaffari
AH. TLR/mTOR inflammatory signaling pathway: novel insight for the treatment of
schizophrenia. Can J Physiol Pharmacol. (2023) 102(3):150–60. doi: 10.1139/cjpp-
2023-0107

20. Koskuvi M, Porsti E, Hewitt T, Räsänen N, Wu YC, Trontti K, et al. Genetic
contribution to microglial activation in schizophrenia.Mol Psychiatry. (2024) 29:2622–
33. doi: 10.1038/s41380-024-02529-1

21. Yang P, Huang S, Luo Z, Zhou S, Zhang C, Zhu Y, et al. Radix Bupleuri aqueous
extract attenuates MK801-induced schizophrenia-like symptoms in mice: Participation of
intestinal flora. BioMed Pharmacother. (2024) 172:116267. doi: 10.1016/j.biopha.
2024.116267

22. Wang T, Liu S, Shen W, Liu J, Liu Y, Li Y, et al. alpha-linolenic acid mitigates
microglia-mediated neuroinflammation of schizophrenia in mice by suppressing the
NF-kappaB/NLRP3 pathway via binding GPR120-beta-arrestin 2. Int
Immunopharmacol. (2024) 142:113047. doi: 10.1016/j.intimp.2024.113047

23. Wu D, Wu Q, Li F, Wang Y, Zeng J, Tang B, et al. Free water alterations in
different inflammatory subgroups in schizophrenia. Brain Behav Immun. (2024)
115:557–64. doi: 10.1016/j.bbi.2023.11.006

24. Baranova A, Zhao Y, Cao H, Zhang F. Causal associations between major
depressive disorder and COVID-19. Gen Psychiatr. (2023) 36:e101006. doi: 10.1136/
gpsych-2022-101006
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1465291/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1465291/full#supplementary-material
https://doi.org/10.1016/j.schres.2023.11.015
https://doi.org/10.1001/jamanetworkopen.2023.49305
https://doi.org/10.1001/jamanetworkopen.2023.49305
https://doi.org/10.18773/austprescr.2023.024
https://doi.org/10.1016/j.pnpbp.2023.110926
https://doi.org/10.1007/s40263-023-01057-w
https://doi.org/10.1016/j.jpsychires.2023.12.003
https://doi.org/10.4103/1673-5374.387966
https://doi.org/10.1097/SHK.0000000000002296
https://doi.org/10.1016/j.cyto.2023.156477
https://doi.org/10.1016/j.cyto.2023.156477
https://doi.org/10.3390/ijms242417597
https://doi.org/10.1016/j.neuint.2023.105657
https://doi.org/10.21203/rs.3.rs-3656139/v1
https://doi.org/10.1016/j.msard.2023.105149
https://doi.org/10.3389/fncel.2023.1163764
https://doi.org/10.1007/s00406-023-01677-9
https://doi.org/10.1007/s12035-023-03749-2
https://doi.org/10.3389/fpsyt.2023.1231750
https://doi.org/10.1186/s12888-023-05250-5
https://doi.org/10.1139/cjpp-2023-0107
https://doi.org/10.1139/cjpp-2023-0107
https://doi.org/10.1038/s41380-024-02529-1
https://doi.org/10.1016/j.biopha.2024.116267
https://doi.org/10.1016/j.biopha.2024.116267
https://doi.org/10.1016/j.intimp.2024.113047
https://doi.org/10.1016/j.bbi.2023.11.006
https://doi.org/10.1136/gpsych-2022-101006
https://doi.org/10.1136/gpsych-2022-101006
https://doi.org/10.3389/fpsyt.2024.1465291
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Cao et al. 10.3389/fpsyt.2024.1465291
25. Baranova A, Cao H, Zhang F. Severe COVID-19 increases the risk of
schizophrenia. Psychiatry Res. (2022) 317:114809. doi: 10.1016/j.psychres.2022.114809

26. Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization as an
approach to assess causality using observational data. J Am Soc Nephrol. (2016)
27:3253–65. doi: 10.1681/ASN.2016010098

27. Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. Using
published data in Mendelian randomization: a blueprint for efficient identification of
causal risk factors. Eur J Epidemiol. (2015) 30:543–52. doi: 10.1007/s10654-015-0011-z

28. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB,
et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia.
Nature. (2022) 604:502–8. doi: 10.1038/s41586-022-04434-5

29. Zhao JH, Stacey D, Eriksson N, Macdonald-Dunlop E, Hedman ÅK,
Kalnapenkis A, et al. Genetics of circulating inflammatory proteins identifies drivers
of immune-mediated disease risk and therapeutic targets. Nat Immunol. (2023)
24:1540–51. doi: 10.1038/s41590-023-01588-w

30. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The
MR-Base platform supports systematic causal inference across the human phenome.
Elife. (2018) 7:e34408. doi: 10.7554/eLife.34408

31. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in
mendelian randomization with some invalid instruments using a weighted median
estimator. Genet Epidemiol. (2016) 40:304–14. doi: 10.1002/gepi.2016.40.issue-4

32. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid
instruments: effect estimation and bias detection through Egger regression. Int J
Epidemiol. (2015) 44:512–25. doi: 10.1093/ije/dyv080

33. Griffith M, Griffith OL, Coffman AC, Weible JV, McMichael JF, Spies NC, et al.
DGIdb: mining the druggable genome. Nat Methods. (2013) 10:1209–10. doi: 10.1038/
nmeth.2689

34. Chamera K, Kotarska K, Szuster-Głuszczak M, Trojan E, Skórkowska A,
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