AUTHOR=Shajan Britto , Bastiampillai Tarun , Hellyer Shane D. , Nair Pramod C. TITLE=Unlocking the secrets of trace amine-associated receptor 1 agonists: new horizon in neuropsychiatric treatment JOURNAL=Frontiers in Psychiatry VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2024.1464550 DOI=10.3389/fpsyt.2024.1464550 ISSN=1664-0640 ABSTRACT=

For over seven decades, dopamine receptor 2 (D2 receptor) antagonists remained the mainstay treatment for neuropsychiatric disorders. Although it is effective for treating hyperdopaminergic symptoms, it is often ineffective for treating negative and cognitive deficits. Trace amine-associated receptor 1 (TAAR1) is a novel, pharmacological target in the treatment of schizophrenia and other neuropsychiatric conditions. Several TAAR1 agonists are currently being developed and are in various stages of clinical and preclinical development. Previous efforts to identify TAAR1 agonists have been hampered by challenges in pharmacological characterisation, the absence of experimentally determined structures, and species-specific preferences in ligand binding and recognition. Further, poor insights into the functional selectivity of the receptor led to the characterisation of ligands with analogous signalling mechanisms. Such approaches limited the understanding of divergent receptor signalling and their potential clinical utility. Recent cryogenic electron microscopic (cryo-EM) structures of human and mouse TAAR1 (hTAAR1 and mTAAR1, respectively) in complex with agonists and G proteins have revealed detailed atomic insights into the binding pockets, binding interactions and binding modes of several agonists including endogenous trace amines (β-phenylethylamine, 3-Iodothyronamine), psychostimulants (amphetamine, methamphetamine), clinical compounds (ulotaront, ralmitaront) and repurposed drugs (fenoldopam). The in vitro screening of drug libraries has also led to the discovery of novel TAAR1 agonists (asenapine, guanabenz, guanfacine) which can be used in clinical trials or further developed to treat different neuropsychiatric conditions. Furthermore, an understanding of unappreciated signalling mechanisms (Gq, Gs/Gq) by TAAR1 agonists has come to light with the discovery of selective compounds to treat schizophrenia-like phenotypes. In this review, we discuss the emergence of structure-based approaches in the discovery of novel TAAR1 agonists through drug repurposing strategies and structure-guided designs. Additionally, we discuss the functional selectivity of TAAR1 signalling, which provides important clues for developing disorder-specific compounds.