
Frontiers in Psychiatry

OPEN ACCESS

EDITED BY

Elizabeth B. Torres,
Rutgers, The State University of New Jersey,
United States

REVIEWED BY

Enzo Grossi,
Villa Santa Maria Scs, Italy
Davide Marocco,
University of Naples Federico II, Italy

*CORRESPONDENCE

Hirokazu Kumazaki

kumazaki@tiara.ocn.ne.jp

RECEIVED 13 July 2024
ACCEPTED 30 September 2024

PUBLISHED 17 October 2024

CITATION

Ohmoto Y, Terada K, Shimizu H, Kawahara H,
Iwanaga R and Kumazaki H (2024) Machine
learning’s effectiveness in evaluating
movement in one-legged standing
test for predicting high autistic trait.
Front. Psychiatry 15:1464285.
doi: 10.3389/fpsyt.2024.1464285

COPYRIGHT

© 2024 Ohmoto, Terada, Shimizu, Kawahara,
Iwanaga and Kumazaki. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 17 October 2024

DOI 10.3389/fpsyt.2024.1464285
Machine learning’s effectiveness
in evaluating movement in one-
legged standing test for
predicting high autistic trait
Yoshimasa Ohmoto1, Kazunori Terada2, Hitomi Shimizu3,
Hiroko Kawahara3, Ryoichiro Iwanaga4

and Hirokazu Kumazaki2,4*

1Department of Behavior Informatics, Faculty of Informatics, Shizuoka University, Shizuoka, Japan,
2Department of Electrical, Electronic, and Computer Engineering, Faculty of Engineering, Gifu
University, Gifu, Japan, 3Department of Neuropsychiatry, Graduate School of Biomedical Sciences,
Nagasaki University, Nagasaki, Japan, 4Unit of Medical Science, Nagasaki University Graduate School
of Biomedical Sciences, Nagasaki, Japan
Introduction: Research supporting the presence of diverse motor impairments,

including impaired balance coordination, in children with autism spectrum

disorder (ASD) is increasing. The one-legged standing test (OLST) is a popular

test of balance. Since machine learning is a powerful technique for learning

predictive models frommovement data, it can objectively evaluate the processes

involved in OLST. This study assesses machine learning’s effectiveness in

evaluating movement in OLST for predicting high autistic trait.

Methods: In this study, 64 boys and 62 girls participated. The participants were

instructed to stand on one leg on a pressure sensor while facing the

experimenter. The data collected in the experiment were time-series data

pertaining to pressure distribution on the sole of the foot and full-body

images. A model to identify the participants belonging to High autistic trait

group and Low autistic trait group was developed using a support vector

machine (SVM) algorithm with 16 explanatory variables. Further, classification

models were built for the conventional, proposed, and combined explanatory

variable categories. The probabilities of High autistic trait group were calculated

using the SVM model.

Results: For proposed and combined variables, the accuracy, sensitivity, and

specificity scores were 1.000. The variables shoulder, hip, and trunk are

important since they explain the balance status of children with high autistic

trait. Further, the total Social Responsiveness Scale score positively correlated

with the probability of High autistic trait group in each category of

explanatory variables.

Discussion: Results indicate the effectiveness of evaluating movement in OLST

by using movies and machine learning for predicting high autistic trait. In

addition, they emphasize the significance of specifically focusing on shoulder
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and waist movements, which facilitate the efficient predicting high autistic trait.

Finally, studies incorporating a broader range of balance cues are necessary to

comprehensively determine the effectiveness of utilizing balance ability in

predicting high autistic trait.
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1 Introduction

Aut i sm spec t rum d i so rde r (ASD) i s a comp l ex

neurodevelopmental condition characterized by deficits in social

communication and social interactions and repetitive, restricted

behaviors (1). According to the United States Centers for Disease

Control and Prevention, approximately 1 in 36 children is

diagnosed with ASD (2). Further, the lifetime social cost

associated with ASD is estimated to be approximately $3.6

million per individual (3). Research evidences that early

intervention programs, particularly those initiated before the

commencement of elementary education, can significantly

enhance social functioning outcomes in children with ASD (4–7).

Although ASD can be detected as early as 14 months of age (8) and

diagnosed with high accuracy by 2 years of age (9), recent

prevalence reports indicate that more than 70% of affected

children are not diagnosed until after 51 months of age (10).

Therefore, it is crucial to identify autistic traits in children by

screening them prior to the initiation of elementary education.

Balance ability is the human body’s capacity to maintain

postural stability in both static and dynamic states, and one must

possess it to effectively perform daily activities (11, 12). The

maintenance of balance requires the coordinated operation and

integration of multiple mechanisms, including the sensory system,

the central nervous system, and effectors (13). The sensory input

system informs the body about its position relative to the

surrounding environment. This sensory information is filtered,

integrated, and processed by the central control system, which

subsequently issues commands to effectors. A deficiency in balance

ability not only increases the risk of falls among affected children

which diminishes their motivation to participate in physical

activities (14). Furthermore, balance impairments can hinder the

development of communication and motor skills, limit the

children’s integration into mainstream society, and adversely

affect their social adaptation abilities (15).

Many studies indicate the presence of various motor

impairments, including deficiencies in balance coordination, in

children with ASD (16–19). Behavioral analyses clarify that

children with ASD exhibit a significantly smaller center-of-

pressure (COP) shift, a repetitive COP pattern, and less complex

postural control compared to unaffected children. These
02
impairments are evident in both static (18) and dynamic (19)

balance states. Consequently, balance ability assessments of

children with ASD are of paramount importance.

The one-legged standing test is a widely used assessment of

balance (20–22). This test evaluates an individual’s ability to

perform common everyday activities, such as walking, climbing

stairs, and dressing; accordingly, the test is directly related to

functional mobility and independence. Typically, measurements

are taken twice for each leg, and the duration for which a subject can

stand on one leg, along with maintaining postural sway and balance,

is analyzed. The test can be administered in a short amount of time,

thereby enabling the rapid screening of balance capabilities. Studies

report that individuals with ASD exhibit significant static balance

impairments while keeping their eyes open during the one-legged

standing test (23, 24). However, there are limitations to the objective

evaluation of these impairments.

Recent years have witnessed rapid advancements in machine

learning technologies, with neural network technologies

significantly affecting various domains, including video

recognition. Since machine learning can effectively develop

predictive models from movement data, the use of video

recordings and machine learning algorithms to objectively

evaluate movements during the one-legged standing test is feasible.

In this study, we conduct an experiment at a local preschool

during the pupils’ medical examinations, which involve nearly all

the 5-year-old residents (approximately 99% of the population of

this age) of the selected city. Conducting research in this setting and

focusing on a narrow age range (exclusively 5-year-old children)

provided practical and relevant data. The objective of this study is to

assess the effectiveness of using machine learning to evaluate

movements during the one-legged standing test to predict high

autistic trait group.
2 Materials and methods

2.1 Participants

This study was approved by the Ethics Committee of Nagasaki

University, Japan (22051204). All participants were recruited from

Sazacho, Nagasaki Prefecture, Japan. Nearly all the children residing
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in Sazacho participated in this study. All procedures involving

human participants were conducted in accordance with the

ethical standards of institutional and national research

committees, as well as the 1964 Declaration of Helsinki and its

subsequent amendments or comparable ethical standards. After

receiving a comprehensive explanation of the study, all subjects and

their guardians provided written informed consent to participate in

the study. The participants satisfied the following inclusion criteria:

All were 5-year-old residents of Sazacho.

To screen for clinically significant autistic symptoms, the

participants’ mothers completed the Social Responsiveness Scale,

Second Edition (SRS-2) (25). Higher the SRS score, higher the

degree of autistic traits. Participants were classified into two groups,

those having high autistic trait (High autistic trait group) and those

having low autistic trait (Low autistic trait group), based on

screening cutoff values (boys: 53.5, girls: 52.5), as described earlier

reports on SRS score distribution in the Japanese population

(26, 27). In this study, 64 boys and 62 girls participated. Table 1

depicts the participants’ characteristics. Figure 1 depicts the

distribution of the SRS scores in the two groups.
2.2 Apparatus

A 48-cm square pressure sensor (LL sensor, NEWCOM, Inc.)

was used to acquire data on the pressure distribution in the sole of

the foot while participants were standing on one leg. To estimate the

participants’ body motions, full-body images were captured using a

webcam (Logitech c615n, 640 × 480 pixels, 30 fps) placed in front of

them. Further, the data from the pressure sensor and the body

images were synchronously acquired at a recording rate of 20 Hz.

Figure 2 depicts the configuration among the participant,

experimenter, video camera, and pressure sensor during

data acquisition.
2.3 Procedure

Participants stood on a pressure sensor while facing the

experimenter, who directed them to start and stop standing on

one leg. Each participant completed four one-legged standing tests,

two on each leg, alternating between their right and left foot.

Whenever a participant maintained the one-legged stance for

more than 20 seconds, the trial ended. The trials were conducted
Frontiers in Psychiatry 03
consecutively. Each participant took 2 minutes or less to complete

the entire experimental procedure.
2.4 Measurement

The data collected in the experiment were time-series data of

the pressure distribution on the sole of the foot and full-body

images of the participants standing on one leg. COP was estimated

from the pressure distribution that was obtained when the

participants were standing on one leg. The COP’s location was

determined using an elliptical approximation of the foot region,

with the X- and Y-axes serving as the minor and major axes,

respectively. Supplementary Material A depicts the specific data

estimation methods used in this study. The angles of each joint of

the body were estimated from full-body images using OpenPose

(28). The angles were estimated for 10 joints of each participant.

Figure 3 depicts the estimated positions and names of the joints.
2.5 Classification using the Support
Vector Machine

From the measured data, 16 variables were extracted; they are

listed in Table 2. These variables include the movements and

complexity of COP sway (Lentotal path, Mcop speed, COPentropy, and

COPconvex hull), total balance ability (Lenmax trial), difference between

body movement and COP variation (COM - COP), and relationship

between body parts and COP movements (Corrneck, Corrshoulder,

Corrright elbow, Corrleft elbow, Corrright trunk, Corrleft trunk, Corrright hip,

Corrleft hip, Corrright knee, and Corrleft knee). Supplementary Material B

clarifies the reasons for selecting each explanatory variable and

calculation method.

We examined the process of transitioning from standing on two

legs to standing on one leg, since we consider it a feed-forward

process that is necessary to achieve the one-legged standing outcome.

Therefore, the inherent diversity of the transitioning process was

noted by everyone. We computed these variables (excluding Lenmax

trial) for the initial two seconds of each participant’s first trial.

Support Vector Machine (SVM) is a popular machine learning

method used in many classification problems (29). We used 16

explanatory variables to perform classification learning using SVM

to determine whether participants belonged to the High autistic

trait group or Low autistic trait group. Subsequently, we
TABLE 1 Participant characteristics.

High autistic trait group
(n=19) Mean (SD)

Low autistic trait group
(n=107) Mean (SD)

Statistics
t or c2 df p

Age 5.13 (0.16) 5.06 (0.13) 1.717 22 0.07

Male/female ratio 9: 10 55: 52 0.746 1 0.81

SRS-2 69.79 (23.66) 31.24 (11.48) -6.956 20 <0.001 **
SD, standard deviation, SRS-2, Social Responsiveness Scale, Second Edition.
**p < 0.001.
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simultaneously selected the 16 explanatory variables and optimized

the hyperparameter to screen High autistic trait group and, thereby,

improve the performance and generalization of all SVM

classification models.

Further, classification models were built for the following three

sets of explanatory variables:

1. Conventional variables: COP sway + overall balance

(variables based on earlier studies (30–36).

2. Proposed variables: Correlation between COP and joint

angles (variables added by the current study).

3. Combined variables: All the explanatory variables.

The probabilities of participants being classified into the High

autistic trait group were calculated using an SVM model. The

performance of the classification models was evaluated using leave-

one-out cross-validation (LOOCV). Supplementary Material C

presents more information on the construction and evaluation of

these models.
Frontiers in Psychiatry 04
2.6 Statistical analyses

Statistical analyses were performed using the SPSS software,

version 27.0 (IBM, Armonk, NY). Accordingly, descriptive statistics

were calculated for all samples. The differences in age and SRS-2

scores between the two groups were analyzed using an independent

sample t-test. Further, the difference in sex ratio was analyzed using

the c2 test. We calculated the accuracy, sensitivity, and specificity of

models based on LOOCV classification using the best classification

model. Further, we used Shapley additive explanations (SHAP) to

identify the important features of each set of explanatory variable

categories (i.e., conventional, proposed, and combined variables).

This indicated the impact of each feature on the classifier’s output

and the range of each variable to increase the probability of

participants being classified into the High autistic trait group or

Low autistic trait group. Subsequently, we calculated Spearman’s

rank correlation coefficients using the total SRS score and the
FIGURE 2

Spatial arrangement of the participant, experimenter, video camera, and pressure sensor during data acquisition.
FIGURE 1

The distribution of the SRS scores in the High autistic trait group and Low autistic trait group.
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participants’ probabilities of being classified into the High autistic

trait group. For all statistical tests, a significance threshold of p <.05

was adopted.
3 Results

Table 3 presents the results of the best classification model for

each set of explanatory variable categories. The accuracy, sensitivity,

and specificity scores of all sets of all variables, except the accuracy

and sensitivity scores of conventional variables, are 1.000.

Figure 4 depicts the SHAP values of the selected variables of each

SVM model and their impacts for all participants for three sets of

explanatory variable categories. Among the 16 variables, 3–5 were

selected from each SVM model. The classification model with

conventional variables included variables such as the duration of the

longest one-leg stand in trials (Lenmax trial), area of COP sway

(COPconvex hull), and association between body movements and COP

variations (COM - COP). The classification model with proposed

variables included variables indicating the correlation between the

shoulder angle and COP (Corrshoulder), correlation between the right

trunk angle and COP (Corrright trunk), and correlation between the right

knee angle and COP (Corrright knee). Finally, the classification model

with combined variables included the variables for the area of COP

sway (COPconvex hull), association between body movement and COP

variation (COM - COP), correlation between the shoulder angle and

COP (Corrshoulder), correlation between the right hip angle and COP

(Corrright hip), and correlation between the right knee angle and COP

(Corrright knee). Even when the same variable is selected from different

sets of explanatory variable categories, its contribution to the

classification differs across variable sets. Among conventional

variables and combined variables, the COPconvex hull (which is related

to the area of COP sway) and COM - COP (which is related to the

association between body movement and COP variation) are

commonly selected. Among conventional variables, Lenmax trial is

selected as the more important variable compared to the two

variables COPconvex hull and COM - COP. However, among combined
Frontiers in Psychiatry 05
variables, COPconvex hull is selected as the most important variable

(Figures 4A, C). Further, among proposed variables and combined

variables, the shoulder joint and right knee are commonly selected as

the most important variables. Among proposed variables, both the

smaller values of Corrshoulder and Corrright knee contributed to the

categorization of the High autistic trait group. However, among

combined variables, a larger value of Corrshoulder contributed to High

autistic trait group categorization (Figures 4B, C).

The total SRS score was positively correlated with probability of

High autistic trait group in each set of explanatory variable categories

(conventional: rs (124) = 0.301, p = 0.002; proposed: rs (124) = 0.411, p

< 0.001; combined: rs (124) = 0.316, p < 0.001). Further, the

probabilities of high autistic trait group in the proposed variables

category are relatively highly correlated with the total SRS score.

However, the correlation between conventional variables and the

total SRS score was low. Figure 5 depicts these distributions. Finally,

the distribution of the conventional variables was very different from

that of the other two variables.
4 Discussion

This study assessed the potential usefulness of machine learning in

evaluating movements during a one-legged standing test conducted for

predicting high autistic trait group. The LOOCV results computed

using the best classification model indicated the high accuracy,

sensitivity, and specificity of variables. We identified the shoulder,

hip, and trunk to be important variables in explaining the balance status

of children with high autistic trait. The probabilities of High autistic

trait group, which were calculated using each set of explanatory variable

categories (i.e., conventional, proposed, and combined variables) and

the SVMmodel, were correlated with the autistic traits assessed by SRS.

It is noted that the screening was completed in a very short time. These

results demonstrate the potential of using the one-legged standing test

and machine learning as autism screening techniques.

Eye-tracking is one of the most frequently applied machine

learning technique in ASD screening. According to Wei et al. (37),
FIGURE 3

Estimated positions and names of various joints.
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machine learning classification using eye tracking has an accuracy

of 81%, a specificity of 79%, and a sensitivity of 84% in

distinguishing individuals belonging to ASD and TD groups.

However, the proposed and combined variables in this study had

100% accuracy, specificity, and sensitivity. Since screening rarely

achieves 100% accuracy, sensitivity, and specificity, the difficulty of

the one-legged standing test is the core aspect of ASD. These data

support the use of this test in ASD screening. Moreover, this study’s

results are relevant in practice, since its participants were 5-year-old

children and the task took only a short time to complete.

Traditional assessments of the balance ability of children with

high autistic trait commonly involve examinations of the entire body,

from the lower to upper body (38). However, this study revealed that,

compared to other parts of the body, the shoulder joints, hips, and

waist contributed more to the body’s balance ability. Although it is

important to examine the entire body, the results suggest that paying

specific attention to the feed-forward strategy to control the center of

gravity using the shoulder and waist at the beginning of the one-

legged standing test contributes to the efficient screening of children

with high autistic trait. Further, in screening using the one-legged

standing test, focusing on shoulder and waist movements can

facilitate the efficient screening of children with high autistic trait.

The SRS was rated according to a subjective evaluation by

mothers in this study. However, the assessment performed in this

study (i.e., standing on one leg) was based on an objective

evaluation. Since the methods for assessing SRS and standing on

one leg are completely different, assessing both is potentially more

useful for predicting children with high autistic trait.

This study has several limitations, and these should be

addressed by future research. First, the sample size was relatively

small; accordingly, the results may not be sufficiently

comprehensive. Future studies on larger sample sizes can provide

more meaningful data on the potential use of drawing skills in

screening of children with high autistic trait. Second, we did not

collect any information regarding participants’ intelligence quotient

(IQ). However, all the participants attended mainstream preschools

without any intellectual impairment. In addition, motor

impairments were found in both children with ASD having

comorbid intellectual disability and those with ASD having
TABLE 2 Explanatory variables for SVM.

Category Variables Explanation

COP sway Lentotalpath The total length of COP sway path

Mcop speed Mean speed in COP sway

COPentropy Approximate entropy of COP sway

COPconvex hull Convex hull of COP sway

Overall balance Lenmax trial Total time of longest one-leg
standing time during trials

COM - COP The distance between Center of Mass
(COM) of the body and COP

Correlation
between COP and
joint angles

Corrneck Correlation between change in COP
and change in neck angle to the
horizontal plane

Corrshoulder Correlation between change in COP
and change in shoulder angle to the
horizontal plane

Corrright elbow Correlation between change in COP
and change in right elbow joint angle

Corrleft elbow Correlation between change in COP
and change in left elbow joint angle

Corrright trunk Correlation between change in COP
and change in angle between the
midline of trunk and the right
hip joint

Corrleft trunk Correlation between change in COP
and change in angle between the
midline of trunk and the left
hip joint

Corrright hip Correlation between change in COP
and change in right hip joint angle

Corrleft hip Correlation between change in COP
and change in left hip joint angle

Corrright knee Correlation between change in COP
and change in right knee joint angle

Corrleft knee Correlation between change in COP
and change in left knee joint angle
SVM, Support Vector Machine, COP, center of pressure.
TABLE 3 The best results of LOOCV.

Accuracy Sensitivity Specificity Selected Variables

Conventional
variables
(0.001)

0.976 0.842 1.000 High autistic trait group ~ Lenmax trial + COPconvex hull + COM - COP

Proposed variables
(0.01)

1.000 1.000 1.000 High autistic trait group ~ Corrshoulder + Corrright trunk + Corrright knee

Combined categories
(0.01)

1.000 1.000 1.000
High autistic trait group ~ COPconvex hull + COM - COP + Corrshoulder + Corrright hip +
Corrright knee
LOOCV, leave-one-out cross-validation.
High autistic trait group: Result of classifying whether the participant had high autistic trait.
Conventional variables: a set of the explanatory variables in “COP sway” and “Overall balance” in Table 2.
Proposed variables: a set of the explanatory variables in “Correlation between COP and joint angles” in Table 2.
Combined variables: Set of explanatory variables for all categories in Table 2.
The numbers below the set of variables represent the hyperparameters of an SVM with a linear kernel. The value of is a Cost parameter.
See Table 2 for the variable names.
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average or above-average IQ (39). Accordingly, the observed motor

difficulties commonly co-occur with a diagnosis of ASD, are ASD-

specific features, and are not entirely due to impaired intellectual

functioning. Third, the SRS is clearly just a screening tool for ASD.

In fact, a substantial proportion of children with SRS scores lower

than the cut-off of 55 (about 20%) have ASD and vice versa a
Frontiers in Psychiatry 07
considerable proportion of children with SRS scores higher than 55

(about 20%) do not have ASD (26). While our model provides a

useful screening tool, it should not be used in isolation for diagnosis.

Instead, it should be considered as part of a comprehensive

assessment process that includes clinical evaluation and other

standardized measures. Based on the results of this study, we
FIGURE 5

Relationship between the total Social Responsiveness Scale score and the probability of autism spectrum disorder in each variable.
FIGURE 4

Each feature’s impact on the models quantified using Shapley additive explanation values.
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intend to consider developing a continuous SRS score prediction

model as a next step. Moreover, integrating more robust diagnostic

tools for ASD, such as clinical assessments or standardized

behavioral tests, alongside the SRS-2, would improve the

reliability of the screening process. There are also limitations due

to the sample size of the above-threshold data (i.e., data of the High

autistic trait group). With only around 20 above-threshold samples

and highly imbalanced sample overall, we were forced to use

LOOCV to avoid polarization of prediction toward the Low

autistic trait group. Although LOOCV is suitable for small

datasets, it has drawbacks. It is computationally expensive and

time consuming, especially for large datasets or complex models.

LOOCV can also produce optimistic performance estimates due to

the small test set in each iteration. In addition, it can be unstable

when the dataset contains noise or outliers, as individual data points

can disproportionately influence the results. These limitations

emphasize the need for cautious interpretation of our results.

Future research using more balanced dataset with larger samples

above the threshold might require model revisions and could

potentially yield more robust and generalizable results. While the

study focuses on the support vector machine (SVM), comparing its

performance with other algorithms, such as random forests or deep

learning techniques, could identify the most effective approach for

this type of screening. Furthermore, validation using external

datasets from different regions or institutions would help confirm

whether the findings hold across different populations.

In conclusion, this study revealed the effectiveness of using

machine learning to evaluate the balance ability of 5-year-old

children standing on one leg as a means of predicting high autistic

trait. In addition, we emphasize the significance of focusing

specifically on the shoulder and waist movements during the one-

legged standing test to facilitate the efficient predicting of children

with high autistic trait. One of the greatest advantages that research in

this field can provide is the potential of identifying additional

biomarkers as potential predictors of ASD and ensuring new

prospective for early diagnosis (40). Further studies incorporating a

broader range of balance cues are necessary to comprehensively

determine the potential usefulness of considering balance ability in

screening procedures of children with high autistic trait.
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