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Objective: Autism spectrum disorder (ASD) is a neurodevelopmental condition

characterized by increasing prevalence, diverse impairments, and unclear origins

and mechanisms. To gain a better grasp of the origins of ASD, it is essential to

identify the most distinctive structural brain abnormalities in individuals with ASD.

Methods: A Multi-Stage Progressive Feature Refinement Approach was

employed to identify the most pivotal structural magnetic resonance imaging

(MRI) features that distinguish individuals with ASD from typically developing (TD)

individuals. The study included 175 individuals with ASD and 69 TD individuals, all

aged between 7 and 18 years, matched in terms of age and gender. Both cortical

and subcortical features were integrated, with a particular focus on

hippocampal subfields.

Results: Out of 317 features, 9 had the most significant impact on distinguishing

ASD from TD individuals. These structural features, which include a specific

hippocampal subfield, are closely related to the brain areas associated with the

reward system.

Conclusion: Structural irregularities in the reward system may play a crucial role

in the pathophysiology of ASD, and specific hippocampal subfields may also

contribute uniquely, warranting further investigation.
KEYWORDS

autism spectrum disorder, structural magnetic resonance imaging, feature selection,
machine learning, support vector machine, least absolute shrinkage and
selection operator
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1 Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental

condition characterized by difficulties in social interaction and

communication, along with repetitive patterns of behavior,

interests, and activities (1). The global prevalence of ASD is

currently estimated at around 1%, with an upward trend over time

(2). In the United States, the prevalence of ASD among 8-year-old

children increased from 1 in 110 in 2006 to 1 in 36 by 2020 (3). In

China, a nationwide epidemiological study estimated an ASD

prevalence of 0.7% among children aged 6-12 years (4). ASD has a

complex etiology and pathogenesis that remain incompletely

understood, posing a global public health challenge and imposing a

substantial financial burden across various domains, thereby placing

pressure on healthcare, social, and political systems of nations (5).

Current research suggests that a combination of genetic and

environmental factors leads to abnormal development of certain

brain regions, resulting in ASD (6). Consequently, identifying brain

regions with structural abnormalities is a fundamental objective in

ASD neurobiological research (7). Numerous studies have reported

various structural brain abnormalities in individuals with ASD

when compared to typically developing (TD) individuals. These

anomalies are found in the frontal lobe (8), parietal lobe (9),

temporal lobe (10), limbic system (11), and cerebellum (12). They

encompass alterations in cortical volume (13), average cortical

curvature (14), cortical thickness (15), cortical surface area (16),

and other neuroanatomical characteristics. These features may

reflect dendritic arborization (17), disrupted intrinsic and

extrinsic connectivity patterns (18), or variations in the number

of minicolumns within the cortical layer (19). However, these

differences are not observed consistently in all studies, possibly

due to the heterogeneity among individuals with ASD or

methodological differences (20). Given that atypical brain

structures underlie functional abnormalities, it is essential to

investigate the most distinctive structural brain anomalies

associated with ASD. Identifying these distinctive structural brain

features in individuals with ASD can advance our understanding of

the disorder’s pathogenesis, offer potential biomarkers for more

accurate ASD diagnosis, and provide a foundation for exploring

more effective interventions.

To identify these distinctive structural brain anomalies in

individuals with ASD, the analysis methodology deserves greater

attention. Classical statistical methods often overlook the

interdependence among different brain regions, which are now

recognized as valuable sources of information for detecting various

brain disorders (21). In contrast, machine learning approaches

prove more suitable for handling extensive and intricate data

(22). These methods automatically detect essential patterns

among a multitude of features, whether linear or nonlinear, by
Abbreviations: ACC, Anterior cingulate cortex; ADHD, Attention-deficit/

hyperactivity disorder; ASD, Autism spectrum disorder; AUC, Area under the

curve; fMRI, Functional magnetic resonance imaging; LASSO, Least absolute

shrinkage and selection operator; MRI, Magnetic resonance imaging; NAc,

nucleus accumbens; ROC, Receiver operating characteristic; SVM, Support

vector machine; TD, Typically developed; ToM, Theory of mind.
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focusing on specific tasks like classification, thereby emphasizing

the significance of meaningful features (23, 24). Furthermore, they

enable the assessment of the predictive strength of multiple factors

and the identification of the most influential factors contributing to

outcomes (25). Consequently, aside from constructing diagnostic

models, an increasing number of studies have utilized machine

learning to identify prominent features, such as key risk or

protective factors for self-harm (26), obesity (27), and bullying

(25). In recent years, various machine learning techniques have

been employed in ASD classifications. Prior research has validated

the effectiveness of these approaches in distinguishing individuals

with ASD from those who are typically developing (7, 28). However,

contemporary machine learning studies in ASD brain imaging have

primarily concentrated on classification performance and early

diagnosis, often leading to the generation of an extensive array of

features, which poses a challenge in feature reduction (29).

Consequently, the ongoing challenge remains the determination

of which structural brain deviations are most characteristic of ASD.

Furthermore, despite improved accuracy in segmenting subcortical

structures, their integration into machine learning classification

studies for ASD remains limited. Among subcortical structures, the

hippocampus and its subfields have garnered increasing attention in

recent years due to their potential relationship with ASD.

Researchers suggest that deficits in social behavior, memory, and

spatial reasoning in ASDmay stem from underlying impairments in

complex hippocampal-driven cognitive mechanisms, which are

supported by distinct hippocampal subfields (30). Additionally,

several animal studies have highlighted the CA2 region of the

hippocampus as a crucial structure for social memory (31–33).

Additionally, a mouse model of the 22q11.2 deletion syndrome

exhibiting ASD-like behaviors has shown age-dependent specific

changes in the CA2 area (34). Therefore, exploring changes in

hippocampal subfields in individuals with ASD may help identify

potential targets for future diagnosis and treatment. However,

although the precise segmentation of hippocampal subfields has

recently become achievable (35), related research remains

exceedingly scarce, and these subfields have scarcely been

included in machine learning classification models for ASD.

Therefore, in our present study, we applied a Multi-Stage

Progressive Feature Refinement Approach to identify the most

crucial structural MRI features that distinguish individuals with

ASD from their typically developing counterparts. Within our

framework, we integrated cortical features (including thickness,

surface area, mean curvature, and volume) as well as subcortical

features, particularly focusing on hippocampal subfields. Our

research specifically aimed to pinpoint key brain regions that

exhibit the most significant distinctions between individuals with

autism and typically developing individuals.
2 Materials and methods

2.1 Participants

Individuals diagnosed with ASD were recruited from Peking

University Sixth Hospital in Beijing, China. Inclusion criteria were
frontiersin.org
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as follows (1): age between 7 and 18 years; (2) meeting the criteria

for ASD according to the Diagnostic and Statistical Manual of

Mental Disorders, Fifth Edition (DSM-5); (3) capable of undergoing

MRI scanning; (4) right-handed. The diagnosis was confirmed by

two experienced child and adolescent psychiatrists based on the

DSM-5. Exclusion criteria were as follows: (1) presence of other

severe mental disorders such as schizophrenia, bipolar disorder, and

so on; (2) major physical or neurological illnesses; (3) history of

brain trauma; (4) unstable use of psychotropic medications; (5)

presence of metal implants in the body. Typically Developing (TD)

participants were recruited through advertisements at Peking

University Sixth Hospital. Inclusion criteria for TD participants

were: (1) age between 7 and 18 years; (2) absence of mental

disorders; (3) capable of undergoing MRI scanning; (4) right-

handed. Exclusion criteria for TD groups were: (1) current or

previous psychiatric diagnoses; (2) major physical or neurological

illnesses; (3) history of brain trauma; (4) use of psychotropic

medications; (5) presence of metal implants in the body.

Ultimately, our study comprised 175 individuals with ASD and

69 TD participants, matched for gender and age (Table 1). In the

ASD group, 41 participants had comorbid attention-deficit/

hyperactivity disorder (ADHD) and/or Tic disorders, while the

rest had no comorbidities. Sixteen participants were on

psychotropic medications: four were taking stimulants for ADHD

and 12 were on stable doses of antidepressants and/or

antipsychotics to manage mood or behavioral issues, with the

types and doses of medications remaining stable for at least two

weeks prior to the study. The study protocol received approval from

the Ethics Committee of Peking University Sixth Hospital.

Informed written consent was obtained from parents or legal

guardians of participants under 8 years old, and from both

participants themselves and their parents or legal guardians for

those over 8 years old.
2.2 Magnetic resonance imaging protocol

MRI scans were conducted using a GE Discovery 750 3.0T

MRI system (GE Healthcare, Chicago, IL, USA) equipped with an 8-

channel phased-array head coil at both Peking University Sixth

Hospital and Peking University Third Hospital. Both scanners were

of the same model from the same manufacturer. Subjects were

instructed to lie in a supine position and secured with foam padding

during the scans. The scanning parameters for the 3D T1-weighted

spoiled gradient recalled (SPGR) sequence at Peking University
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Sixth Hospital were as follows: TR = 6.7 ms, TE = 3.1 ms, flip

angle = 12°, FOV = 25.6 mm × 25.6 mm, matrix size = 256 × 256,

and slice thickness = 1.0 mm. At Peking University Third Hospital,

the scanning parameters for the 3D T1 SPGR sequence were:

repetition time (TR) = 4.78 ms, echo time (TE) = 2.02 ms,

flip angle = 15°, field of view (FOV) = 24 mm × 24 mm, matrix

size = 240 × 240, and slice thickness = 1.0 mm.
2.3 Image processing

All T1-weighted images underwent processing with FreeSurfer

v.7.2.0(http://surfer.nmr.mgh.harvard.edu/) to extract brain

morphometric features. The morphometric procedures of

FreeSurfer have consistently demonstrated robust test-retest

reliability across different field strengths and scanner

manufacturers (36). The processing workflow for cortical

reconstruction and subcortical segmentation included several

steps: motion correction, skull stripping, computation of the

Talairach transform, segmentation of subcortical white matter

and deep gray matter volumetric structures, intensity

normalization, tessellation of white–gray matter boundaries,

automated topology correction, and surface deformation to

optimize the placement of structural boundaries (37, 38). We

extracted volume, surface area, mean curvature, and thickness of

cortical structures defined by Desikan Killiany templates (39), along

with the volume of subcortical structures defined by the Aseg

template, and the volume of hippocampal subfields using the

hippocampal subdivision template. This resulted in a

comprehensive set of 317 brain morphometric features for each

individual participant. Following the standard processing stream for

all images, each image was manually reviewed and corrected to

ensure the accuracy of gray/white and gray/pial surface boundaries.

In addition to employing several techniques to control head motion

during data acquisition, we implemented a FreeSurfer-based quality

control workflow for sMRI motion artifacts, which retains only C1

and C2 grade images while discarding C3 grade images (40). To

further harmonize MRI data across scanners, we used ComBat, a

technique that removes unwanted sources of scan variability while

simultaneously enhancing the power and reproducibility of

subsequent statistical analyses (41). Specifically, we applied the

ComBat method from the sva package in R to correct for batch

effects, ensuring more consistent imaging data for our study.
2.4 Machine learning analysis

In this study, we employed a Multi-Stage Progressive Feature

Refinement Approach that integrates multiple feature selection

methods to identify the most discriminative brain structural

features for distinguishing ASD from TD. Feature selection in

machine learning refers to selecting a subset of features from a

larger set that are most strongly correlated with the classification

labels and are most important for classification. Common feature

selection algorithms include filter methods, embedded methods,

and wrapper methods, each with its strengths and weaknesses.
TABLE 1 Demographic information of participants.

Variable
ASD (n=175) TD (n=69)

t/c2 P
Mean ± SD Mean ± SD

Gender
(male/female)

154/21 59/10 0.27 0.59

Age 11.93 ± 3.20 12.00 ± 2.91 -0.175 0.86

Full IQ 81.74 ± 26.64(n=173) 110.91 ± 13.21 -7.42 <0.001
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Consequently, researchers have increasingly combined these

methods for multi-step feature selection (42). In the current

study, we combined SelectKBest, the least absolute shrinkage and

selection operator (LASSO) algorithm, and support vector machine

(SVM). During the selection process, we employed 5-fold cross-

validation for internal validation. The data were randomly divided

into five parts, using four for training and one for testing, iterating

five times. This minimizes the influence of individual anomalous

data, providing a comprehensive assessment of model performance

across different data subsets. Reducing bias from specific data

partitions, it helps prevent overfitting and underfitting. The data

were preprocessed for standardization and normalization. All

machine learning analyses were implemented in Python

programming language using the Scikit-Learn package v. 0.23.2

(http://scikit-learn.org/stable/index.html).

First, we conducted filter feature selection using SelectKBest.

SelectKBest utilizes analysis of variance F-values to assess the

relationship between features and classification outcomes,

selecting the top features with the largest F-values. We used grid

search to determine the optimal selection threshold (20%), retaining

the top 20% of features ranked by F-score for the next stage. This

step ensures the relevance of the selected features to the

classification and removes redundancy.

Although the filter selection method considers the relationship

between features and classification labels, it does not account for

multicollinearity among variables. The LASSO method addresses

this by shrinking the coefficients of less important features to zero,

reducing the number of features to the most significant ones (43).

We used K-fold frequency selection based on LASSO to further

refine the features. K-fold frequency selection is an enhanced

variant of K-fold cross-validation, focusing on the selection of key

features based on their selection frequency. This process generated

five feature subsets from the five folds and recorded the frequency of

features appearing in these subsets. We retained features selected in

more than three out of five folds, ensuring the stability of the

selected features and addressing potential redundancy. We used

cross-validation to evaluate the effect of different regularization

parameters (alpha). Alpha was uniformly sampled on a logarithmic

scale from 100 to 106, and the alpha corresponding to the lowest

average loss across the 5 folds was selected. The tolerance in the

LASSO model was set to 0.0001.

Next, we conducted SVM-based wrapper feature selection to

determine the optimal feature set. Wrapper feature selection

combines feature selection with the performance of the final

classification model to filter the feature set with the highest

contribution to classification. SVM has excellent generalization

ability in pattern recognition with small samples and high-

dimensional data, making it one of the most frequently used

classification models in psychiatric brain imaging (44, 45). The

kernel for training the SVM model was linear, as this limits the risk

of overfitting, contains only a single parameter, and the coefficients

of a linear classifier can be interpreted as relative measures of feature

importance. The regularization parameter (C) was selected using

grid search, and the final value used was C = 10. Classification

performance was measured using the following metrics: area under

the receiver operating characteristic curve (ROC-AUC), accuracy,
Frontiers in Psychiatry 04
sensitivity, and specificity. To ensure robustness and generalization,

we used 5-fold cross-validation for internal validation. Features

from the previous step were input into the SVM model to derive

average contribution rankings using SVM coefficients. We arranged

features in descending order based on their rankings and

progressively incorporated them into a new SVM model. After

adding each feature, we retrained the SVM using four parts of the

data and assessed its performance on the excluded part, generating

five ROC curves and their respective AUC values, and then

calculated the average AUC. As features with decreasing

contributions were added, the mean AUC tended to stabilize or

converge. Ultimately, we retained the features obtained before the

model’s convergence that significantly contributed to performance.

These constituted the most discriminative feature set for

distinguishing ASD from TD.
3 Results

3.1 Filter selection based on SelectKBest

In the filter selection based on SelectKBest, we utilized the F-

score to identify the top 20% of statistically significant features,

resulting in 64 features in each fold. These features include

hippocampal subfields such as the volume of the left CA2/3, left

CA4, and right subiculum; subcortical structures including the

volume of the left nucleus accumbens (NAc), bilateral thalamus,

and bilateral pallidum, among others; and various cortical features,

such as the surface area of the right caudal anterior cingulate cortex

(ACC), the mean curvature of the right dorsolateral prefrontal

cortex, and the volume of the left transverse temporal gyrus. These

cortical features are distributed across the frontal, temporal,

parietal, and occipital lobes.
3.2 Frequency selection based on LASSO

Further refinement using LASSO to reduce redundancy yielded

varying numbers of features across the five folds: 31, 47, 28, 53, and

28 features, respectively (Supplementary Tables S1-S5). This

variation indicates the instability of feature selection results due to

the partitioning of the training and testing datasets. However,

certain features were consistently chosen with high frequency

across various folds, demonstrating resilience to dataset

partitioning and offering substantial value for identification

purposes. A total of 27 features appeared in three or more folds

(Table 2). Among these, 3 hippocampal subfield features were

identified: the volume of left CA2/3, the volume of the right

subiculum, and the volume of the left hippocampal tail. The

LASSO coefficient path plot (Figure 1) and regularization path

plot (Figure 2) illustrate that in the five-fold cross-validation

experiment, the chosen parameters strike a favorable balance

between the model’s fitting performance and feature sparsity,

indicating that our selection process effectively identifies features

that contribute significantly to classification support. There is a

significant reduction in the number of features compared to those
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selected by SelectKBest. However, considerable variation in the

coefficients among the features still exists, indicating the potential

for further refinement and selection.
3.3 Analysis of the final SVM-based
voting selection

All 27 features were initially input into the SVMmodel, resulting in

a ranking of feature importance, as shown in Table 2. In the analysis of

feature performance based on SVM voting (Figure 3), features were

incrementally added in descending order of importance to form new

feature subsets. These subsets were then inputted into new SVM

models. As new features were incorporated, the average AUC value

of the test set improved gradually. Furthermore, the contribution of

lower-ranked features to classification gradually diminished. The final
Frontiers in Psychiatry 05
AUC converged to 0.77 and subsequent addition of low-contributing

features had minimal impact on classification improvement. At

model convergence, the classification performance was as follows:

AUC = 0.77, accuracy = 71.1%, sensitivity = 68.0%, and specificity =

79.7%. This demonstrates the outstanding performance of the selected

features. The final set of features that significantly contributed to

distinguishing ASD from TD included: mean curvature of the left

temporal pole, surface area of the right precuneus, surface area of the

right caudal anterior cingulate cortex, volume of the right caudal

anterior cingulate cortex, volume of the left CA2/3, volume of the

left entorhinal cortex, volume of the left transverse temporal gyrus,

cortical thickness of the left postcentral gyrus, and volume of the left

nucleus accumbens.
4 Discussion

In previous studies, structural abnormalities in various brain

regions have been reported among individuals with ASD. However,

there has been limited investigation into which specific brain

regions exhibit more distinct structural abnormalities in ASD. In

our study, we employed a Progressive Feature Refinement

Approach to identify nine critical features for distinguishing

between individuals with ASD and TD. We integrated both

cortical and subcortical features, particularly focusing on

hippocampal subfields. These features include: left temporal pole

(mean curvature), right precuneus (surface area), right caudal

anterior cingulate cortex (surface area), right caudal anterior

cingulate cortex (volume), left CA2/3 (volume), left entorhinal

cortex (volume), left transverse temporal gyrus (volume), left

postcentral gyrus (cortical thickness), left nucleus accumbens

(volume). These findings suggest that these specific brain regions

may play a more prominent role in the differentiation of individuals

with ASD from healthy controls and in the underlying

pathophysiology of ASD.

Regarding the subcortical features identified by our method, the

regions demonstrating the most robust discriminative power

include the left CA2/3 and the left NAc. These subcortical regions

have been associated with critical functions in the context of ASD.

CA2/3 is one of the hippocampal subfields that has received

significant attention in recent years. CA2, in particular, has been

consistently identified as essential for social memory in several

rodent studies (31–33, 46). Additionally, CA2/3 is closely related to

the regulation of oxytocin, which plays an important role in human

prosocial behavior. Oxytocin receptors are highly concentrated in

CA2/3, and studies have found that these receptors regulate CA2/3’s

response to social stimuli (47). These findings suggest that CA2/3

may be involved in the pathophysiology of core symptoms in ASD.

However, studies on hippocampal subfields in human subjects with

ASD are extremely rare. Li et al. (48, 49) reported that infants with

ASD aged 6 to 24 months showed sustained overgrowth in bilateral

CA1-3, particularly in the left CA1-3, compared to TD infants. This

overgrowth in CA1-3 could serve as a potential biomarker for early

ASD diagnosis. In our study, the left CA2/3 volume emerged as a

key discriminative feature between ASD and TD, suggesting that

CA2/3 abnormalities may persist from infancy through
TABLE 2 Importance ranking of features based on SVM.

Features Ranking

left_temporalpole_meancurv 1

right_precuneus_area 2

right_caudalanteriorcingulate_area 3

right_caudalanteriorcingulate_volume 4

left_hipposubfields_CA2/3_volume 5

left_entorhinal_volume 6

left_transversetemporal_volume 7

left_postcentral_thickness 8

left_accumbens_area 9

left_caudalanteriorcingulate_thickness 10

right_pallidum_volume 11

right_cerebellum_cortex_volume 12

left_entorhinal_area 13

right_caudalmiddlefrontal_meancurv 14

right_hipposubfields_subiculum_volume 15

right_thalamus_volume 16

left_hipposubfields_hippocampal_tail_volume 17

right_postcentral_meancurv 18

left_lateralorbitofrontal_meancurv 19

left_parahippocampal_area 20

right_entorhinal_volume 21

right_precentral_meancurv 22

right_parahippocampal_area 23

right_parahippocampal_thickness 24

left_pallidum_volume 25

right_inferiortemporal_thickness 26

estimated_totalintracranial_volume 27
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adolescence. This also highlights its potential involvement in the

pathophysiology of ASD, warranting further investigation.

Unfortunately, in the current FreeSurfer segmentation protocol,

the CA2 and CA3 regions cannot be accurately distinguished and

are therefore represented as a combined CA2/3 region. Future

advancements in more precise segmentation tools may provide

valuable insights into the distinct roles of CA2 and CA3 in the

pathology of ASD. The NAc is considered a pivotal structure

involved in the social reward response (50). Developmental

trajectories of the NAc have been observed to differ between

individuals with ASD and neurotypical controls (51).

Furthermore, a recent meta-analysis of functional magnetic

resonance imaging (fMRI) studies found that individuals with

ASD exhibit NAc hypoactivation in response to nonsocial

rewards, while atypical NAc activation was observed during

restricted interests tasks (52). This suggests that NAc dysfunction

may be related to the pathological mechanisms underlying ASD.

Consequently, NAc is considered a potential target for deep brain

stimulation in ASD due to its prominent role in modulating reward

and pleasure processing (50). It is evident that these subcortical

structures identified by our method hold significant relevance in the

pathology of ASD.
Frontiers in Psychiatry 06
Our findings underscore the critical importance of subcortical

features in distinguishing individuals with ASD from TD subjects.

In previous machine learning studies focused on ASD classification,

cortical features have often taken precedence, while subcortical

structures have received comparatively less attention. This was

primarily due to historical challenges in accurately segmenting

subcortical structures and a resulting lack of research emphasis,

leading to their relative neglect in subsequent studies (53).

However, an increasing body of evidence highlights the relevance

of subcortical structures in distinguishing ASD from TD. For

instance, Duan et al. (54) mapped the structural covariance

network of subcortical regions in groups of young children with

ASD and TD. Their findings revealed decreased inter-hemispheric

structural covariation, including structural covariance between the

left and right thalami, left NAc and right globus pallidus, left globus

pallidus and right NAc, and enhanced intra-hemispheric structural

covariation in young children with ASD compared to TD

individuals. These abnormalities in subcortical structural

covariance were predictive of social communication deficits and

repetitive and stereotypic behaviors in ASD. Wee et al. (55) found

that subcortical volume was significantly superior to other feature

types in distinguishing ASD from TD, this advantage is more
FIGURE 1

LASSO coefficient path plot. Panels (A–E) display the LASSO coefficient paths for each fold. The horizontal axis shows the magnitude of the
regularization parameter, while the vertical axis shows the coefficients of the features.
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pronounced in younger subjects (56). Our framework utilized the

latest FreeSurfer templates for precise segmentation of subcortical

structures and hippocampal subfields. The results suggest that

subcortical structural abnormalities may represent a stable feature

of ASD pathology and play a significant role in distinguishing

individuals with ASD from TD.

It is worth noting that the amygdala, a subcortical structure

frequently associated with abnormalities in previous studies (57, 58),

was not identified by our framework as one of the most characteristic

brain structures in ASD. This observation may be attributed to the

age range of our study subjects, which spanned from 7 to 18 years. In

individuals with ASD, abnormalities in the amygdala tend to

diminish in prominence with age, converging towards sizes found

in TD adolescents and adults (59, 60).

In the realm of cortical structures, left temporal pole, right

precuneus, right caudal anterior cingulate cortex, left entorhinal

cortex, left transverse temporal gyrus, and left postcentral gyrus

emerge as the most distinguishing regions. These brain regions have

frequently surfaced in previous research on ASD. The caudal

anterior cingulate cortex, acting as a processing hub for cognitive

control and emotion regulation, integrates both external and

internal information, enabling sophisticated control over

decisions and behaviors in specific situations (61, 62). Several
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studies have found structural and functional abnormalities in the

right caudal anterior cingulate cortex in individuals with ASD.

Ecker et al. (63) observed reductions in the surface area of the

anterior cingulate in ASD. Furthermore, the right anterior cingulate

cortex has been reported to be significantly smaller in relative

volume and less metabolically active in individuals with ASD

compared to neurotypical controls (64). The ACC reliably

activates when individuals observe emotional faces, listen to

emotionally charged voices, or engage in tasks requiring

consideration of others’ mental states (65). In ASD males, a

significant reduction in self-response in the caudal anterior

cingulate cortex was observed during social-exchange games, and

this reduction is correlated with the severity of their assessed

behavioral symptoms (66). The temporal pole plays crucial roles

in socio-emotional processing, advanced semantic processing,

theory of mind (ToM), face processing, and autobiographical

memory (67, 68). A study investigating cortical characteristics

across the lifespan of individuals with ASD found that greater

symptom severity in ASD is associated with reduced gray matter

volume in the temporal pole (69). Ji et al. (70) discovered that the

volume of the temporal pole is associated with the severity of social

and speech impairments in patients with ASD who have comorbid

developmental delay, with larger volumes linked to greater clinical
FIGURE 2

LASSO regularization path plot. In Panels (A–E) each curve represents the variation of the LASSO regularization path within a fold. The horizontal axis
of the curve represents the magnitude of the regularization parameter, while the vertical axis represents the loss value.
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symptom severity. Rolls et al. (71) reported decreased effective

connectivity from the temporal pole to the ventromedial

prefrontal cortex in individuals with ASD. Bai et al. (72) found

that functional connectivity in the left temporal pole and the left

superior temporal gyrus is positively correlated with adaptability

and language developmental quotient in children with ASD. The

precuneus is crucial for maintaining various important cognitive

functions, such as ToM, self-referential processing, episodic

memory, and visuospatial processing (73, 74). A meta-analysis

found that individuals with ASD have increased gray matter

volume in the right precuneus compared to TD subjects (75).

Lynch et al. (76) found that in children with ASD, the precuneus

demonstrated hypoconnectivity with the visual cortex, basal

ganglia, and locally within the posteromedial cortex. A recent

study found that the connectivity between the precuneus and

temporal lobe is atypically correlated with language expression

abilities in infants with ASD, highlighting the precuneus’s

involvement in the early neural mechanisms underlying ASD

(77). The entorhinal cortex, a key component of the medial

temporal lobe and the primary gateway to the hippocampus, is

essential for memory and spatial navigation (78). Kwon et al. (79)

found that individuals with ASD exhibit reduced gray matter

density in the entorhinal cortex compared to controls,

highlighting its structural abnormalities in ASD. Additionally,

Salmond et al. (80) observed a significant correlation between

parental ratings of autistic symptomatology and gray matter

density in the entorhinal cortex in individuals with ASD. The

transverse temporal gyrus, also known as Heschl’s gyrus, contains

the primary auditory cortex and is crucial for auditory processing

(81, 82). Heschl’s gyrus is essential not only for processing external
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auditory stimuli but also for processing ‘inner voices’ (83).

Individuals with ASD exhibit various atypical auditory processing

patterns, such as hypersensitivity to volume, abnormal pitch

perception, and atypical orientation to auditory stimuli, which

researchers believe may be related to atypical development of the

auditory cortex (84). Reports indicate structural and functional

abnormalities of Heschl’s gyrus in individuals with ASD. Hyde et al.

(85) demonstrated that adults with autism exhibit increased cortical

thickness in Heschl’s gyrus compared to controls. Kim et al. (86)

utilized graph theory to examine alterations in different brain

network topologies of low-functioning ASD, revealing that

increased nodal strength in the right Heschl’s gyrus was positively

correlated with the severity of clinical autistic symptoms. The

postcentral gyrus, where the primary sensory cortex is located, is

known for its central role in processing sensory information from

various parts of the body (87). In recent years, sensory sensitivities

have been recognized as a core diagnostic feature of ASD,

and atypical responses in primary sensory cortices have been

observed in autism across sensory modalities and during

multimodal perception (88). Mahajan et al. (89) reported that

children with ASD have increased gray matter volume in bilateral

postcentral gyrus.

A noteworthy characteristic of these highly discriminative brain

regions is their substantial overlap with areas associated with the

reward system. The reward system supports normal social

motivation, facilitating the initiation, maintenance, learning, and

adaptation of social interactions (90–92), and consists of the ventral

tegmental area, NAc, ACC, orbitofrontal cortex, ventromedial

prefrontal cortex, hippocampus, amygdala, thalamus, temporal

pole, precuneus (93–95). The “social motivation hypothesis”
FIGURE 3

ROC curves and AUC values of the SVM-based voting selection analysis.
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posits that individuals with ASD experience deficits in processing

social rewards, leading to impaired social skills (96). Additionally,

multiple fMRI studies have demonstrated that both children and

adults with ASD exhibit abnormal responses to both social and

monetary rewards (94, 97), indicating that general impairments in

reward processing underlie the pathophysiology of autism (94).

Such abnormalities in reward processing may contribute to

maladaptive motivated behaviors, resulting in a propensity to

focus on specific, autism-specific objects and situations rather

than conventional environmental rewards (97). Consequently, the

social interaction deficits and restricted repetitive behaviors and

interests characteristic of ASD may reflect their abnormal

functioning of reward circuits in the brain (98). Importantly,

critical areas involved in processing social and monetary rewards,

such as the NAc, hippocampus, ACC, temporal pole, and

precuneus, highly coincide with the regions from which we

extracted features. A meta-analysis of previous studies indicated

that functional changes in the reward system are associated with the

core symptoms of ASD (52). In social reward stimuli tasks, the left

hippocampus and anterior cingulate cortex exhibited

hypoactivation. In nonsocial reward stimuli tasks, bilateral

nucleus accumbens and anterior cingulate cortex showed

hypoactivation, while hyperactivation was observed in the right

hippocampus. In response to restricted interests, the left nucleus

accumbens and anterior cingulate cortex demonstrated

hypoactivation, whereas the left precuneus cortex and right

nucleus accumbens exhibited hyperactivation. These findings

suggest that atypical activation in these reward system structures

may contribute to diminished reward responses to social stimuli in

individuals with ASD, alongside abnormal reward responses to

nonsocial stimuli and restricted interests, potentially leading to

social deficits and restricted interests. While previous studies on

reward processing in ASD have primarily focused on functional

investigations using fMRI, this study provides rare evidence of

structural impairments in the reward system of individuals with

ASD, indicating that abnormalities in the reward system are not

limited to functional changes but also include stable structural

alterations in individuals with ASD.

Furthermore, the features with the highest discriminative

contribution also show significant overlap with the ToM network.

Human social cognitive functions are closely linked with the ToM

network, and the theory of mind hypothesis posits that

impairments in ToM abilities lead to social impairments in

individuals with ASD (99). Dysfunction in the ToM network has

been extensively reported in ASD and is confirmed to play a

significant role in the disorder’s underlying pathological

mechanisms (100–104). The ACC and precuneus are important

components of the ToM network and were also included among the

most distinctive features identified in our results.

Several limitations of this study should be acknowledged. The

first limitation of our study is the age range of our participants,

which spanned from 7 to 18 years. Consequently, our findings

might not accurately reflect the characteristics of the broader ASD

population. Additionally, the ongoing brain development during
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childhood and adolescence may exhibit complex, age-related

patterns of structural changes. The broad age distribution in our

study—from childhood to adolescence—may obscure some of these

nuanced changes, potentially impacting our results. In future

research, we plan to expand the age range and conduct

longitudinal studies, aiming to explore the similarities and

differences in key brain structural features of ASD across various

developmental stages. Secondly, inherent constraints in clinical

research led to a limited sample size for the TD group. Future

studies should increase the TD sample size to enhance our

understanding of atypical brain development in autism. Thirdly,

in order to retain a sample that more closely resembles real-world

populations, we included participants in the ASD group with IQ

below 70, as well as those with comorbid ADHD and/or Tic

disorders, and those taking medications. Although excluding

these participants entirely could reduce the ecological validity of

the study, factors such as IQ, comorbidities, and medication use

may still influence the results. Future studies could collect larger

samples to further explore these effects. Fourthly, the present study

lacked external validation, which is a common limitation of medical

studies. Future research should conduct external validation with an

independent sample to further verify the model. Fifthly, the SVM

model is relatively simple, using straightforward mappings to

encode feature relationships. While effective, it may not capture

all valuable features. In the future, we can explore more complex

interactions between features by introducing advanced deep

learning models and interpretable methods based on game theory.

Lastly, the selected structural features may indicate developmental

abnormalities in ASD or could be the result of functional

compensation. Future research is needed to explore these

possibilities in greater depth. Despite these limitations, the

present study highlights the most crucial structural features for

distinguishing between ASD and TD individuals. A strength of our

investigation is that we combined different feature selection

methods, leveraging their advantages and mitigating their

weaknesses, thus effectively removing redundancy. Another

advantage is the inclusion of hippocampal subfields. To the best

of our knowledge, this is the first study that employs machine

learning to investigate the role of hippocampal subfield

abnormalities in brain structural anomalies among children and

adolescents with ASD. Our findings may help guide future research

focused on understanding the role of hippocampal subfields in the

pathophysiology of ASD.

In conclusion, our study, employing a Progressive Feature

Refinement Approach using LASSO and SVM, identified 9 features

out of 317 that significantly distinguish between ASD and TD

individuals. These features are closely associated with core

impairments in ASD. Notably, both cortical and subcortical

structures, including one of the hippocampal subfields, play critical

roles and highly overlap with the reward system. Our findings suggest

that structural impairments in the brain’s reward system, along with

abnormalities in a specific hippocampal subfield, may contribute to a

better understanding of the pathophysiology and etiology of ASD.

Further research is needed to delve deeper into these findings.
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