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Background: The prevalence of depression among adolescents has been

gradually increasing with the COVID-19 pandemic, and the purpose of this

study was to develop and validate logistic regression models to predict the

likelihood of depression among 6-17 year olds.

Methods:We screened participants from the National Center for Health Statistics

(NCHS) in 2022. Independent risk factors were identified via univariate logistic

regression analyses and least absolute shrinkage and selection operator (LASSO)

for feature screening. Area under the curve (AUC) and decision curve analysis

(DCA) were used to compare the predictive performance and clinical utility of

these models. In addition, calibration curves were used to assess calibration.

Results: Multivariate logistic regression analyses revealed that risk factors for

depression included girls, higher age, treated/judged based on race/ethnicity,

ever lived with anyonementally ill, experienced as a victim of/witnessed violence,

and ever had autism, ever had attention-deficit disorder (ADD), etc. Afterwards,

the results are visualized using a nomogram. The AUC of the training set is 0.731

and the AUC of the test set is 0.740. Also, the DCA and calibration curves

demonstrate excellent performance.

Conclusion: Validated nomogram can accurately predict the risk of depression in

children and adolescents, providing clues for clinical practitioners to develop

targeted interventions and support.
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1 Introduction

Depression is among the more common psychiatric disorders in

children and adolescents. At any given time, nearly 3% of youth

worldwide are reported to have a depression (1). Before the

COVID-19 pandemic, the prevalence of major depression among

adolescents was reported to be about 13%–15% (2, 3). A recent

meta-analysis found that around 1 in 4 youth had clinically

significant depressive symptoms during the COVID-19 pandemic,

with higher rates associated with older age and female sex; it also

found the prevalence of symptoms to be higher later during the

pandemic period (4). Depression is a leading cause of disability and

a major contributor to the overall global burden of disease (5).

Nearly 30% of youth with major depression reported some form of

suicidality in the past year, and more than 10% reported a suicide

attempt. Additionally, depression in young people also has

widespread negative impacts on psychosocial functioning

including lower educational attainment, higher welfare

dependence and unemployment in adulthood (6–8). There is also

evidence to suggest impacts on future interpersonal difficulties,

including marital functioning (9), increased loneliness (10) and a

greater need for social support (11).

Although more than 40% of people with depression experience

onset before adulthood, depression remains undetected in many

adolescents worldwide, and most are untreated (12–14). Only 34%

of adolescents with major depression were reported to receive

disorder-specific treatment, and only 35% received treatment from

the mental health sector (15). Many clinicians consistently report a

lack of confidence in their ability to care for adolescents with

depression (16). Furthermore, preventing the onset or recurrence of

depression in childhood and adolescence has been reported to

promote improved functioning in adulthood (17). Therefore, it is

critical to identify individuals who were likely to develop depression

as early as possible and to prevent its onset. However, predicting

which individuals will experience depression and anxiety in

adolescence remains an extremely difficult task. There is increasing

recognition of the immense complexity of psychopathology,

necessitating shifting away from simple etiological models and

toward a complex dynamic systems perspective that recognizes that

mental disorders arise from the interplay of numerous interacting

components on multiple levels of analysis (18).

In a research review on child and adolescent psychiatry, the

use of ML in the prediction of depression is demonstrated (19).

Early depression questionnaire data were identified with the help

of cross-validated neural network studies (19, 20). In addition,

more recent studies have begun to focus on the collection of

multimodal data, such as facial expressions, speech features, and
Abbreviations: NCHS, National Center for Health Statistics; LASSO, least

absolute shrinkage and selection operator; AUC, Area under the curve; DCA,

decision curve analysis; CFM, Child Functioning Module; UNICEF, United

Nations Children’s Fund; WHO, World Health Organization’s; ADHD,

Attention-Deficit/Hyperactivity Disorder; ADD, Attention-Deficit Disorder;

PTE, Potentially traumatic experiences; ASD, autism spectrum disorders; MDS,

major depressive syndrome.
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magnetic resonance imaging (MRI) examination information, to

improve early disease diagnosis and symptom prediction (21–23).

Despite these significant advances, there are still some limitations

in terms of different populations and clinical features and further

research is urgently needed to enhance the generalisability and

adaptability of the models (24). This study focuses on

investigating the factors associated with the occurrence of

depression among children and adolescents aged 6-17 years in a

clinical prediction study. To predict the likelihood of developing

depression, logistic regression and nomogram techniques will be

utilized. Logistic regression allowed us to examine the relationship

between multiple independent variables and the binary outcome

variable. Least Absolute Shrinkage and Selection Operator

(LASSO) regression imposes an L1 penalty by adjusting the

value of l, which results in an additional contraction of the

absolute value of the logistic regression coefficients. This

approach not only effectively retains the most predictive

variables, but also reduces overfitting of the model, which

improves the generalization ability of the model and makes the

final model more accurate (25–27).

By analyzing the data collected from the study participants, we

will be able to determine the strength and direction of the

association between each predictor and depression. Besides, a

nomogram will be constructed to provide a visual representation

of the prediction model that can estimate an individual’s risk of

developing depression based on specific characteristics of the

individual and identified predictors. In addition, the findings

from this study will provide valuable insights for healthcare

professionals, educators, and policymakers to develop targeted

interventions and support systems for at-risk individuals.
2 Materials and methods

2.1 Data and participants

We obtained data from the National Health Interview

Survey (NHIS) conducted in 2022. NHIS is an annual survey

administered by the National Center for Health Statistics

(NCHS), aiming to collect health-related information on the

civilian noninstitutionalized population of the United States.

It has been widely utilized to estimate disease prevalence

nationwide. The research ethics review board of NCHS approved

NHIS, ensuring its compliance with ethical standards (28, 29). In

order to minimize respondent burden and improve data quality,

NHIS underwent a redesign in 2022. During sampling, one adult

aged ≥18 years old and one child aged ≤17 years old (if applicable)

were randomly selected from each household. Information

regarding children was gathered from parents or responsible

adults knowledgeable about their healthcare needs. For this study,

only children’s data were retrieved for analysis purposes. In 2022, a

total of 7,464 questionnaires were collected by NHIS, including

5,073 questionnaires from children and adolescents aged 6 to 17.

301 questionnaires with high deletion rate were deleted, and a total

of 4772 subjects were included in this study. The detailed process of

participant selection is shown in Figure 1.
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2.2 Measurements and
operational definitions

2.2.1 Depression
The Child Functioning Module (CFM) is a 24-item scale

developed by the Washington Group on Disability Statistics in

collaboration with the United Nations Children’s Fund (UNICEF)

to measure the frequency of depression in children (30–32). The

CFM was cognitively tested internationally across six countries and

is designed to capture a child’s functional status, reflecting advances

in the conceptualization of disability using the World Health

Organization ’s (WHO) International Classification of

Functioning, Disability, and Health (33). Parents are asked to

report on the frequency with which their child seems “very sad or

depressed” with response options of “daily,” “weekly,” “monthly,”

“a few times a year,” or “never”. For this study, children were

categorized as having current symptoms of depression based on a

frequency response of “daily” or “weekly” or “Monthly” to either

question. These questions are included in a module for children 5–

17 years of age which focuses on the domains of seeing, hearing,

mobility, dexterity, self-care, communication, learning, cognition,

affect, playing, behavior, and peer relationships (34).

2.2.2 Data collection
Demographic characteristics were examined for both children

and families. These factors included the gender of the child (boy and

girl), age (6-17 years old), race/ethnicity (non-Hispanic White, non-

Hispanic Black, non-Hispanic other, Hispanic), level of

urbanization (35) (large central or fringe metropolitan area,

medium or small metropolitan area, nonmetropolitan area),

family income as a percentage of the federal poverty level

(<100%, 100%–199%, 200–399%, ≥400%), and highest

educational attainment of any parent residing in the household

(high school education or less, associate degree or some college
Frontiers in Psychiatry 03
education, bachelor’s degree or higher). The number of adults in the

household (1 adult, ≥2 adults), the number of children in the

household (1 child, ≥2 children). The definition of physical

activity is to exercise, participate in sports, or engage in at least

60 minutes of physical activity daily or most days (yes or no).

Stressful life events of the child or his/her family members were

included in the dataset of 2022. Relevant information included

treated/judged based on race/ethnicity (yes and no), lifetime of

lacking basic needs (yes and no), experience as a victim of/witnessed

violence (yes and no), bullied by others (yes and no), ever lived with

a parent who was incarcerated (yes and no), ever lived with anyone

mentally ill (yes and no), and ever lived with anyone with an alcohol

problem (yes and no). The study also included Developmental and

Learning Disabilities, such as Ever had learning disabilities (yes and

no), Ever had developmental delay (yes and no), Ever had autism

(yes and no), Ever had intellectual disability (yes and no), Ever had

Attention-Deficit/Hyperactivity Disorder (ADHD) or Attention-

Deficit Disorder (ADD) (yes and no). Indicators are also included in

terms of physical health status, ever had asthma (yes and no), the

Washington Group Short Set Composite Disability Indicator (yes

and no), In the General health status, individuals who report their

health as ‘Excellent’, ‘Very Good’, or ‘Good’ are categorized as

having a ‘good’ health status, while those reporting any other

response are classified as having a ‘poor’ health status.
2.3 Statistical analysis

The dataset collected from the 2022 NHIS was randomly

divided into training and test cohorts at a ratio of 7:3, and the

variables were compared. Non-normal data were presented as

median (interquartile ranges). In the univariate analysis, chi-

square test or Fisher’s exact test was used to analyze the

categorical variables, while the rank-sum test was used to examine

the continuous variables. In the training cohort, in order to

overcome the limitations of traditional stepwise selection and to

prevent overfitting, we chose to use LASSO for the simplification of

the model, filtering out the variables with smaller absolute values of

the coefficients in the model and obtaining the more strongly

independent risk factors in it. The following is the formula for

coefficient estimation:

b̂ = argmino
n

i=1
yihbX

i − ln1 + exp hb Xi� �� �
+ lo

p

j=1
bj

The parameter l in LASSO regression indicates the complexity

of the model, and the larger the value, the fewer the variables

included in the model. Then, we applied multivariate logistic

regression analysis to identify independent predictors of

depression in adolescents. Finally, in order to combine multiple

factors for individualized prediction, we create a predictive column-

line diagram of depression to aid clinical decision-making. The

performance of the nomogram was assessed using the receiver

operating characteristic (ROC) curve and calibration curve, with the

area under the ROC curve (AUC) ranging from 0.5 (no

discriminant) to 1 (complete discriminant). A decision curve
FIGURE 1

Flow chart for filtering participants in NHIS.
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analysis (DCA) was also performed to determine the net benefit

threshold of prediction. Results with a P -value of <0.05 were

considered significant. All statistical analyses were performed using

the R software (version 4.2.2).
3 Results

3.1 Patient characteristics

The baseline characteristics of the study population are shown

in Supplementary Table 1. The comparison of variables in the

training cohort (70%) and test cohort (30%) is shown in Table 1.

The results of hypothesis tests were consistent between the training

and test cohorts, except for the variables of family income to poverty
Frontiers in Psychiatry 04
ratio (training cohort: P=0.013, test cohort: P=0.864), Race/

ethnicity (training cohort: P<0.001, test cohort: P=0.193), the

number of adults(training cohort: P=0.304, test cohort: P=0.035),

the number of children(training cohort: P=0.239, test cohort:

P=0.040), head discomfort(training cohort: P=0.068, test

cohort: P=0.007).
3.2 Predictive model

We incorporated 26 baseline characteristics, after which we

screened for optimal factors with non-zero coefficients by building a

LASSO regression (coefficients are displayed in Supplementary

Table 2, and the distribution of coefficients is shown in Figure 2).

Cross-validation error plots are shown for 1-SE and optimal l. We
TABLE 1 Comparison of variables between groups of different outcomes in training and internal test cohorts.

Characteristics
Training Cohort Internal Test Cohort

No, N = 3,3211 Yes, N = 5151 P2 No, N = 1,3941 Yes, N = 2501 P2

Urbanization level 0.117 0.579

Medium and small metro 439 (13%) 74 (14%) 190 (14%) 40 (16%)

Large metropolitan 993 (30%) 173 (34%) 416 (30%) 75 (30%)

Non-metropolitan 1,889 (57%) 268 (52%) 788 (57%) 135 (54%)

Family income to
poverty ratio

0.013 0.864

<100% 343 (10%) 75 (15%) 161 (12%) 33 (13%)

100–199% 704 (21%) 89 (17%) 263 (19%) 49 (20%)

200–399% 987 (30%) 149 (29%) 422 (30%) 74 (30%)

≥400% 1,287 (39%) 202 (39%) 548 (39%) 94 (38%)

Sex <0.001 <0.001

Girls 1,591 (48%) 309 (60%) 614 (44%) 151 (60%)

Boys 1,728 (52%) 206 (40%) 780 (56%) 99 (40%)

Age, years <0.001 <0.001

Median (IQR) 11.0 (8.0, 15.0) 13.0 (9.0, 16.0) 11.0 (8.0, 14.8) 14.0 (10.0, 15.0)

Race/ethnicity <0.001 0.193

Non-Hispanic Black 1,581 (48%) 321 (62%) 676 (48%) 139 (56%)

Hispanic 370 (11%) 42 (8%) 143 (10%) 19 (7%)

Non-Hispanic White 913 (27%) 91 (18%) 372 (27%) 60 (24%)

Non-Hispanic other 457 (14%) 61 (12%) 203 (15%) 32 (13%)

The number of adults 0.304 0.035

1 adult 472 (14%) 82 (16%) 167 (12%) 42 (17%)

≥2 adults 2,849 (86%) 433 (84%) 1,227 (88%) 208 (83%)

The number of children 0.239 0.040

1 child 1,315 (40%) 218 (42%) 545 (39%) 115 (46%)

≥2 children 2,006 (60%) 297 (58%) 849 (61%) 135 (54%)

(Continued)
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TABLE 1 Continued

Characteristics
Training Cohort Internal Test Cohort

No, N = 3,3211 Yes, N = 5151 P2 No, N = 1,3941 Yes, N = 2501 P2

Highest level of education3 0.075 0.308

Associate degree or
some college

868 (26%) 159 (31%) 371 (27%) 78 (31%)

High school or less 727 (22%) 102 (20%) 301 (22%) 52 (21%)

Bachelor’s degree or higher 1,722 (52%) 254 (49%) 719 (52%) 119 (48%)

Behavior4 0.685 0.515

Yes 411 (12%) 67 (13%) 185 (13%) 37 (15%)

No 2,910 (88%) 448 (87%) 1,209 (87%) 213 (85%)

Physical activity <0.001 <0.001

Yes 1,999 (67%) 264 (55%) 856 (69%) 137 (57%)

No 964 (33%) 218 (45%) 387 (31%) 104 (43%)

Head discomfort5 0.068 0.007

Yes 201 (6%) 42 (8%) 77 (6%) 25 (10%)

No 3,120 (94%) 473 (92%) 1,317 (94%) 225 (90%)

Unfairer <0.001 <0.001

Yes 156 (5%) 60 (12%) 59 (4%) 28 (12%)

No 3,065 (95%) 448 (88%) 1,303 (96%) 215 (88%)

Lacking basic needs <0.001 <0.001

Yes 105 (3%) 39 (8%) 39 (3%) 23 (9%)

No 3,141 (97%) 472 (92%) 1,330 (97%) 223 (91%)

Putdown <0.001 <0.001

Yes 127 (4%) 64 (13%) 50 (4%) 36 (15%)

No 3,107 (96%) 441 (87%) 1,312 (96%) 208 (85%)

Living with the addict6 <0.001 <0.001

Yes 269 (8%) 96 (19%) 122 (9%) 58 (24%)

No 2,969 (92%) 414 (81%) 1,248 (91%) 186 (76%)

Living with the mental7 <0.001 <0.001

Yes 237 (7%) 118 (23%) 105 (8%) 62 (25%)

No 3,000 (93%) 390 (77%) 1,266 (92%) 184 (75%)

Separate with the jailers8 <0.001 <0.001

Yes 186 (6%) 65 (13%) 95 (7%) 36 (15%)

No 3,058 (94%) 447 (87%) 1,277 (93%) 210 (85%)

Victim of/witnessed violence <0.001 <0.001

Yes 176 (5%) 78 (15%) 69 (5%) 39 (16%)

No 3,068 (95%) 429 (85%) 1,300 (95%) 206 (84%)

COVID-19 <0.001 0.024

Yes 1,186 (36%) 226 (44%) 486 (35%) 106 (42%)

No 2,114 (64%) 287 (56%) 904 (65%) 144 (58%)

(Continued)
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chose 1-SE as it usually yields a more stable and simpler model,

increases tolerance, avoids overfitting, and also contributes to

model interpretability and computational efficiency. Finally, the

highest variable importance included 14 potential predictors such as

gender, age, mental life, autism and health status.

In LASSO regression, the coefficients of the features are selected

after compression and it may not be clear whether these features

have an important independent role in practical applications.

However, univariate logistic regression assesses the relationship

between each feature and the response variable independently of

other features, and also provides quantification of the specific effects

of these features, helping to understand their actual importance and

increasing the accuracy and reliability of the model assessment. In

addition, univariate logistic regression provides simple models of

the effects of features that help understand the effect of each feature

on the target variable and are easy to interpret. To verify the
Frontiers in Psychiatry 06
rationality of the selected variables, we performed a univariate

logistic regression in the training set. The results are shown

in Table 2.

To improve the convenience of model application, we further

select important indicators through multi-factor logistic screening

(Table 3). The final logistic model included 9 independent

predictors (Sex, Age, Physical activity, Unfairer, Living with the

mental, Victim of/witnessed violence, Autism, ADHD, Health

Status) and was developed as a simple-to-use nomogram, which

is illustrated in Figure 3.

The AUCs of the model in the different cohorts were shown in

the following figures (Figure 4). Patients in the training cohort were

divided into high-risk and low-risk groups with the maximal

Youden’s index as the optimal cut-off value (0.137). At this cut-

off value, the prediction scores were associated with a sensitivity and

specificity of 0.633 and 0.728, respectively. The AUC of the model in
TABLE 1 Continued

Characteristics
Training Cohort Internal Test Cohort

No, N = 3,3211 Yes, N = 5151 P2 No, N = 1,3941 Yes, N = 2501 P2

Learning disability <0.001 <0.001

Yes 247 (7%) 80 (16%) 116 (8%) 39 (16%)

No 3,070 (93%) 435 (84%) 1,273 (92%) 210 (84%)

Developmental delay <0.001 <0.001

Yes 132 (4%) 50 (10%) 66 (5%) 27 (11%)

No 3,189 (96%) 465 (90%) 1,325 (95%) 221 (89%)

Autism <0.001 <0.001

Yes 96 (3%) 48 (9%) 44 (3%) 22 (9%)

No 3,222 (97%) 465 (91%) 1,344 (97%) 227 (91%)

Intellectual disability <0.001 <0.001

Yes 44 (1%) 19 (4%) 24 (2%) 14 (6%)

No 3,275 (99%) 496 (96%) 1,367 (98%) 235 (94%)

ADHD9 <0.001 <0.001

Yes 342 (10%) 125 (24%) 136 (9.8%) 66 (27%)

No 2,970 (90%) 390 (76%) 1,253 (90%) 183 (73%)

Asthma 0.009 0.006

Yes 394 (12%) 82 (16%) 160 (11%) 44 (18%)

No 2,926 (88%) 432 (84%) 1,234 (89%) 205 (82%)

Health Status <0.001 <0.001

Good 3,259 (98%) 473 (92%) 1,369 (98%) 230 (92%)

Poor 62 (2%) 42 (8%) 25 (2%) 20 (8%)
1n (%).
2Wilcoxon rank sum test; Pearson’s Chi-squared test.
3The highest level of education refers to the highest level of education among all sample child’s parents.
4The Washington Group Short Set Composite Disability Indicator.
5Ever headache, vomit, blurred vision, or mood change after blow to head.
6Ever lived with anyone with alcohol/drug problem.
7Ever lived with anyone mentally ill/severely depressed.
8Ever separated from parent who was incarcerated.
9Had Attention-Deficit/Hyperactivity Disorder (ADHD) or Attention-Deficit Disorder (ADD).
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TABLE 2 Results of univariate logistic regression.

Predictor bb SE Waldc2 P OR OR(95% CI)

Intercept -2.691 0.359 -7.481 <0.001 0.06 (0.03, 0.13)

Urbanization level

Large metropolitan -0.006 0.101 -0.064 0.949 0.99 (0.81, 1.22)

Nonmetropolitan -0.073 0.143 -0.512 0.609 0.92 (0.70, 1.23)

Family income to poverty ratio

100–199% -0.351 0.166 -2.115 0.034 0.70 (0.50, 0.97)

200–399% -0.192 0.163 -1.175 0.240 0.82 (0.59, 1.13)

≥400% – <100% -0.132 0.176 -0.752 0.452 0.87 (0.62, 1.23)

Sex

Boys -0.746 0.093 -7.99 <0.001 0.47 (0.39, 0.56)

Age, years 0.053 0.013 3.884 <0.001 1.05 (1.02, 1.08)

Race/ethnicity

Hispanic 0.174 0.185 0.938 0.348 1.19 (0.82, 1.71)

Non-Hispanic White 0.669 0.176 3.784 <0.001 1.95 (1.38, 2.76)

Non-Hispanic other 0.375 0.202 1.855 0.064 1.45 (0.97, 2.16)

The number of adults

≥2 adults -0.011 0.130 -0.085 0.932 0.98 (0.76, 1.27)

The number of children

≥2 children -0.001 0.093 -0.013 0.989 0.99 (0.83, 1.20)

Highest level of education

High school or less -0.182 0.135 -1.35 0.177 0.83 (0.63, 1.08)

(Continued)
F
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FIGURE 2

Feature selection using the LASSO binary logistic regression model. (A) Optimal parameter (lambda) selection in the LASSO model used fivefold
cross-validation via minimum criteria. The partial likelihood deviance (binomial deviance) curve was plotted versus log(lambda). Dotted vertical lines
were drawn at the optimal values by using the minimum criteria and the 1 SE of the minimum criteria (the 1-SE criteria). (B) LASSO coefficient
profiles of the 26 features. A coefficient profile plot was produced against the log(lambda) sequence. Vertical line was drawn at the value selected
using fivefold cross-validation, where optimal lambda resulted in five features with nonzero coefficients.
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TABLE 2 Continued

Predictor bb SE Waldc2 P OR OR(95% CI)

Highest level of education

Bachelor’s degree
or higher

-0.180 0.114 -1.578 0.115 0.83 (0.66, 1.04)

Behavior

Yes – No -0.130 0.129 -1.005 0.315 0.87 (0.68, 1.13)

Physical activity

No – Yes 0.387 0.092 4.193 <0.001 1.47 (1.22, 1.76)

Head discomfort

No – Yes -0.144 0.164 -0.881 0.378 0.86 (0.62, 1.19)

Unfairer

Yes – No 0.754 0.162 4.645 <0.001 2.12 (1.54, 2.92)

Lacking basic needs

Yes – No -0.259 0.229 -1.131 0.258 0.77 (0.49, 1.20)

Putdown

Yes – No 0.379 0.185 2.045 0.041 1.46 (1.01, 2.10)

Living with the addict

Yes – No 0.163 0.158 1.037 0.300 1.17 (0.86, 1.60)

Living with the mental

Yes – No 0.694 0.140 4.951 <0.001 2.00 (1.52, 2.63)

Separate with the jailers

Yes – No -0.001 0.178 -0.007 0.994 0.99 (0.70, 1.41)

Victim of/witnessed violence

Yes – No 0.5434 0.162 3.343 <0.001 1.72 (1.25, 2.36)

COVID-19

Yes – No 0.161 0.090 1.773 0.076 1.17 (0.98, 1.40)

Learning disability

Yes – No -0.036 0.160 -0.229 0.819 0.96 (0.70, 1.32)

Developmental delay

Yes – No 0.393 0.193 2.032 0.042 1.48 (1.01, 2.16)

Autism

Yes – No 0.836 0.200 4.165 <0.001 2.30 (1.55, 3.42)

Intellectual disability

Yes – No 0.325 0.290 1.121 0.262 1.38 (0.78, 2.44)

ADHD

Yes – No 0.753 0.120 6.249 <0.001 2.12 (1.67, 2.69)

Asthma

Yes – No 0.113 0.127 0.885 0.376 1.12 (0.87, 1.43)

Health Status

Poor – Good 1.196 0.210 5.686 <0.001 3.30 (2.19, 4.99)
F
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the internal test cohort was 0.740, indicating that the model had

good generalization ability. When the optimal cut-off value

determined in the training cohort was applied to the internal test

cohort, the sensitivity and specificity were 0.711 and 0.657,

respectively. Furthermore, the risk distribution predicted by the

model in the internal test cohort showed a certain clustering of

children and adolescents with or without depression

(Supplementary Figure 1), indicating that the model accurately

stratified low-and high-risk groups.

The internal validation and calibration of the nomogram were

performed using 1,000 bootstrap analyses. The calibration plots of

the nomogram in the different cohorts are plotted in Figure 5,

which demonstrate a good correlation between the observed and

predicted depression. The results showed that the original

nomogram was still valid for use in the test cohort, and the

calibration curve of this model was relatively close to the ideal

curve, which indicates that the predicted results were consistent

with the actual findings.
3.3 Decision curve analysis

Figure 6 displays the DCA curves related to the nomogram. A

high-risk threshold probability indicates the chance of significant

discrepancies in the model’s prediction when clinicians encounter

major flaws while utilizing the nomogram for diagnostic and

decision-making purposes. This research shows that the

nomogram offers substantial net benefits for clinical application

through its DCA curve.
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4 Discussion

4.1 Summary and comparison with
existing studies

In this study, we developed and validated a diagnostic model for

predicting depression in 4,772 adolescents based on factors such as

clinical assessment and sociodemographic information. The main

predictors included in the nomogram were gender, age, spiritual

life, autism, and health status, all of which were associated with an

increased risk of depression.

Overall, our findings show that girls, higher age, did not exercise,

participate in sports, or engage in at least 60 minutes of physical

activity daily or most days, treated/judged based on race/ethnicity,

ever lived with anyone mentally ill, experienced as a victim of/

witnessed violence, and ever had autism, ever had ADHD, having a

poor health status may all put adolescents at increased risk for

developing depression. According to previous and current studies,

age is always an important variable (36). In addition, girls are a

correlate of the diagnosis of depression in adolescents, which is

similar to the results of previous studies (37). The steady increase in

depression in girls during adolescence may be due to increased levels

of estrogen and progesterone, which are sex hormones that often

play an important role in emotional development (38). The current

study also analyzed the impact of physical exercise on depression.

Prolonged online learning in the context of an epidemic reduces the

amount of time spent in physical activity (39), and those who do not

exercise are more likely to have altered neuropsychiatric status than

those who do, similar to the findings of previous studies (40).
TABLE 3 Results of univariate and multivariate logistic regression of the final modeling variables.

Dependent: Depression OR (univariable) OR (multivariable)

Sex Girls - -

Boys 0.47 (0.40-0.57, p<0.001) 0.48 (0.40-0.57, p<0.001)

Age, years Mean (SD) 1.06 (1.03-1.08, p<0.001) 1.06 (1.03-1.09, p<0.001)

Physical activity Yes - -

No 1.47 (1.23-1.77, p<0.001) 1.46 (1.22-1.74, p<0.001)

Unfairer No – –

Yes 2.13 (1.55-2.93, p<0.001) 2.14 (1.56-2.93, p<0.001)

Living with the mental No – –

Yes 2.03 (1.52-2.63, p<0.001) 2.08 (1.60-2.68, p<0.001)

Victim of/witnessed violence No – –

Yes 1.72 (1.25-2.37, p<0.001) 1.78 (1.31-2.41, p<0.001)

Autism No – –

Yes 2.31 (1.56-3.42, p<0.001) 2.37 (1.62-3.44, p<0.001)

ADHD No – –

Yes 2.12 (1.68-2.69, p<0.001) 2.17 (1.72-2.72, p<0.001)

Health Status Good – –

Poor 3.31 (2.19-4.99, p<0.001) 3.48 (2.32-5.19, p<0.001)
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However, our study uniquely highlights the importance of being

treated/judged based on race/ethnicity, which has not been

emphasized in other adolescent-related depression prediction

studies. Treated/judged based on race/ethnicity has been
Frontiers in Psychiatry 10
recognized as a social determinant of psychological well-being

(41, 42), and supporting the relationship is the Discrimination

Stress, Coping, and Mental Health Framework (43). The framework

argues that racial discrimination as a chronic stressor depletes an
FIGURE 3

Nomogram prediction model. .
FIGURE 4

ROC curves of the nomogram prediction model in the different cohorts.
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individual’s protective psychological resources, leading to a

combination of risky behaviors and diminished emotional

control, increasing the risk of mental health effects (43).

Additionally, ever living with anyone mentally ill exacerbates

family dysfunction (44) and may be an independent predictor of

the development of sick mentally in adolescents (45), and even

unfavorable family interactions may affect adolescents more than

the presence of a parent with mental illness itself (46). Potentially

traumatic experiences (PTE) include experience as a victim of/

witnessed violence. Research by Annika Skandsen et al. suggests

that adolescents diagnosed with depression experience

approximately twice as much PTE as the reference group, which

may make it possible for impaired emotion regulation due to

biological changes caused by PTE to in turn trigger adolescents to

overreact to stressful situations (47).

Guralnik et al. conducted sibling comparisons in Sweden and

showed that compared to the general population, patients with

autism spectrum disorders (ASD) were at higher risk of developing

depression in young adulthood, which is similar to our results (48).

ADHD is a common neurodevelopmental disorder (49), and

previous studies have shown that early hyperactive-impulsive

symptoms of ADHD often bring about poor emotional problems
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(50) and neurodevelopmental difficulties, and that one can

developmentally suffer from depression (51). According to Gilles

Ambresin (52), major depressive syndrome (MDS) is two times

more likely to occur in people with poorer health than in those with

better health, and the association remains even after adjusting for

multiple diseases, gender and other factors.
4.2 Clinical significance of the study

Previous studies using plain Bayesian models to predict factors

in Korean adolescents included only social or environmental factors

and did not cover clinical factors (53). Lin Wang et al. (36)

conducted a scoring study during the COVID-19 pandemic to

predict psychosocial and behavioral problems in adolescents

considering factors such as age, weight, and sleep problems, but

the predictive benefit was low. In contrast, our proposed nomogram

shows better differentiation and clinical decision-making power,

visualizing the clinical factors associated with depression in

adolescents and allowing better risk stratification. In addition, the

nomogram helps doctors identify high-risk groups as early as

possible and intervene promptly.
FIGURE 5

(A) Calibration curve of the nomogram prediction mode for the training cohort; (B) Calibration curve of the nomogram prediction mode for the
internal test cohort.
FIGURE 6

(A) Decision curve analysis of the nomogram of the training cohort; (B) Decision curve analysis of the nomogram of the internal test cohort.
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4.3 Potential limitations

Our study has several limitations that should be acknowledged.

The cohort was based on patients from the US, which may not be

representative of the wider population. In terms of model selection,

we did not choose machine learning (ML) models. After that, our

study lacks external validation from an independent cohort, which

may affect the superiority and generalization ability of the model.

Finally, for feature selection, we extracted some structured self-

reported data but lacked imaging and genetic data.

Future research should aim to externally validate our

nomogram in different populations and settings. We will try to

build ML models to predict depression and integrate imaging and

genetic data to enhance the predictive accuracy of the nomogram.

5 Conclusions

This study developed a nomogram model for predicting

depression in children and adolescents with high clinical utility.

We found that the sex, age, physical activity, unfairer, living with

the mental, victim of/witnessed violence, autism, ADHD, health

status was the main influencing factor of depression in children

and adolescents.
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