
Frontiers in Psychiatry

OPEN ACCESS

EDITED BY

Quan Wang,
Chinese Academy of Sciences (CAS), China

REVIEWED BY

Xiangyu Tao,
Fordham University, United States
Yuqi Wang,
University of Chinese Academy of Sciences,
China

*CORRESPONDENCE

Xiaobing Xian

xiaobing@stu.cqmu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 19 June 2024

ACCEPTED 25 November 2024
PUBLISHED 10 December 2024

CITATION

Niu T, Cao S, Cheng J, Zhang Y, Zhang Z,
Xue R, Ma J, Ran Q and Xian X (2024) An
explainable predictive model for anxiety
symptoms risk among Chinese older adults
with abdominal obesity using a machine
learning and SHapley Additive exPlanations
approach.
Front. Psychiatry 15:1451703.
doi: 10.3389/fpsyt.2024.1451703

COPYRIGHT

© 2024 Niu, Cao, Cheng, Zhang, Zhang, Xue,
Ma, Ran and Xian. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 10 December 2024

DOI 10.3389/fpsyt.2024.1451703
An explainable predictive model
for anxiety symptoms risk among
Chinese older adults with
abdominal obesity using a
machine learning and SHapley
Additive exPlanations approach
Tengfei Niu1†, Shiwei Cao2†, Jingyu Cheng3, Yu Zhang3,
Zitong Zhang2, Ruiling Xue4, Jingxi Ma5,
Qian Ran1 and Xiaobing Xian6,7*

1Department of Basic Courses, Chongqing Medical and Pharmaceutical College, Chongqing, China,
2The Second Clinical College, Chongqing Medical University, Chongqing, China, 3School of Public
Health, Chongqing Medical University, Chongqing, China, 4Department of Rehabilitation, Chongqing
General Hospital, Chongqing, China, 5Department of Neurology, Chongqing General Hospital,
Chongqing, China, 6Operations Management and External Communications Department, The
Thirteenth People’s Hospital of Chongqing, Chongqing, China, 7Operations Management and External
Communications Department,Chongqing Geriatrics Hospital, Chongqing, China
Background: Early detection of anxiety symptoms can support early intervention

and may help reduce the burden of disease in later life in the elderly with

abdominal obesity, thereby increasing the chances of healthy aging. The

objective of this research is to formulate and validate a predictive model that

forecasts the probability of developing anxiety symptoms in elderly Chinese

individuals with abdominal obesity.

Method: This research’s model development and internal validation

encompassed 2,427 participants from the 2017-2018 Study of the Chinese

Longitudinal Healthy Longevity Survey (CLHLS). Forty-six variables were

defined based on the Health Ecology Model (HEM) theoretical framework. Key

variables were screened using LASSO regression, and the XGBoost (Extreme

Gradient Boosting) model was further introduced to forecast the risk of

developing anxiety symptoms in the elderly with abdominal obesity. SHapley

Additive exPlanations (SHAP) was adopted to further interpret and show how the

eigenvalues contributed to the model predictions.

Results: A total of 240 participants (9.89%) with anxiety symptoms out of 2,427

participants were included. LASSO regression identified nine key variables:

looking on the bright side, self-reported economic status, self-reported quality

of life, self-reported health status, watching TV or listening to the radio, feeling

energetic, feeling ashamed/regretful/guilty, feeling angry, and fresh fruits. All the

evaluation indicators of the XGBoost model showed good predictive efficacy.

Based on the significance of the features identified by SHAP (Model Interpretation

Methodology), the feature ‘looking on the bright side’ was the most important,

and the feature ‘self-reported quality of life’ was the least important. The SHAP

beeswarm plot illustrated the impacts of features affected by XGBoost.
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Conclusion: Utilizing machine learning techniques, our predictive model can

precisely evaluate the risk of anxiety symptoms among elderly individuals with

abdominal obesity, facilitating the timely adoption of targeted intervention

measures. The integration of XGBoost and SHAP offers transparent

interpretations for customized risk forecasts.
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1 Introduction

Abdominal obesity, alternatively referred to as central obesity, is

defined by the disproportionate accumulation of adipose tissue in

the abdomen, particularly around the waistline and upper torso (1).

Abdominal obesity is highly prevalent among older adults globally.

A global meta-analysis covering 288 studies with 13.2 million

people showed that the overall prevalence of abdominal obesity

was as high as 41.5% (2). In Ecuador, the prevalence of abdominal

obesity was 65.9% in women, compared with 16.3% in men, among

individuals aged 60 years and older (3). A survey in the United

Kingdom unveiled a substantial escalation in abdominal obesity

between 1993 and 2008, jumping from 19.2% to 35.7% among

males and 23.8% to 43.9% among females (4). Furthermore, a recent

cross-sectional study of nearly half a million participants showed

that the prevalence of abdominal obesity in the Chinese population

was 29.1% (5). Abdominal obesity, a global public health issue, has

emerged as a significant contributor to a wide array of detrimental

health conditions. Compared with general obesity, abdominal

obesity, as determined by waist circumference (WC), has become

a stronger predictor of obesity-related diseases (6), and it is

significantly associated with adverse health outcomes such as

hypertension, diabetes, metabolic syndrome, disability, frailty, and

all-cause mortality (7–11).

Anxiety is a prevalent mental health disorder and is associated

with a range of conditions that threaten quality of life, such as

cardiovascular disease, dementia, disability, chronic pain, and

autoimmune and neurodegenerative diseases (12–18). Current

clinical practice and public health prevention are also increasingly

concerned about the direct impact of anxiety symptoms on the health

of older adults (19). Meanwhile, studies in several countries have

successively reported the prevalence of anxiety symptoms in the

elderly population, including 13.1% in the United States (20), 17.8%

in South Africa (21), and a relatively high prevalence of 21.6% in

China (22). Many studies have confirmed that abdominal obesity also

correlates with psychological distress and mental disorders in the

elderly, especially the occurrence of anxiety symptoms (23, 24). A

national survey in the United States showed that obese patients had a

25% increased risk of developing mood and anxiety disorders

compared to healthy individuals (25). However, Ran Qi et al. found
02
that abdominal obesity may be associated with a lower prevalence of

anxiety symptoms (24). This paradoxical view can be explained

from a biological perspective by the fact that obesity affects

biological pathways related to psychiatric disorders, including

immunoinflammatory processes, oxidative stress, mitochondrial

disorders, HPA axis imbalances, and neurotransmitter imbalances

(26). These dysregulated pathways interact with each other and may

contribute to the onset of anxiety symptoms. Therefore, the

relationship between abdominal obesity and anxiety symptoms and

the mechanism of action still need to be explained by further

research. Fortunately, anxiety symptoms in older adults can be

prevented and improved. One clinical trial showed that a targeted

step-by-step nursing approach for patients halved the incidence of

depression and anxiety after one year, and its effects persisted for

more than one year (27). Besides, the results of one study suggested

that anxiety disorders remain under-recognized and under-treated in

the aging population in current society (28). Based on this current

situation, developing reliable tools that can accurately predict the risk

of anxiety symptoms in older adults with abdominal obesity and

formulating targeted interventions in advance are particularly

important for improving the well-being of older adults in their

later life and reducing the burden of disease associated with aging.

To precisely forecast the risk of anxiety symptoms in the elderly

with abdominal obesity, it is crucial to examine the factors that are

most strongly correlated with anxiety symptoms in the elderly.

Former studies have found the influencing factors of anxiety in

older adults, including gender, age, marital status, physical

condition, economic status, quality of life, living habits, life

events, religious beliefs, social support, etc. (29–32), it can be seen

that the influencing factors of anxiety symptoms are multifaceted.

In order to consider the factors influencing anxiety symptoms in

older adults with abdominal obesity in a comprehensive and

rational way, we introduced the Health Ecology Model. The

Health Ecology Model emphasizes the multiple levels of

environmental and individual influences and the complexity of

influencing factors. It also studies the influencing factors of diseases

from five perspectives: personal characteristics, behavioral lifestyles,

interpersonal networks, living/working conditions, and policy

environment. It is an essential theoretical model to guide the field

of public health and to solve population health problems (33).
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Machine learning can process big data at high speeds and in

many forms, and its application in mental health has shown excellent

potential. Currently, the application of machine learning in mental

health mainly focuses on four areas: detection and diagnosis,

prognosis and treatment, public health prevention, and clinical

management, and most of the research focuses on the detection

and diagnosis of mental health conditions by machine learning (34).

For example, Paolo et al. used Support Vector Machine to help

predict the risk of developing dementia in mild cognitive impairment

so as to achieve early diagnosis of dementia (35). Raymond et al.’s

study utilized Logistic Regression, Linear Support Vector Machine,

andMultilayer Perceptron models to analyze social media text data to

predict depression symptoms, with the Logistic Regression model

performing the best (36). Among the various mental health disorders,

anxiety symptoms have received relatively little attention, and these

studies have been primarily directed at adolescents or limited to

patients with certain types of disorders or dysfunctions (37–39). For

example, Zihan Wei et al. trained six machine learning models

(Logistic Regression, Lasso Regression, Random Forest, Gradient

Boosting Machine, Extreme Gradient Boosting, and Multilayer

Perceptron) to predict depression and anxiety symptoms in

Chinese epileptic patients and observed that the Random Forest

and the Multilayer Perceptron were the ones with the better

prediction performance (38). Interestingly, in previous applied

machine learning research, most models focused on the accuracy of

their predictions and rarely interpreted their predictions in a

meaningful way. Therefore, developing an interpretable predictive

model remains a challenge. Interpretability of models not only

enhances model transparency and user trust, but also helps

researchers to better understand the predictive mechanisms within

the model, which may be more useful in guiding the model

development and optimization process (40, 41). XGBoost, an

optimized gradient tree boosting system that integrates multiple

weak tree models to build stronger learning models, provides a

machine learning technique with algorithmic innovations and

hyper-parametric nonlinearities that improve model predictions

while controlling the occurrence of overfitting problems (40).

Extreme Gradient Boosting (XGBoost) has high computational

efficiency and prediction accuracy, and is capable of automatic

feature selection. When there are too many predictor variables, it

can control the model complexity with built-in regularization

parameters to prevent overfitting of the model. Besides, XGBoost

can estimate the extent to which each feature contributes to

the model, which is helpful for feature selection and model

interpretation (41). Léo Grinsztajn et al. used 45 datasets from

different domains for testing and concluded that tree-based models

are much better than deep learning/neural networks at analyzing

tabular data (42). Despite the drawbacks of complex tuning

parameters and large memory footprint, XGBoost has become the

algorithm of choice for many machine learning tasks due to its

superior performance. For example, Jili Li et al. used XGBoost,

Logistic Regression, Random Forest, and Support Vector Machine

to develop a predictive model of mortality risk in patients with heart

failure in the intensive care unit. They observed that XGBoost had the

highest prediction performance (43). However, reliable statistical

performance does not necessarily guarantee the utility of these
Frontiers in Psychiatry 03
models, and healthcare workers’ understanding of machine

learning models can directly affect the application of machine

learning models in clinical decision-making (44). To address this

issue, the SHapley Additive exPlanation (SHAP), developed by

Lundebery and Lee, may be of great use. SHAP can explain and

show how feature values contribute to the prediction process and

provide a dynamic view of the impact of each factor to clearly

demonstrate the risk probability of a disease and the role of each

feature at an individual level (45). SHAP may be a good explanation

for the ‘black box’ problem of machine learning models.

In summary, this study aims to use survey data from the

Chinese Longitudinal Health Longevity Survey (CLHLS) from

2017 to 2018, combined with the Health Ecology Model, to

classify and extract relevant factors from five perspectives:

personal characteristics, behavioral lifestyles, interpersonal

networks, living/working conditions, and policy environment.

Then, a machine learning model based on XGBoost is

constructed to predict and analyze anxiety symptoms in elderly

people with abdominal obesity. Finally, SHAP analysis is used to

explain how predictive variables affect anxiety symptoms, in order

to help medical staff identify high-risk populations early and take

timely intervention measures to reduce the risk of anxiety in elderly

people with abdominal obesity, thereby promoting healthy aging.
2 Materials and methods

2.1 Data and participants

The data employed in this research originate from the ongoing

CLHLS, which commenced in 1998 and subsequently conducts follow-

up surveys at intervals of 2 to 3 years (46). The CLHLS, a nationwide

longitudinal study of older adults, is spearheaded by the Center for

Healthy Aging and Development Research at Peking University/

National Institute for Development Research. It encompasses

23 Chinese provinces, municipalities, and autonomous regions,

focusing on individuals aged 65 and above. Further details regarding

this survey’s sampling methodologies and data quality assurance have

been comprehensively documented in another publication (47). The

Biomedical Ethics Committee of Peking University authorized this

project (Reference Number: IRB00001052-13074). Before participating

in the baseline and follow-up surveys, all participants or their legally

authorized representatives provided written consent.

The sample size of the study was determined according to the

formula for calculating sample size in cross-sectional studies[n =

(Z2a/2 p q)/d2] (48): (1) n denotes the sample size needed for the

study; (2) p denotes the prevalence rate of anxiety symptoms in

Chinese older adults; (3) q = (1-p); (4) Za/2 was set at 1.96, and a
was set at 0.05 for the two-sided test; and (5) d denotes the allowed
error, calculated at 0.1p. A previous study showed that the

prevalence of anxiety symptoms in Chinese older adults was

21.1% (22). Based on the previous study, we calculated that a

minimum of 1436 participants would be required for this study

to reach the required sample size. Abdominal obesity was defined as

a waist circumference greater than or equal to 90 centimeters for

men and 85 centimeters for women (49). A total of 2,427 were
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1451703
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Niu et al. 10.3389/fpsyt.2024.1451703
eligible for model development and internal validation in this cross-

sectional analysis. Inclusion criteria were: (1) participants aged 65

years and above; (2) participants with abdominal obesity; (3)

participants with complete responses for anxiety symptoms; (4)

participants who provided comprehensive responses to the main

variables of screening. Figure 1 illustrates the process of

data cleaning.
2.2 Research variables

2.2.1 Outcome variables
Anxiety symptoms were measured using the Generalized Anxiety

Disorder-7 (GAD-7) scale, a self-reported scale which consists of seven

dimensions based on the Diagnostic and Statistical Manual of Mental

Disorders, Fourth Edition (DSM-IV) and assesses anxiety symptoms in

the preceding fortnight. The GAD-7 consists of seven questions, ranging

from ‘not at all’ (score = 0) to ‘almost every day’ (score = 3). The scoring

scale spans from 0 to 21, with a higher aggregate score reflecting a

greater severity of anxiety symptoms. Participants were considered to

have anxiety symptoms when the GAD-7 score was >5 (50). The

Cronbach’s coefficient for this scale stands at 0.919.
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2.2.2 Predictive variables
Based on the five aspects of Health Ecology Model, clinical

implications and scientific knowledge of anxiety, and predictors

identified in preceding publications, we considered predictors

associated with the presence of anxiety symptoms in the

environment on a full-cycle basis (51, 52). We screened 46

possible predictors from five perspectives: personal characteristics,

behavioral lifestyles, interpersonal networks, living/working

conditions, and policy environment. To be specific, they are

gender, residence, age, ethnic group, co-residents, education level,

occupation before retirement, economic status, marital status,

smoking, drinking, exercise, insurance, Body Mass Index (BMI),

Activity of Daily Living (ADL), Instrumental Activity of Daily

Living (IADL), hypertension, diabetes, heart disease, stroke or

cerebrovascular disease, self-reported quality of life, self-reported

health status, looking on the bright side, keeping tidy and clean,

feeling energetic, feeling ashamed/regretful/guilty, feeling angry,

feeling busy, feeling people not trustworthy, making own

decisions, staple food, fresh fruits, fresh vegetables, dietary taste,

cooking oil, housework, Taichi chuan, square dance, interaction

with friends, other outdoor activities, garden work, reading books or

newspapers, raising domestic animals, playing cards or mahjong,
FIGURE 1

Data cleaning flow chart.
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watching TV or listening to the radio, social activities, traveling

times (Supplementary Table S1).
2.3 Statistical analysis

2.3.1 Data pre-processing
All data cleansing was performed using SPSS27.0. Utilizing the

inclusion and exclusion criteria, we screened 2,427 older adults with

abdominal obesity aged 65 years or older with complete

information on predictive and outcome variables.

In the dataset employed for the current study, all the variables

were categorized and presented in frequency and percentage, with a

subsequent univariate analysis being carried out through the

application of Chi-square tests. After processing the data, we

allocated 70% of the data to a training set and the remaining 30%

to a testing set. The training set served as the foundation for

developing the model, whereas the testing set facilitated the

precise calibration and optimization of the model’s parameters

and evaluated its generalization capabilities.

2.3.2 Model construction and evaluation
Utilizing R version 4.3.0, we carried out all analyses, considering

a P-value less than 0.05 as indicative of statistical significance. The

subsequent procedures for constructing and assessing the model are

below: (1) The least absolute shrinkage and selection operator

(LASSO) was adopted, and the key variables were selected from

the 46 variables by applying 10-fold cross-validation. (2) The

dataset was randomly divided into two distinct subsets: a training

set and a testing set (the seed number was 123) at a ratio of 7:3, and

a predictive model was developed utilizing the Extreme Gradient

Boosting (XGBoost), and its performance was tested. (3) Area,

sensitivity, specificity, accuracy, recall rate and F1 score under the

Receiver Operating Characteristic (ROC) curve were utilized for

assessing the model’s performance. Calibration curves and Hosmer-

Lemeshow goodness of fit tests were adopted to compare the degree

of fit between the training and test set. Decision Curve Analysis

(DCA) was further introduced to evaluate the value and

comparative advantages of the model in the application scenario.

2.3.3 Model interpretation
To provide a deeper understanding of how each feature variable

factored into the prediction, we utilized SHAP approach to bolster the

interpretability of our machine-learning model. This method

calculates the individual contribution value of each feature, thereby

recognizing it as a contributory element to the model’s prediction

(53). To explain how predictor variables can affect anxiety symptoms,

we computed the average absolute value of its corresponding SHAP

value. The ultimate prediction was then derived by aggregating the

contribution values of all the features. Bar charts of variable

contributions based on absolute SHAP value were created to show

the specific significant contributions of each variable clearly. To

explain in detail the prediction of anxiety symptoms in older adults

with abdominal obesity, we also randomly selected a patient for an

individual demonstration and visual interpretation using force plots.
Frontiers in Psychiatry 05
3 Results

3.1 Prevalence and baseline features of
anxiety symptoms among elderly
individuals with abdominal obesity

The study comprised 2,427 participants, among whom 1,428

(58.84%) were women, and a total of 240 participants suffered from

anxiety symptoms, with a prevalence rate of 9.89%. Of the 46 variables

included in the study, gender, education years, residence, economic

status, drinking, BMI, IADL, self-reported quality of life, self-reported

health status, looking on the bright side, keeping things clean and tidy,

feeling energetic, feeling ashamed/regretful/guilty, feeling angry, feeling

busy, distrust of others, staple food, fresh fruits, vegetables, cooking oil,

reading books or newspapers, garden work, playing mahjong or cards,

and watching TV or listening to the radio have statistical significance

(P<0.05) (Supplementary Table S2).
3.2 Identifying predictors

The results are shown in Figure 2, where nine key variables were

screened using Lasso Regression and further incorporated into the

predictive model: looking on the bright side, economic status, self-

reported quality of life, self-reported health status, watching

television or listening to the radio, feeling energetic, feeling

ashamed/regretful/guilty, feeling angry, and fresh fruits.
3.3 Performance of the XGBoost model

The ROC curve in Figure 3 summarizes the detection and

prediction performance of anxiety symptoms in older adults with

abdominal obesity. The ROC curve shows a functional relationship

between sensitivity (proportion of anxiety-positive cases receiving a

positive marker for anxiety symptoms) and 1-specificity

(proportion of anxiety-negative cases receiving a positive marker

for anxiety symptoms). The results suggested that the XGBoost

model displayed a favorable area under the ROC curve, both in the

training set and the test set, which were 0.868 [95%CI: 0.838-0.897]

and 0.793 [95%CI: 0.738-0.848] respectively. Table 1 summarizes

the sensitivity, specificity, accuracy, recall rate and F1 score of the

model training and test sets. The model had a good prediction effect.

The evaluation of the XGBoost model involved the utilization of

the calibration curve and the Hosmer-Lemeshow goodness of fit

test, where a P-value greater than 0.05 signified an excellent fit for

the model. The test results demonstrated a satisfactory fit for the

model on the training set (c² = 5.2955, p = 0.7081) and the test set

(c² = 2.2126, p = 0.3309). As depicted in Figures 4A, B (Figure 4),

there is a high degree of equilibrium between the model’s predicted

and actual probability.

The DCA method was utilized to evaluate the model’s clinical

efficacy, and the results are presented in Figures 5A, B (Figure 5). As

seen in the decision curve, the net benefit offered by the prediction

model surpasses the net benefit of both extreme cases by a
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significant margin, and the threshold probability of the XGBoost

model at different time points has a significant net benefit,

indicating that the model has potential clinical benefit.
3.4 SHapley Additive exPlanations

We calculated the average SHAP value of the XGBoost model to

identify important predictor variables as well as to explain their

impact on the risk of developing anxiety symptoms in older Chinese

adults with abdominal obesity. SHAP values served as a means to

illustrate the degree to which each feature contributes to individual

predictions, revealing model black-box problems. Figure 6 shows
Frontiers in Psychiatry 06
the effect of nine features on all patients, where each dot stands for

the effect of the feature on the sample.

The horizontal axis, also known as the X-axis, is a crucial

element in understanding the SHAP value. This value signifies the

average marginal impact that a specific feature’s value has on the

model’s output across various potential combinations. It’s

important to note that a SHAP value falling below zero indicates

a negative contribution, suggesting that the feature detracts from

the prediction. A value of zero indicates neutrality, implying no

impact on the prediction. Conversely, a positive SHAP value

denotes a positive contribution, indicating that the feature holds

significant importance in determining the final prediction. This

understanding of the SHAP value is key, as it allows us to discern
FIGURE 2

Variable screening process of Lasso regression. (A) Lasso coefficient curves for candidate features; (B) The best parameter (lambda) selected by ten-
fold cross-validation, where a perpendicular dotted-line is drawn at the best value, using the minimum standard and the constraints defined by 1
standard deviation.
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the most crucial features, which will contribute positively, and the

least relevant features, which may contribute negatively.

As depicted in Figure 6, the features at the top exhibit a more

significant influence on the model’s prediction, and it is evident that

each feature has been ranked based on its significance. ‘Looking on

the bright side’ was the most important feature, while ‘self-reported

quality of life’ was the least important feature. The vertical axis (Y-

axis) comprises both left and right coordinates. On the left vertical

axis, features are displayed in descending order of significance, while

the right vertical axis portrays the values of these features from low to

high. The color indicates the level of a feature’s contribution to the

prediction, with yellow representing a high contribution and purple

indicating a low contribution. As can be seen from Figure 6, high

levels of optimism have a strong positive effect on predicting the risk

of developing anxiety symptoms in older adults with abdominal

obesity. The ordering of each variable according to the degree of

contribution of SHAP value is shown in Figure 7, and it can be seen

that ‘looking on the bright side’ has the highest degree of importance.

To elucidate the forecast of anxiety symptoms in the elderly with

abdominal obesity in detail, we used force plots to demonstrate and

visually interpret the model prediction separately, as shown in Figure 8.

The force plot presents a forecasted outcome for a randomly selected
Frontiers in Psychiatry 07
patient (patient 2). The function f(x) represents the outcome produced

by the model, specifically the predicted probability for a given patient.

At the same time, the base value serves as a reference point, being the

average of all themodel’s predictions. Features with increased predicted

values are shown in red, and features with decreased predicted values

are shown in blue. In addition, the red feature is the right arrow, and

the blue feature is the left arrow. The size of the arrow represents the

impact of the feature. In Figure 8, we can see that patient 2 has a lower

probability of developing anxiety symptoms because some risk factors

reduce the predicted outcome, such as eating fresh fruits, feeling

energetic, and self-reported health status. The risk factor (feature)

shifts the prediction from the base value (-2.35) to the model output

(-2.92), which shows that the probability of developing anxiety

symptoms is lower.
4 Discussion

A predictive model was constructed to evaluate the probability of

developing anxiety symptoms in Chinese elderly individuals with

abdominal obesity aged 65 years and above. We applied the LASSO

technique to identify significant features, harnessed the predictive
TABLE 1 Model performance evaluation metrics.

AUC Accuracy Recall Specificity F1 Score Sensitivity

Training set 0.868 0.921 0.855 0.928 0.723 0.855

Test set 0.793 0.911 0.834 0.923 0.713 0.834
AUC, Area Under the Curve.
FIGURE 3

XGBoost ROC curves generated from the training and test datasets.
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capabilities of the XGBoost machine learning algorithm,

and concluded by constructing and validating a robust model that

relied on 9 crucial features (looking on the bright side, self-reported

economic status, self-reported quality of life, self-reported health

status, watching TV or listening to the radio, feeling energetic, feeling

ashamed/regretful/guilty, feeling angry, and fresh fruits). The model’s

predictive efficacy was tested by area under the ROC curve, accuracy,

recall, sensitivity, F1 score, specificity and calibration curve, and

clinical decision curve. The importance of the features was

determined by SHAP analysis. The results of the SHAP analyses

demonstrated that ‘looking on the bright side’ was the most

contributing feature, while ‘self-reported quality of life’ had the

relatively lowest contribution. In addition, a random sample was

selected for local interpretation of SHAP.
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We found that previous studies reported a prevalence of anxiety

symptoms of 21.6% in older adults (22), whereas the results of the

present study showed that this figure in our abdominally obese older

adults was only 9.89%. Although numerous prior investigations have

delved into the correlation between abdominal obesity and mental

disorders, the findings have been somewhat inconclusive. Nonetheless,

some studies have revealed that abdominal obesity is associated with an

increased risk of developing symptoms of depression and anxiety (54,

55). In contrast, another study conducted in a Chinese elderly

population showed a protective effect of abdominal obesity on

anxiety symptoms (24). This may suggest to us that the specific

relationship and mechanisms regarding the relationship between

abdominal obesity and anxiety symptoms deserve to be revealed in

the future by designing more sophisticated experiments.
FIGURE 4

(A) Calibration plot for the training dataset. (B) Calibration plot for the test dataset.
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The choice of features is crucial for the development of reliable

predictive models (56). The LASSO algorithm helped us to identify

the 9 most important variables from the initial 46. The

identification of these variables were consistent with previous

studies regarding the influence of lifestyle behaviors and

personality-emotional traits on anxiety symptoms in older adults,

suggesting the reliability of the predictors screened by Lasso

regression (57, 58). For example, our findings revealed that

people who were not optimistic were more likely to experience

anxiety symptoms. Similarly, previous research had demonstrated

that optimism buffered the relationship between disease burden and

anxiety symptoms in older adults, and that pessimism exacerbated

this relationship (59). Meanwhile, some researchers have scanned

relevant areas of the brain with imaging equipment and found that

decreased optimism is specific to generalized anxiety disorder (60).
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All of these studies mentioned above helped to explain the strong

potency of optimism in predicting anxiety symptoms in older adults

with abdominal obesity. We also found that consumption of fresh

fruits was a strong predictor of anxiety symptoms in older adults

with abdominal obesity. Our study is consistent with the findings of

Redzo Mujcic et al., who showed that eating fruits and vegetables

may help prevent the risk of depression and anxiety disorders (61).

Consumption of fresh fruits and vegetables has also been shown to

be negatively associated with the occurrence of anxiety symptoms in

studies of American, Canadian, and Iranian populations (62–64). In

addition, a study conducted on 1,707 participants showed that the

most common health risks in the structured health risk assessment

were inadequate fruit/vegetable intake (84.5% of the total) and

overweight/obesity (79.6% of the total) (65). These studies

suggested that appropriate interventions should be implemented
FIGURE 5

(A) DCA curves for the training dataset. (B) DCA curves for the test dataset.
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in primary health care to increase citizens’ awareness of healthy

living and prevent the occurrence of diseases. Health self-

assessment, as one of the predictors, has also been shown to be

significantly associated with mental health in the elderly (66, 67).

Besides, we found that feeling energetic, economic status, feeling

angry, feeling ashamed/regretful/guilty, watching TV or listening to

the radio, and self-reported quality of life had a potential predictive

value for the risk of developing anxiety symptoms in older adults

with abdominal obesity, but as can be seen from the results of the

SHAP, the value of the contribution of these variables was relatively

low. It is worth mentioning that in the development of our

prediction model, we paid special attention to the simplicity of
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the measurement of the predictor in the real world, and that simple

and easily accessible variables can increase the value of the model

for practical applications.

We further constructed an XGBoost-based machine learning

prediction model and observed a better area under the ROC curve

in both the training and test sets, and the calibration curves showed

a good balance between the model’s predicted probability and the

actual probability. By applying the results of the model, physicians

can identify individuals at high risk for anxiety symptoms among

older adults with abdominal obesity, provide timely mental health

assessment and intervention, and reduce the prevalence of anxiety

symptoms through primary prevention. Furthermore, we also
FIGURE 6

SHapley Additive exPlanation (SHAP) values.
FIGURE 7

Bar chart of variable contributions based on absolute values of SHAP.
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performed a decision curve analysis to provide more flexible

options for providers in different domains. In particular, doctors,

nurses, healthcare workers, and community workers can determine

suitable thresholds based on their specialized domain knowledge to

get the best net benefit. For instance, they can dynamically adjust

the threshold of the machine learning model based on the

prevalence level of anxiety symptoms in older adults with

abdominal obesity in the region or the ability of the local health

organization to recognize anxiety symptoms. If the region has a

higher prevalence of anxiety symptoms, they can appropriately

increase the threshold of the machine learning model to achieve the

highest net benefit. Psychiatric hospitals possess a higher ability to

recognize anxiety symptoms than other low-level hospitals, so

doctors in these psychiatric hospitals could appropriately increase

the threshold level when applying the results of our model. In

addition to the above applications, the development of this

prediction model suggests the possibility of using non-clinical

data to predict the occurrence of anxiety symptoms in elderly

people with abdominal obesity, and researchers can use this

model to conduct larger epidemiological studies to explore the

causal relationship between abdominal obesity and anxiety, and

promote scientific research progress in related fields.

Traditional machine learning algorithms are often criticized by

researchers for their lack of transparency and interpretability. In

order to better understand the internal logic and decision rules

behind the model predictions, one of the strengths of this study is

the use of the SHAP method to explain machine learning models

and reveal the ‘black box’ problem of machine learning models. In

the final results, we can clearly observe the degree of contribution of

each variable, for example, we found that “looking on the bright

side” was the most valuable predictor of developing anxiety

symptoms in older adults with abdominal obesity. The impact of

each factor on a randomly selected patient can be seen in the SHAP

force plot, in which eating fruits, feeling energetic, and self-reported

good health reduced the risk of developing anxiety symptoms. With

the help of the SHAP technique, we can focus on the predictors that

lead to anxiety symptoms based on the individual level and

understand the individualized performance of each factor’s

contribution, thus providing the right guidance for the

subsequent formulation of personalized preventive interventions.
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In the case of the patient shown in the force plots of SHAP, despite

the low risk of anxiety symptoms in this patient, we can further

reduce the patient’s risk of anxiety symptoms by psychological

counseling and developing personalized lifestyle interventions, such

as increasing fresh fruits intake, adjusting outdoor interactions, and

enhancing health education.

Overall, the SHAP used in this study provides a way to unlock

the black box of the machine learning model, which allows us to

better understand the results of the XGBoost model’s prediction of

the risk of developing anxiety symptoms in Chinese older adults

with abdominal obesity. In addition to helping us in the early

identification of anxiety symptoms in older adults with abdominal

obesity, the results of this study can also help us to develop

individual intervention strategies through the interpretability

of SHAP.
5 Limitations

This study has several limitations. First, although these data are

from a nationally representative survey, the unique inclusion criteria

for older adults with abdominal obesity in this study excluded a large

number of participants, and the representativeness of the data may

have been compromised. Although we performed calculations of the

minimum sample size required for the study and found that the

sample size for this study was much larger than the minimum sample

size required, further big data validation studies are still necessary.

Second, our choice of variables was limited by the content of the

database questionnaire, and therefore there is no guarantee that all

potential influences were included in this study. Third, although our

data processing methods have been validated in a large number of

previous studies, the categorization of variables and the different

criteria for classifying themmay still have some impact on the results.

Fourth, the predictors in our study were all measured by self-reported

questions, which may lead to some information bias. Fifth, this study

was a cross-sectional study and therefore the results obtained did not

support causal inferences between variables. Finally, although certain

methods were used to ensure the reliability and generalizability of the

model, the actual results still need to be validated in an external and

independent population.
FIGURE 8

Individual prediction of anxiety symptoms in patients with abdominal obesity number 2.
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6 Conclusion

In conclusion, we successfully utilized a machine learning

approach to identify anxiety symptoms in Chinese older adults

with abdominal obesity. The XGBoost model exhibited remarkable

proficiency in this investigation, and the tandem of XGBoost and

SHAP offered a transparent explanation for personalized risk

forecasts. High-performance modelling is valuable for early

identification and intervention in older adults with abdominal

obesity who are potentially at risk of developing anxiety

symptoms. This can help to improve the subsequent emotional

state and quality of life of older adults, increase their well-being in

later life, reduce the burden of disease among them, and contribute

to the goal of healthy aging.
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