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Background: Antipsychotic medications offer limited long-term benefit to about

30% of patients with schizophrenia. We aimed to explore the individual-specific

imaging markers to predict 1-year treatment response of schizophrenia.

Methods: Structural morphology and functional topological features related to

treatment response were identified using an individualized parcellation analysis in

conjunction with machine learning (ML). We performed dimensionality

reductions using the Pearson correlation coefficient and three feature

selection analyses and classifications using 10 ML classifiers. The results were

assessed through a 5-fold cross-validation (training and validation cohorts, n =

51) and validated using the external test cohort (n = 17).

Results: ML algorithms based on individual-specific brain network proved more

effective than those based on group-level brain network in predicting outcomes.

The most predictive features based on individual-specific parcellation involved

the GMV of the default network and the degree of the control, limbic, and default

networks. The AUCs for the training, validation, and test cohorts were 0.947,

0.939, and 0.883, respectively. Additionally, the prediction performance of the

models constructed by the different feature selection methods and classifiers

showed no significant differences.

Conclusion: Our study highlighted the potential of individual-specific network

parcellation in treatment resistant schizophrenia prediction and underscored the

crucial role of feature attributes in predictive model accuracy.
KEYWORDS

antipsychotic medication, individualized imaging biomarker, machine learning,
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1 Introduction

Schizophrenia is a complex and heterogeneous behavioral and

cognitive syndrome that appears to stem from a combination of

genetic and environmental factors, resulting in impaired brain

development (1). Treatment resistant schizophrenia (TRS) is a

condition wherein a significant proportion of individuals with

schizophrenia continue to experience symptoms and poor

outcomes despite treatment (2). Antipsychotic medications

provide limited longer-term benefits to approximately 30% of

schizophrenia patients (1–3). Therefore, early prediction of TRS

and the tailored administration of appropriate interventions can

alleviate the burden on affected individuals and avoid more serious

consequences (4), such as extreme despair and increased risk of

suicide (5).

Neuroimaging has been used to investigate brain features of

TRS and is expected to provide biomarkers closer to biology for

predicting TRS than clinical indicators, including poor premorbid

social functioning (2), early age of onset (6, 7), and history of drug

or alcohol abuse (8). Our previous study has demonstrated the

ability to identify TRS in patients with schizophrenia using

structural and functional neuroimages before treatment (9).

Previous structural MRI studies have reported that TRS patients

exhibit widespread gray matter volume (GMV) reduction compared

with both of healthy controls and treatment-responsive group in

many brain regions, such as the frontal, temporal, postcentral,

occipital cortices, and hippocampus (10–12). Graph theory

analysis (GTA) offers a method for simplifying complicated

networks into clearer representations, facilitating the assessment

of brain organization. A study has shown diminished global

efficiency and heightened local efficiency in TRS (13).

Additionally, an increased clustering coefficient was associated

with the improvement of negative symptom in schizophrenia

(14). Despite the large number of structural and functional

magnetic resonance imaging (MRI) findings on TRS in previous

studies (9–14), predicting the course of an individual’s disease,

especially the likelihood of treatment response, is very challenging

(4). The development of neuroimaging markers has proved elusive

due to the complex, distributed, and subtle variations that depend

on an individual’s unique clinical characteristics. Traditional

analytical methods, which provide average estimates at the group

level, have proved insufficient to detect such variations and deal

with inter-individual heterogeneity (15–17).

In order to address this challenge, researchers have begun using

an alternative analysis method known as machine learning (ML). It

aims to construct models that support individual predictions, thus

shifting from the study of univariate statistical group differences

towards multivariate complex brain patterns of individual patients

(15). Several studies have applied ML techniques and MRI to

identify biomarkers of treatment response in schizophrenia with

varying degree of success (18–22). Prediction accuracies typically

range between 60 and 90%. One study used random forest models

derived from thalamic shape information to predict TRS with 75%

accuracy (22). Functional connectivity of the superior temporal

cortex was informative in predicting response to antipsychotics
Frontiers in Psychiatry 02
(83% accuracy) using support vector machine (SVM) algorithm

(20). Despite the excellent performance of the predictive models in

disparate studies, the lack of studies using different ML algorithms

on the same data has made it difficult to directly compare the results

of the different algorithms.

Additionally, the investigation of brain anomalies in patients

with mental disorders has been considerably hindered by the lack of

precision in mapping the functional regions at the individual level

(23). Multiple studies have consistently indicated that functional

organization can vary significantly among individuals, particularly

in the higher-order association cortices (23–25). Precise

identification of the functional nodes in individuals is necessary

to detect neuroimaging biomarkers for mental illnesses due to the

significant inter-subject variability. We and others have shown that

brain-behavior correlations would be stronger when brain networks

are established using individual features rather than a group-level

atlas (26–29). Therefore, it is necessary to further explore the

application prospect of a novel, individualized functional network

parcellation analysis in predicting treatment response.

Given such a background, we mapped the fine-grained

funct iona l reg ions in each subjec t and construc ted

individualized structural morphology and functional topological

features to predict the one-year treatment response in

schizophrenia. Additionally, we used the same analysis pipeline

for different ML algorithms to directly compare the differences in

model predictions between different algorithms. We trained ML

models to predict the treatment response using the training and

validation cohorts and assessed the model’s generalizability in the

external test cohort. We hypothesize that 1) individualized

parcellation methods can further improve the predictive ability

of schizophrenic clinical outcome than group-level templates, and

2) the predictive model performance of different ML algorithms

may be different.
2 Materials and methods

2.1 Participants

We enrolled 263 drug-naïve patients with first-episode

schizophrenia from the West China Hospital Mental Health

Center of Sichuan University and an additional 110 drug-naïve

first-episode schizophrenia patients from the Fourth People’s

Hospital of Chengdu for our research. Diagnosis criteria of

schizophrenia met the Structured Clinical Interview for DSM-IV

(SCID) (30) and confirmed by consensus between two psychiatrists.

Exclusion criteria comprised: (1) Axis I psychiatric disorders other

than schizophrenia; (2) significant systemic or neurological illness;

(3) alcohol or drug abuse; (4) pregnancy; and (5) MRI

contraindications, including cardiac pacemakers and other

metallic implants.

At baseline, no patients had received prior antipsychotic or

psychiatric medication, and all participants underwent 3T MR head

scans prior to treatment. Clinical symptom severity was assessed

using the Positive and Negative Syndrome Scale (PANSS) for each
frontiersin.org
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patient. 87 patients were excluded from the study due to incomplete

or poor-quality images and failure to complete the full assessment.

After the baseline MR scan and symptom assessment, all patients

received treatment with second-generation antipsychotic

medications, with drug selection and dosage determined by the

attending psychiatrist. Daily dosages of antipsychotic drugs were

converted into chlorpromazine equivalents (31). Only 72 patients

completed the 1-year follow-up, with 4 of them excluded due to

poor-quality images caused by motion artifacts.

A total of 68 right-handed drug-naïve first-episode

schizophrenia patients were included in this study, with 51

subjects from the West China Hospital for model training and

validation, and 17 subjects from the Fourth People’s Hospital of

Chengdu for model testing. The severity of psychiatric symptoms

was assessed using the PANSS both at baseline and the 1-year

follow-up. The percentage reduction of PANSS at follow-up was

calculated as follow:

PANSSbaseline − PANSSfollow�up

PANSSbaseline − 30
� 100% :

A 50% reduction served as the criterion for treatment response

(32). Subsequently, the subjects from the training and validation

cohorts were segregated into a response group (RG, n = 38) and a

non-response group (NRG, n = 13). The test cohort consisted of RG

(n = 12) and the NRG (n = 5). The study received approval from the

Ethics Committee on Biomedical Research, West China Hospital of

Sichuan University. All participants provided written

informed consent.
2.2 Image acquisition

2.2.1 Training and validation cohort
At baseline, participants underwent brain scans using a 3T MRI

system (EXCITE; General Electric, Milwaukee, Wisconsin) with an

8-channel phased-array head coil. High resolution 3D-T1 weighted

images (3D-T1WI) were obtained using a three-dimensional

spoiled gradient-recalled sequence with the following parameters:

repetition time (TR), 8.5 ms, echo time (TE), 3.4 ms, flip angle, 12˚,

and field of view (FOV) = 240 mm × 240 mm. The acquisition

matrix, composed of 256 readings of 128 phase encoding steps,

resulted in 156 contiguous coronal slices with a slice thickness of

1 mm. The final matrix was automatically interpolated in-plane to

achieve an in-plane resolution of 0.47 mm × 0.47 mm. Resting-state

functional MRI (rs-fMRI) was acquired using a gradient-echo echo-

planar imaging sequence with the following parameters: TR = 2000

ms, TE = 30 ms, flip angle = 90˚, slice thickness = 5 mm, matrix

size = 64 × 64, FOV = 240 mm × 240 mm, and voxel size =

3.75 mm × 3.75 mm × 5 mm. Each brain volume consisted of 30

axial slices, and each functional run included 200 image volumes.

2.2.2 Test cohort
A 3T SIEMENS TrioTim scanner was used, equipped with a 32-

chanel head coil. High resolution 3D-T1WI were acquired using an

SPGR sequence with the following parameters: TR = 2400 ms, TE =
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2.0 ms, flip angle = 8°, FOV = 256 mm × 256 mm, 208 contiguous

sagittal slices with a thickness of 0.8 mm, and an in-plane resolution

of 0.8 mm × 0.8 mm. Rs-fMRI was obtained using an echo-planar

imaging sequence with the following parameters: TR = 700 ms, TE

= 37.8 ms, flip angle = 52°, slice thickness of 2.1 mm (no slice gap),

matrix size = 100 × 84, FOV = 210 mm × 176 mm, and voxel size =

2.1 mm × 2.1 mm × 2.1 mm. The functional data consisted of 64

axial slices of 2.1 dummy volumes and 415 sequential image

volumes, acquired over a total time of 633 seconds.
2.3 Imaging preprocessing

High-resolution 3D-T1WI images were subjected to analysis

using the standard recon-all pipeline within FreeSurfer software

(version 6.0, available at http://surfer.nmr.mgh.harvard.edu/). The

image processing pipeline encompassed several steps (33, 34): visual

inspection for motion artifacts, non-brain tissue removal,

transformation to Talairach space, segmentation of subcortical

gray/white matter (GM/WM), intensity normalization, tessellation

of the GM/WM boundary, automated topology correction, and

surface deformation. These steps served to segment cortical

structures for use as a template in subsequent rs-fMRI registration.

The Computational Brain Imaging Group (CBIG) toolbox,

available at https://github.com/ThomasYeoLab/CBIG, was

employed for preprocessing rs-fMRI data (23, 35). This

preprocessing encompassed various steps, including slice time

correction, motion correction through Framewise displacement

(FDrms) and voxel-wise differentiated signal variance (DVARS)

calculations, removal of frames with FDrms > 0.2 or DVARS > 50,

spatial distortion correction, nuisance regression, temporal

interpolation of censored frames, bandpass filtering in the range

of 0.009-0.08 Hz, projections to the standard surface (fsaverage 5),

and smoothing with a 6mm kernel.
2.4 Individualized and group-level
functional networks parcellation

We utilized the individual-specific cortical functional network

parcellation method developed by Kong et al. (29) from the CBIG

toolbox, which employs a multi-session hierarchical Bayesian

model (MS-HBM) to estimate individual-specific cortical

networks. The MS-HBM is designed to distinguish within-subject

(intra-subject) from between-subject network variability through

multiple layers. For each participant, the bilateral cerebral

hemispheres were parcellated into 17 functional networks (35),

encompassing the visual A network (VisCent), visual B network

(VisPeri), somatomotor A network (SomMotA), somatomotor B

network (SomMotB), dorsal attention A network (DorsAttnA),

dorsal attention B network (DorsAttnB), salience A network

(SalA), salience B network (SalB), limbic A network (LimbicA),

limbic B network (LimbicB), control A network (ContA), control B

network (ContB), control C network (ContC), default A network

(DefaultA), default B network (DefaultB), default C network
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(DefaultC), temporal parietal network (TemPar). In brief, this

method comprises three key steps: (1) generating profiles and

initialization parameters, (2) estimating group priors, and (3)

generating individual-level parcellations. Following these steps, 17

individual-level cerebral functional networks were created in each

hemisphere for every participant. The results of individual-level

parcellation for five subjects are illustrated in Supplementary Figure

S1. These networks retain the same names as listed above, but differ

in their morphology, indicating variations in distribution or

anatomical location within the same network.

A group-level parcellation was performed, resulting in 17 functional

networks in each hemisphere for each subject based on the Yeo atlas (35).

The signal intensities of all vertices within the individual-

specific or the group-level networks were averaged to compute

the mean time series of each network. Subsequently, two functional

network matrices (34 × 34) were generated for each individual

based on the individualized and group-level parcellations. This was

achieved by calculating the 34 functional networks spanning both

hemispheres and applying a z-transformation.
2.5 Gray matter volume calculation and
graph theory analysis

GMV for each functional network was extracted using

FreeSurfer software. Individual-specific and group-level

parcellations served as atlases for each subject, respectively.

GTA was conducted using the DPABINet module within the

Data Processing and Analysis for Resting-State Brain Imaging

(DPABI, http://rfmri.org/dpabi) toolbox (36). Certain graph

theoretic parameters required normalization, and during the

normalization process, random network graph theoretic

parameters were employed as reference for normalization.

Specifically, 100 random networks with an equivalent number of

edges and nodes to the calculated network were randomly generated

using DPABINet. The average values of their graph-theoretic

parameters were utilized as the reference for normalization.

Additionally, to enhance the generalizability of the results, a

range of sparsity values, spanning from 0.01 to 0.5 with an

interval of 0.01, was employed in the calculation of graph theory

parameters. A density range was also calculated, ranging from 0.01

and 0.34 with an interval of 0.01 (37). Global topological properties

encompass measures such as (1) local efficiency, (2) global

efficiency, (3) clustering coefficient, (4) characteristic shortest path

length, (5) small-worldness. Regional topological properties were

the degree centrality of each network (See Supplementary Table S1

for the means of topological properties). The area under the curve

(AUC) for each network metric was calculated to provide an overall

value for the topological characterization of brain networks

independent of any specific cost threshold.
2.6 Model construction and comparison

We used the FeAture Explorer software (FAE), version 0.5.5,

implemented in Python, to construct 10 machine learning (ML)
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algorithms. These models include support vector machine (SVM),

auto-encoder (AE), linear discriminant analysis (LDA), random

forests (RF), logistic regression (LR), logistic regression via Lasso

(LRLasso), ada-boost (AB), decision tree (DT), Gaussian process

(GP), and naïve Bayes (NB). The software is available at https://

github.com/salan668/FAE.

FAE provides a comprehensive pipeline encompassing the

following key stages: (1) Data balancing, addressing the imbalance

of data between RG and NRG, we applied the synthetic minority

oversampling technique (SMOTE) to ensure balance in the training

and validation cohorts. SMOTE achieves this by introducing

synthetic examples along line segments, connecting them with the

nearest k minority class neighbors, and choosing neighboring

points randomly based on the required oversampling volume.

(2) Normalization, we normalized the data using Z-score method.

(3) Data preprocess, we employed the Pearson correlation

coefficient (PCC) within FAE. This involved traversing all

features, calculating the Pearson correlation coefficient pairwise,

and randomly removing one of them when the coefficient exceeded

the threshold of 0.99 to ensure that features did not exhibit excessive

similarity. (4) Features selection, we considered feature numbers

ranging from 1 to 15 (A simple “rule of thumb” for prognostic

research requires a minimum of ten samples per feature) (38)

and employed three feature selection methods: One-way

analysis of variance (ANOVA) (with a threshold of 0.90),

Recursive Feature Elimination (RFE), and Kruskal-Wallis test

(KW); (5) Classification, classification performances were

evaluated using ML algorithms implemented in Python with the

scikit-learn library (https://scikit-learn.org/).

To mitigate the heterogeneity introduced by different

institutions that could affect the comparison of features, we

employed ANOVA to ascertain whether the GMV and GTA

features of each sequence significantly differed among institutions.

If a feature exhibited a significant difference, we harmonized it using

the ComBat method (39).

Thus, the various methods mentioned above were combined,

leading to the construction of a total of 450 ML models for features.

These models were established based on individualized and group-

level network parcellation, respectively (1 normalization × 3 feature

selection × 15 feature number × 10 classifier). The results were

assessed through a 5-fold cross-validation and validated using the test

cohort. Evaluation metrics, including accuracy, sensitivity, specificity,

negative predictive value (NPV), and positive predictive value (PPV),

were computed at the optimal cutoff value determined bymaximizing

the Youden index. Additionally, the area under the receiver operator

characteristics curve (AUC) was calculated for each tested condition.

The machine learning workflow is depicted in Figure 1.
2.7 Statistical analyses

SPSS 25.0 software and R (version 4.2.1) were used to analyze

the data in this study. Frequencies and percentages were used for

categorical data and mean ± standard for data on continuous

variables. We compared the optimal AUCs of models constructed

by different template parcellation techniques, feature selections and
frontiersin.org
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classifiers (see Supplementary Materials for details, Supplementary

Figures S2–S4). Specifically, paired t-tests were performed on the

AUCs of individualized and group-level models constructed using

ANOVA, RFE, and KW feature selection, respectively. ANOVA was
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conducted on the AUCs of the models constructed by the 3 feature

selections in the individualized and group-level templates,

respectively. Differences in AUC estimates between classifiers

were compared using the DeLong test. Univariate Pearson
FIGURE 1

A schematic diagram for the whole machine learning pipeline. (A) Individual-specific parcellation were generated by employing a multi-session
hierarchical bayesian method. Then, functional network matrices (34 × 34) were calculated for each subject based on the individualized and group-
level templates. (B) Structural morphology- and functional topological-based features were extracted from functional network matrices. (C) Data
preprocess. (D, E) Three feature selection methods and 10 classifiers were used to construct the models. (F) ROC curve analysis was employed to
quantify the performance of the model in the training, validation and test cohort. The optimal AUCs of models constructed by different template
parcellation techniques, feature selections and classifiers were compared. ANOVA, one-way analysis of variance; AUC, area under the curve; ROC,
receiver operating characteristic.
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correlation analysis was performed to evaluate the features selected

for the individualized template in relation to the reduction in

PANSS scores. The significance threshold was set at P < 0.05.
3 Results

3.1 Demographic and clinical data

Table 1 displays the demographic and clinical characteristics of

the participants. The education years of the RG were significantly

higher than those of the NRG in training and validation cohort (P =

0.01). Both in the training and validation cohort and test cohort,

there were no intergroup differences in age, sex, illness duration, or

daily dosage of antipsychotics between the RG and NRG.
3.2 Data balancing and
heterogeneity testing

The SMOTE was employed to automatically generate 25

synthetic samples for the NRG, mitigating the impact of an

imbalanced dataset on classifier fitting. A comparison of the AUC

of all pipelines was conducted using the validation dataset with
Frontiers in Psychiatry 06
FAE. ANOVA showed no significant differences in features between

the different institutions (P > 0.05).
3.3 Comparison of templates, feature
selection methods and classifiers

Significant between-group differences in the AUCs of

individualized and group-level models constructed by ANOVA

and RFE, respectively (all P < 0.05) (Figure 2). However, the

AUCs of the models constructed by the 3 feature selection

methods and 10 ML algorithms showed no significant differences

(all P > 0.05). Figure 3 illustrates the optimal AUCs for 10 classifiers

at different datasets.
3.4 Receiver operating characteristic
curves and correlation scatter plots

As for individualized brain network segmentation templates, the

pipeline employing the GP classifier achieved the highest AUC using 8

features with a “one-standard error” rule. The AUCs for the training,

validation, and test cohorts were 0.947, 0.939, and 0.883, respectively

(Table 2, Figure 4A). The selected features included the GMV of the

bilateral DefaultA, the GMVof the left DefaultB andDefaultC, the degree

of the bilateral ContA, the degree of the left LimbicA, and the degree of

the left DefaultB. Feature selection was performed using RFE. These 8
TABLE 1 Demographic and clinical characteristics of participant groups.

Training and validation cohort Test cohort

RG (n = 38) NRG (n = 13) P Value RG (n = 12) NRG (n = 5) P Value

Age (years) 24.0 ± 7.2 26.7 ± 12.0 0.44 29.0 ± 10.3 32.4 ± 14.7 0.59

Male/Female 17/21 8/5 0.30 5/7 1/4 0.39

Education (years) 13.2 ± 2.6 10.9 ± 2.7 0.01 11.6 ±3.1 8.0 ± 4.1 0.07

Illness duration (months) 6.6 ± 9.2 12.2 ± 17.5 0.29 31.4 ± 62.7 8.1 ± 10.0 0.13

Baseline PANSS

Positive 25.3 ± 6.7 22.0 ± 5.7 0.12 24.8 ± 4.0 25.8 ± 4.1 0.63

Negative 18.0 ± 6.7 20.9 ± 7.0 0.19 21.0 ± 4.2 21.4 ± 3.6 0.86

Total 91.4 ± 14.5 92.5 ± 15.9 0.81 93.8 ± 13.6 92.4 ± 13.4 0.85

Follow-up PANSS

Positive 8.8 ± 3.4 16.5 ± 6.6 0.001 10.9 ± 2.8 20.4 ± 4.0 < 0.001

Negative 11.4 ± 4.5 19.0 ± 4.6 < 0.001 12.8 ± 3.2 16.0 ± 2.2 0.07

Total 43.0 ± 10.1 77.0 ± 23.2 < 0.001 50.3 ± 8.6 76.4 ± 4.0 < 0.001

Percentage PANSS reduction (%) 79.3 ± 14.2 25.7 ± 27.6 < 0.001 68.0 ± 11.6 23.0 ± 17.4 < 0.001

CPZ equivalents (mg/day) 261.8 ± 182.4 200.6 ± 128.8 0.24 304.3 ± 79.3 256.1 ± 125.5 0.30
Data are expressed as mean ± standard deviation, unless specified. The p values smaller than 0.05 were shown in bold front. RG, responder group; NRG, non-responder group; PANSS, Positive
and Negative Syndrome Scale; CPZ, chlorpromazine.
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FIGURE 2

Predictive performance of individualized and group-level models at different datasets. Paired t-tests analysis results showed significant between-
group differences in the AUCs of individualized and group-level models constructed using (A) ANOVA and (B) RFE feature selection, respectively.
Error bars denote standard deviations. ANOVA, analysis of variance; RFE, recursive feature elimination. * indicates P <.05. ** indicates P <.01.
FIGURE 3

The optimal areas under the curve (AUCs) for 10 classifiers at different datasets. Template parcellation techniques using (A) individual-specific brain
network, (B) group-level brain network. Feature selections using recursive feature elimination (RFE), analysis of variance (ANOVA), and kruskal-wallis
test (KW).
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features were all ranked first out of the 25 ranks derived by the RFE,

which indicated the importance or contribution of each feature to the

model’s performance, with lower ranks suggesting lesser importance.

As for group-level brain network segmentation templates, the

pipeline employing the GP classifier achieved the highest AUC

using 14 features. The AUCs for the training, validation, and test

cohorts were 0.920, 0.883, and 0.833, respectively (Table 2,

Figure 4A). The selected features included the GMV of the left

VisCent (F = 2.94), SalVentAttnA (F = 3.05), and ContC (F = 6.58),

the GMV of the right SalVentAttnB (F = 2.76), LimbicA (F = 2.83),

and DefaultA (F = 2.46), the degree of the bilateral SomMotB (F =

5.86/4.90 for left/right), the degree of the left DorsAttnB (F = 4.49)

and DefaultB (F = 4.32), the degree of the right SomMotA (F =

4.85), LimbicA (F = 3.12), ContA (F = 9.08) and ContC (F = 3.16).

Feature selection was performed using the KW. F-value is the

statistical metric used in the KW test, a higher F-value indicates

its potential importance.

Correlation analysis was conducted on the 8 features selected

for the individualized template in relation to PANSS reduction. The

features that demonstrated correlation with PANSS reduction were

the GMV for the bilateral DefaultA (r = 0.32/0.36, P = 0.02/0.01, for

the left/right, respectively) and the degree for the left DefaultB (r =

0.40, P = 0.004). Figure 4B shows the correlation scatter plot.
4 Discussion

This study explored the potential of the individual-specific

network parcellation in predicting TRS through the application of

various feature selection methods and state-of-art ML algorithms.

Firstly, ML algorithms based on individual-specific brain networks

demonstrated greater effectiveness in predicting outcomes than

those based on group-level brain networks. The most predictive

features for TRS based on individual-specific parcellation involved

the GMV of the default network and the degrees of the control,

limbic, and default networks. Secondly, although the pipeline

employing RFE for feature selection and a GP classifier yielding

the highest AUC, the prediction performance of models constructed

by the three feature selection methods and ten ML algorithms

showed no significant differences. In summary, our study
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highlighted the potential of individual-specific network

parcellation in TRS prediction and underscored the crucial role of

feature attributes in predictive model accuracy.

Prediction models utilizing individualized brain network

parcellation showed superior classification accuracy than those

based on group-level brain networks. The unique features of each

individual likely derive from interindividual heterogeneity in the

arrangement of brain functioning networks (24, 40–42). For

example, variations in the shape, size, and position of functional

areas may provide nonredundant information related to

neurobehavioral abnormalities (28). Thus, consideration of

individual variability in cortical anatomy will significantly preserve

personal characteristics applicable to psychiatric applications (43). In

contrast, functional regions based on a nominal “average” brain,

potentially mis-localizing individuals’ functional regions and blurring

biologically spatial signals (26, 44), particularly in the association

networks that exhibit weak connections to anatomical structures

(23–25). An instance of a function-anatomy dissociation that has

been extensively investigated is the language network, wherein

different subjects exhibit left-hemisphere or right-hemisphere

dominance (45, 46). More generally, the inter-individual

heterogeneity observed in association functions may represent a

fundamental principle governing brain organization and an

important outcome of the evolutionary trajectory of the human

brain (47). Recognizing the importance of inter-subject variability

in functional organization, neuroimaging community has been

rapidly advancing in its efforts to map functional regions at the

individual level (23, 25, 29). Wang and colleagues proposed an

iterative parcellation procedure to localize the cortical functional

networks in individual subjects and indicated that the outcomes were

similar to the existing benchmark, invasive cortical stimulation

mapping, in patients who were undergoing brain surgery (23).

Kong et al. recently developed the MS-HBM parcellations that

differentiates not only inter-subject network variability, but also

within-subject network variability (29). Recent research found that

crucial brain network characteristics may be missing in group-based

templates but are apparent within individuals (25, 48). Using the

group-level atlas on individual participants can weaken brain-

behavior associations that are crucial for comprehending the

particular illness processes (26–29). Our findings, together with
TABLE 2 Optimal performance of the individual-specific and group-level model at different datasets.

AUC 95% CIs Acc Sen Spe PPV NPV

Individual-specific

Training 0.947 0.914-0.980 0.965 0.967 0.962 0.961 0.968

Validation 0.939 0.860-0.999 0.923 0.921 0.929 0.972 0.813

Test 0.883 0.713-1.000 0.895 1.000 0.857 0.714 1.000

Group-level

Training 0.920 0.880-0.961 0.938 0.941 0.934 0.935 0.940

Validation 0.883 0.776-0.989 0.823 0.789 0.923 0.968 0.600

Test 0.833 0.637-1.000 0.706 0.667 0.800 0.889 0.500
AUC, area under the receiver operator characteristics curve; CI, confidence interval; Acc, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value.
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those of the cited studies, collectively demonstrates that technological

advances in subject-level functional mapping will not only enable the

examination of functional dynamics within subjects, which are critical

for personalized medicine, but will also contribute to traditional

group-level studies by offering more significant indicators for

comparing different subjects. Specifically, matching participants

based on homologous functional regions will enhance the

specificity of function signals in the networks under investigation,

resulting in greater statistical power in group-level analyses.

The most predictive features for TRS based on individual-specific

parcellation involved the GMV of the default network and the nodal

degree of the control, limbic, and default networks. The default

network is responsible for self-referential mental processes.
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Schizophrenia-related gray matter volume atrophy (49) and

functional abnormalities during specific tasks (50) and rest (51, 52)

in this region are regularly reported. Established disruptions in

functional connectivity within the default network and between the

default network and other task-relevant networks have been shown to

be related to treatment response in schizophrenia (4, 53, 54). In fact,

our univariate correlation analysis also revealed that increased GMV

and nodal degree of the default network were associated with

improved symptoms in schizophrenia. In contrast, the control

network is involved in externally directed cognitive control

functions and has been associated with working memory, attention,

relational integration, and response inhibition (55–57), functions

known to be impaired in schizophrenia. The limbic network
FIGURE 4

Receiver operating characteristic (ROC) curves and correlation scatter plots. (A) Optimal performance of the individual-specific and group-level
model at different datasets. (B) The GMV for the bilateral DefaultA (r = 0.32/0.36, P = 0.02/0.01, for the left/right, respectively) and the degree for the
left DefaultB (r = 0.40, P = 0.004) derived from the individualized template were significantly positively associated with PANSS reduction. DefaultA,
default A network; DefaultB, default B network; GMV, gray matter volume.
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dysfunctions may contribute to amplified threat processing and

impaired emotion regulation (58–60). Taken together, the

abnormalities in the control, limbic, and default networks may be

related to disruptions in the balance between the internal stimuli,

external perception, and emotional regulation, thereby contributing

to the persistence of symptoms characteristic of TRS. Additionally,

given the large inter-individual variability of associative cortices, such

as default network and control network, our results suggest that it is

critical to locate the boundaries of functional networks across

individuals, as mislocating the networks will significantly obscure

the true value of low-amplitude correlations between networks and

hinder the discovery of markers of treatment response.

Although the pipeline employing RFE for feature selection and

GP classifier yielded the highest AUC, the prediction performance

of models constructed by the three feature selections and ten ML

algorithms showed no significant differences. This is rather

unexpected given that, despite recent evidence demonstrating that

some applied classifiers share mathematical similarities (61), it is

also evident that some of them are distinctly different. The most

notable instance being the RF algorithm, which divides the feature

space to binarize continuous variables, and is not restricted by the

additivity found in LR and SVM algorithms. Each algorithm

exhibits a preference for particular problem types over others and

typically necessitates the adjustment of various configurations and

parameters to achieve optimal performance on the dataset (62).

However, Khondoker and colleagues reported the same findings in

a classification study involving patients with Alzheimer and

controls, showing that different classifiers tended to achieve

similar levels of classification accuracy when effect size increased,

diminishing the significance of algorithm selection (63). Similarly,

two large-scale studies also suggested that the choice of ML

algorithm for classification has less impact on final accuracy than

the choice of measurement type (e.g., structural morphology,

graph-based, and functional connectivity features) (16, 64).

Perhaps, our results could be explained by a distribution of

observations in the multidimensional feature space that mostly

adheres to an unstructured pattern. A distribution with

unstructured noise would not be more effectively classified by any

complicated function than a hyperplane, which is a geometric

feature that all classifiers can generate to a great extent (61).

Consequently, this would ultimately result in similar classification

accuracies. Additionally, some researchers (65) suggest that the

difference in performance may be overshadowed by other uncertain

data sources that are typically not taken into account in the

traditional supervised classification framework (e.g., inappropriate

assumptions and choices). Given the ongoing growth in computer

technology, it is reasonable to expect that advancements will mostly

stem from enhanced capabilities in data storage and processing.

However, there are several factors that can determine the final

accuracy of the model: 1) biological fingerprint, 2) sample size, 3)

prediction algorithm, 4) data quality (64). The accumulating

evidence and our findings have indicated that the biological

fingerprint, as captured by the individualized imaging data in our

study, is the most crucial factor influencing prediction performance.

Several limitations should be considered. First, drug selection

and dosage were uncontrolled in this study. It is mostly due to the
Frontiers in Psychiatry 10
heterogeneity in antipsychotic medicines and the small sample size

of our study. Controlling for these factors at 1-year follow-up is

extremely challenging, and we frequently encountered loss to

follow-up and refusals during this period, which may be a

restriction for the study. Second, due to the study’s limited

sample size, to include as many subjects as possible, there was a

significant difference in the years of education, and the distribution

of subjects in each group was not balanced. Although this variability

may be attributed, at least partly, to differences in data availability

and prevalence, we have addressed the issue of data imbalances as

methodologically as possible. Although we hope that our findings

could provide some initial insights into the clinical application role

of individual-specific network parcellation and the value of feature

attributes in predicting model accuracy outcomes in schizophrenic

patients, we also consider that due to the small sample size these

results to be rather pilot that need to be interpreted with caution. A

deeper exploration employing larger samples and multicenter

cohorts will be necessary. Third, at baseline, we did not collect

whether patients had ever received psychotherapy and counseling

intervention upfront, which people often use without a prescription

to prevent or reduce symptoms. Future studies collecting patients’

psychotherapy histories data could help stratify patients and

improve the reliability of study. Finally, given the lack of a

reliable technique for mapping individual-specific subcortical

regions, subcortical biomarkers were not incorporated into our

prediction model.
5 Conclusions

In summary, our study has demonstrated that ML algorithms

based on individual-specific brain networks are more effective in

predicting outcomes than those based on group-level brain

networks. Furthermore, the prediction performance of models

constructed using different feature selection techniques and

classifiers showed no significant differences. Our study

highlighted the potential of individual-specific network

parcellation in TRS prediction and underscored the crucial role of

feature attributes in predictive model accuracy.
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