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Background: With the advancement of transcranial electrical stimulation (tES)

technology, an increasing number of stimulation devices and treatment

protocols have emerged. However, safety and tolerability remain critical

concerns before new strategies can be implemented. Particularly, the use of

gel particle electrodes brings new challenges to the safety and tolerability of tES,

which hinders its widespread adoption and further research.

Objective: Our study utilized a specially designed and validated transcranial

electrical stimulation stimulator along with preconfigured gel particle electrodes

placed at F3 and F4 in the prefrontal lobes. We aimed to assess the tolerance and

safety of these electrodes in healthy subjects by administering different durations

and types of tES.

Methods: Each participant underwent ten sessions of either transcranial direct

current stimulation (tDCS) or transcranial alternating current stimulation (tACS),

with session durations varying. In the experiment, we collected various

measurement data from participants, including self-report questionnaire data

and behavioral keystroke data. Tolerability was evaluated through adverse events

(AEs), the relationship of adverse events with tES (AEs-rela), the Self-Rating

Anxiety Scale (SAS), and the Visual Analog Mood Scale-Revised (VAMS-R).

Safety was assessed using the Visual Analog Scale (VAS), the Skin Sensation

Rating (SSR), Montreal Cognitive Assessment (MoCA), and Stroop task. These data

were analyzed to determine the impact of different parameters on the tolerability

and safety of tES.

Results: There were no significant changes in the results of the MoCA and SAS

scales before and after the experiment. However, significant differences were
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observed in VAS, SSR, AEs, and AEs-rela between tDCS and tACS. Additionally,

fatigue increased, and energy levels decreased on VAMS-R with longer durations.

No significant differences were found in other neuropsychological tests.

Conclusion: Our study revealed significant differences in tolerability and safety

between tDCS and tACS, underscoring the importance of considering the

stimulation type when evaluating these factors. Although tolerance and safety

did not vary significantly across different stimulation durations in this study, future

research may benefit from exploring shorter durations to further assess

tolerability and safety efficiently.
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1 Introduction

The transcranial electrical stimulation (tES) is a non-invasive

neurostimulation technique, which typically includes transcranial

direct current stimulation (tDCS) and transcranial alternating

current stimulation (tACS) (1–3). It has garnered rapid attention

and promotion owing to its ease of use, non-invasiveness,

adjustability, and broad range of applications (4–6). Over the

past five years, more than 5000 articles have been published on this

subject (7). In most clinical scenarios, cortical excitability is

modulated by placing one or more pairs of electrodes (8) on the

surface of the human scalp, with an applied current intensity of 1-2

mA (9, 10). The tES is generally regarded as non-invasive and well-

tolerated by subjects with favorable safety profiles (11–13).

However, the weak current produces a low-strength electric field

(14), necessitating long-term repetition and accumulation to

achieve desired effects. Enhancing the intensity of tES shows the

potential to yield improved effectiveness (15–19). Nevertheless, the

heightened skin sensation and potential side effects impede further

enhancement of the stimulation intensity (15, 16, 20–22).

Numerous types of electrodes exist today that can be utilized for

tES, including the commonly used comb dry electrode, sponge

saltwater electrode, and gold standard conductive paste electrode.

Dry electrodes are easy to use, but have problems with high contact

impedance and lack of comfort (23, 24). In contrast, wet electrodes

have low contact impedance, but their operation process is time-

consuming, and the evaporation of water after long-term use will

cause the impedance to increase (25, 26). Moreover, the process of

cleaning hair and electrode caps adds to the complexity. Gel

electrodes combine the low contact impedance characteristics of

wet electrodes with better moisture retention, efficient conductivity

and stability (24, 27–29). Unlike wet electrodes, gel electrodes do

not leave residues, require minimal preparation time, and do not

adhere to the skin (30, 31). Additionally, they maintain relatively

stable impedance over extended periods, making them suitable for

prolonged brain stimulation experiments. Recently, gel electrodes,
02
as a semi-dry alternative that balances portability and high

performance, have seen widespread application in brain

stimulation. It achieves a good balance between ease of use and

conductivity performance (22, 27, 30). Regardless of the stimulation

conditions, ensuring robust safety and tolerability in participants is

essential for widespread acceptance (11, 32–34).

The application of tES using gel electrodes, selecting

appropriate stimulation parameters is crucial, including

stimulation duration, stimulation type, current intensity, and

stimulation frequency, among others. Stimulation duration is an

important factor that influences tolerability and safety. Especially

for potential long-term applications of tES devices, such as chronic

therapy or daily interventions. It directly impacts skin responses,

cognitive load, and long-term effects on the body (20). Several

studies stimulated for more extended periods than 20 minutes

without reporting side effects (35). In the tES safety guidelines

from Antal et al., tES has been established as safe for up to 60 min

duration per day (36). Nevertheless, Alonzo et al. proposed that the

repeated tES sessions may result in longer stimulation duration

(37), ultimately leading to increased cumulative energy

transmission to the brain. This could potentially heighten the risk

of heat injury, electrolysis, or fatigue-related discomfort.

Conversely, a short duration of stimulation may not be sufficient

to induce significant neuromodulation effects (38). Therefore,

uncertainty remains regarding the relationship between

stimulation duration and both safety and tolerability, especially

within the framework of different tES paradigms and individual

variances. With the increasing emergence of tES devices, it is

essential to study the tolerability and safety of these new devices

and treatment modalities before their widespread adoption.

However, when designing experiments, multiple variables must

often be considered, such as the treatment environment, target

population, application methods, and stimulation parameters. The

diversity of these conditions, combined with the duration of

stimulation, collectively determines the overall duration of the

experiment. In this context, stimulation duration becomes a
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critical variable in research, as it not only dictates the structure and

progression of the experiment but also directly impacts the

deployment of devices and protocols (39).

Although stimulation duration is a key focus of research, the

influence of stimulation type is equally important. In the field of

tES, the most commonly used stimulation types are tDCS and

tACS (1–3). tDCS can administer a consistent, unidirectional

flow of current to influence nerve membrane polarization,

regulate the resting membrane potential, and modulate synaptic

transmission (40–42), thus altering brain excitability. In contrast,

tACS delivers an oscillating current that alternates between

positive and negative polarities periodically, potentially

synchronizing or interacting with endogenous brain rhythms

(43–45). Due to variations in the mechanisms of action

between these two types of tES, the physiological responses,

side effects, and subjective experiences elicited by each

technique may differ, even when employing the same current

intensity (46, 47). Previous studies have examined the tolerability

and safety of tDCS or tACS using various devices and treatment

protocols (11, 16, 20, 47). However, comparative research on the

tolerability and safety of these two types of tES using gel-based

electrodes remains limited, and no consensus has been reached

(48, 49).

In this context, the present study aims to investigate the effects

of stimulation duration and type on the tolerability and safety of tES

using gel-based electrodes. This research will provide valuable

reference points for selecting appropriate stimulation parameters

in the design and clinical application of tES devices, laying the

foundation for tailoring stimulation protocols to different

clinical indications.
2 Materials and methods

In this study, tES was performed using preconfigured gel

particle electrodes to gather experimental measurements,

including self-report questionnaire data and in-experiment

behavioral keystroke data from participants. These measurements

included adverse events (AEs) and the relationship of adverse

events with tES (AEs-rela) in terms of tolerability, the Visual

Analog Scale (VAS) and the Skin Sensation Rating (SSR) ratings

in terms of safety, mental health evaluation and behavioral

experimental outcomes from the Montreal Cognitive Assessment

(MoCA), the Self-Rating Anxiety Scale (SAS), the Visual Analog

Mood Scale-Revised (VAMS-R), and Stroop task performance data.
2.1 Participants

In the study, 17 healthy subjects were recruited, comprising 6

females and 11 males. One female was excluded due to a history of

head nerve pain, and one male was excluded due to data collection

errors related to experimental parameters. Ultimately, the remaining

15 healthy subjects (5 females and 10 males, mean age ± SD: 24.00 ±

1.36 years, average education duration: 17.53 ± 1.19 years.)

successfully completed the entire experiment.
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All participants with normal or corrected-to-normal vision

provided their informed consent forms and basic information forms,

and specified the scales and behavioral tasks to be completed during the

experiment. Prior to the experiment, no participants reported a history

of craniotomy or head injury, personal or family history of neurological

or psychiatric disorders, metal implants or implanted electronic devices,

skin sensitivities, or drug use. For safety reasons, individuals who are

pregnant or may become pregnant were excluded from participation.

Informed consent was obtained before engaging in the research. This

study was approved by the Human Ethics Committee of the University

of Science and Technology of China (IRB No. 2022KY275).
2.2 Experimental procedure

Participants voluntarily participated in a total of 10 stimulation

sessions, comprising five sessions of tDCS and five sessions of tACS,

each stimulus type with varying durations (2 minutes, 5 minutes, 7

minutes, 10 minutes, and 20 minutes). In our study, the interval

between each stimulation session is 5 minutes. No washout period

was included. Therefore, we implemented a Latin square design to

balance the sequence of experimental conditions. This design

ensures that the effects of different conditions are evenly

distributed across participants, effectively minimizing potential

carryover or order effects on the results. The experiment adhered

to a single-blind multi-condition experimental approach.

Participants were instructed to complete neuropsychological

scales such as MoCA and SAS prior to the formal stimulation.

During the stimulation process, participants engaged in a

behavioral keystroke Stroop task and stopped the Stroop task at

the end of the stimulation. The VAS, SSR, AEs, AEs-rela, and

VAMS-R scales were completed immediately after each stimulation

session. After the completion of all the stimulations, each subject

underwent neuropsychological scale assessments such as MoCA

and SAS, as illustrated in Figure 1.
2.3 Transcranial electrical stimulation

The selected electrode is a preconfigured gel particle electrode,

which is connected to the output port of the stimulator using a

silver/silver chloride powder sintered electrode and a gel-fixed shell,

with a diameter of 10 mm. It is secured on the scalp using a

professional EEG electrode cap, ensuring that the impedance value

during electrical stimulation remains below 15 kW. tDCS was set to

2 mA, and tACS was set to 2 mA at 10 Hz. The current linearly

increased to 2 mA for 30 seconds at the beginning of the stimulation

and then decreased to 0 mA for 30 seconds at the end of the

stimulation. The intensity of stimulation at 2 mA was maintained

throughout the duration of this study. Real-time monitoring of

impedance changes during the stimulation process is conducted by

analyzing impedance return values from software on the tablet. If

the impedance levels become too high, the relay will be

automatically disconnected to protect the subject. At the end of

each stimulation session, participants were required to complete a

self-reported preparation form before commencing the next
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stimulation program. Participants were seated in a comfortable

chair, which they adjusted according to their preference, facing a

screen displaying the Stroop task.

The transcranial electrical stimulation device utilized is a lithium

battery-powered stimulator. The stimulator communicates with the

software on the tablet computer via Bluetooth, and the software

establishes specific parameters, which are then transmitted to the

stimulator for execution. The stimulator has been isolated from the

main power supply, and batteries are utilized to ensure the safety of

the subjects. The performance of the stimulator has been previously

verified in the literature (50). The F3 and F4 electrodes in the 10-20

EEG system were selected as stimulation sites in this experiment,

which are located in the left and right prefrontal lobes, respectively.

The reason of the selection of the stimulation site was that the

function of the brain region underlying the F3 and F4 electrodes

aligns with the cognitive abilities verified by the Stroop task (51, 52).

The participant is blinded to the stimulus conditions, and the

control software for the stimulus parameters is installed on a tablet

computer, ensuring that the participant does not have access to

information regarding the stimulus parameters.
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2.4 Neuropsychology tests

The MoCA Scale is a convenient and efficient cognitive

screening tool that encompasses various cognitive domains,

including attention and concentration, executive function,

memory, language, visual-spatial skills, abstract thinking,

calculation, and orientation. To minimize the impact of pre-test

memory on subjects’ performance, an alternate version of the test

was administered both before and after the experiment.

The SAS scale is a psychometric tool utilized for assessing

anxiety state and severity. Participants respond to a series of self-

reported questions regarding feelings of anxiety, encompassing

sensations such as nervousness, worry, fear, and physical

discomfort. Each item is rated on a Likert scale from 1 to 4 (1 =

absent or rarely present, 2 = sometimes present, 3 = mostly present,

4 = almost always or always present). They then select a rating that

best corresponds to their current situation. Subsequently, the scores

for each item are totaled and calculated to derive an overall score.

This score is used to determine the presence of anxiety disorders

and evaluate the level of anxiety symptoms in individuals.
FIGURE 1

(A) Locations of the stimulation electrodes. The positive and negative electrodes of a pair are placed in F3 and F4, respectively. (B) Schematic
diagram of tDCS and tACS stimulation with a current intensity of 2mA. (C) Experimental Procedure. (D) Preset gel particle electrode used in
this experiment.
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The VAMS-R scale were utilized to assess the emotional states

of the participants. Emotional states, including changes in visual

perception of sorrow, bewilderment, fear, happiness, fatigue, anger,

strain, and full of energy, were gauged by indicating the intensity of

feelings on a specified emotional continuum line. After

measurement and quantification, each item was scored on a scale

ranging from 0 to 100, with a high score indicating that emotion

was strong and a low score indicating the opposite.
2.5 The Stroop task

The Stroop task, also known as the Stroop Effect experiment, is a

classic psychological study initially proposed by John Ridley Stroop in

1935 (53). This experiment is primarily utilized to investigate human

cognitive processes, particularly in the areas of attention, perception,

reaction time, and executive function. In this study, the performance

in the Stroop task was used to indicate whether subjects concentrate

enough during the experiment (51, 54).

The Stroop task used in this study was compiled by PsychoPy

3.8.10. Instructions will be displayed when it was initiated. Please wait

until the participant is ready and press the ‘space’ key to begin. A

series of color words will appear on the screen. However, it is

important to note that the task is not to read the meaning of the

word, but rather to quickly and accurately report the color of the

word by pressing the corresponding button. Specifically, ‘red’

corresponds to the key ‘R’, ‘green’ corresponds to the key ‘G’, ‘blue’

corresponds to the key ‘B’, and ‘yellow’ corresponds to the key ‘Y’.

The experimental procedure involved consistent and

inconsistent colors. Participants were instructed to focus on the

colors and ignore the words. Clear prompts were provided between

the beginning of the experiment and each stage. If participants had

any questions, they were encouraged to ask the interviewer. After

becoming familiar with the task, participants were instructed to

promptly and accurately identify and provide feedback on the word

font color in the formal stimulus experiment. Following the

conclusion of the experiment, data on both accuracy rate and

reaction time were collected by the Stroop task stop program

from participant responses. This study focuses specifically on two

key results: percentage of correct responses and reaction time.
2.6 Sensation and adverse events

The pain score is measured by the VAS, which ranges from 0 to

10 points from left to right. A higher score indicates a greater level

of pain. The relation between the score and pain intensity is as

follows: 1-3 = mild pain; minimal impact on activities of daily living;

4-6 = moderate pain; moderate impact on the ability to live daily; 7-

10 = severe pain; significant impact on the ability to live daily.

The SSR scale was used to indicate the tolerance effect of tES on

the subject by providing evaluation options of ‘no sensation,’

‘slight,’ ‘moderate,’ ‘severe,’ and ‘extreme,’ corresponding to

discrete values of 1, 2, 3, 4, and 5, respectively. Subjects are

allowed to stop the stimulation process at any time if they are

unable to tolerate it.
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AEswere evaluated for symptoms suchasheadache, neckpain, scalp

pain, scalp pressure, tingling, burning sensation, itching sensation,

sleeping issues, trouble concentrating, dizziness, nausea, and vibration

intensity on a scale of 1 to 4 (1 = absent, 2 = mild, 3 = moderate, 4 =

severe). Simultaneously, participants rated the relationship between

adverse events and tES (AEs-relation) on a scale of 1 to 5 (1 = none,

2 = remote, 3 = possible, 4 = probable, 5 = definite).
2.7 Statistical analysis

All analyses were conducted using OriginPro 2021 software

(OriginLab Corp, Northampton, MA, USA) and IBM SPSS

Statistics 26.0 (IBM Corp, Armonk, NY, USA). Based on the

normality and homogeneity of variance of the data in each

condition, the paired-sample Wilcoxon signed-rank test with

non-parametric analysis was utilized for the comparison between

tDCS and tACS. Friedman analysis of variance (ANOVA) was

performed for the comparison between five stimulation durations.
3 Results

By applying tES to F3 and F4 on the scalp surface of healthy

subjects using preset gel particle electrodes, we investigated the

safety and tolerability of stimulation types (tDCS and tACS), as well

as stimulation durations (2 minutes, 5 minutes, 7 minutes, 10

minutes, and 20 minutes). In the study, MoCA, SSA, VAS, and

SSR, AEs, AEs-rela, VAMS-R and Stroop analysis based on

participants’ rating and response were analyzed.

The results of MoCA and SAS scales showed no significant

changes in cognitive function and anxiety levels before and after the

stimulation sessions (see Figure 2A), suggesting that the subjects

remained in a cognitively normal and non-anxious state throughout

the study. The accuracy in the Stroop task under different

conditions was larger than 85%, with an averaged accuracy was

larger than 97%, indicating that subjects were quite engaged in the

experiment, minimizing potential discrepancies in self-reported

outcomes due to distractions (15).
3.1 Stimulation duration

For the VAS, and SSR, AEs, AEs-rela, VAMS-R and Stroop, no

significant differences were found between stimulation durations

(p > 0.05), except for the fatigue item and the full of energy item of

the VAMS-R (see Supplementary Table S1). Specifically, with the

increase in the duration of stimulation, fatigue of subjects

significantly increased (c2 = 13.667, p = 0.008), while energy

significantly decreased (c2 = 9.906, p = 0.042).
3.2 Stimulation type

In the experiment, we collected VAS pain ratings and skin

sensation ratings of the subjects in each session. The average VAS
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rating was below 5 points, and the skin sensation rating was also

below 3 points. The results indicated that tDCS was significantly

higher than tACS in terms of both VAS (Z = 2.867, p = 0.001) and

SSR (Z = 2.048, p = 0.033) ratings, and subjects felt more painful

and less tolerable under the stimulation of tDCS (see Figure 2B).

For the AEs, significant differences were found between tDCS

and tACS for headache, scalp pain, scalp pressure, tingling, burning

sensation, trouble concentrating, dizziness, and vibration (Z =

-5.976 to 5.526, p = <0.001 to 0.029). Specifically, headache, scalp

pain, tingling, and burning sensation were more intense under

tDCS than those under tACS. On the other hand, scalp pressure,

trouble concentrating, dizziness, and vibration were more intense

under tACS than under tDCS (see Supplementary Table S2;

Figure 3A). Detailed data revealed that adverse events with a

rating higher than half of the total value included scalp pain,

tingling, and burning sensation under tDCS, as well as scalp pain,

scalp pressure, tingling, and vibration under tACS.
Frontiers in Psychiatry 06
For the AEs-relation, consistent with those for AEs, significant

differences between tDCS and tACS were found regarding

headache, scalp pressure, tingling, burning sensation, trouble

concentrating, dizziness, and vibration (Z = -5.569 to 4.495,

p = <0.001 to 0.013), indicating that subjects believed that these

adverse effects were more likely to be related to the stimulation of

tDCS or tACS (Supplementary Table S2; Figure 3B). Specifically, the

belief of the relation between AEs and tES was stronger for tDCS

than tACS regarding headache, tingling, and burning sensation

while weaker regarding scalp pressure, trouble concentrating,

dizziness, and vibration.

In this experiment, the subjects were evaluated for their

emotional responses after each stimulation session. The result

shown in Figure 4 indicated that there was no significant difference

in emotional response between tDCS and tACS. As illustrated in

Figure 5, the Stroop behavioral keystroke experiment showed no

significant variance across different stimulus types.
FIGURE 3

(A) Comparisons of Adverse events (AEs) between tDCS and tACS. (B) Comparisons of Adverse events relation (AEs-rela) of tES between tDCS and
tACS. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001.
FIGURE 2

(A) Results of the Montreal Cognitive Assessment (MoCA) and Self-Rating Anxiety Scale (SAS) before and after the experiment. (B) Comparisons of
the pain measured by Visual Analog Scale (VAS) and skin sensation rating (SSR) between tDCS and tACS. * indicates p < 0.05, ** indicates p < 0.01.
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4 Discussion

With the advancement of technology, gel particle electrodes have

gradually emerged in our field of vision. Due to their portability,

comfort, hygiene, and ease of operation, they have become an

important option for brain-computer interface electrodes. In this

study, we examine the tolerability and safety with 2mA current of

different stimulation durations and types using preset gel particle

electrodes. There were no significant differences between different

durations but significant differences between stimulation types,
Frontiers in Psychiatry 07
stressing on the attention to the stimulation type rather than

stimulation durations when accessing the tolerability and safety.

For the influence of stimulation durations, there were no significant

differences in tolerance and safety except for emotions like fatigued and

energetic, indicating that tolerability and safety in this study remained

stable regardless of the duration of stimulation. Since it was found that

participants experienced a significant increase in fatigue and a

significant decrease in feelings of being full of energy, the prolonged

stimulation may have a negative impact on the emotional state of the

participants, particularly in terms of fatigue. The findings suggests that
FIGURE 5

(A) Comparisosn of percent of correct in the Stroop task between tDCS and tACS. (B) Comparisons of reaction time in the Stroop task between tDCS and tACS.
FIGURE 4

Comparisons of items in Visual Analogue Mood Scales-Revised (VAMS-R) between tDCS and tACS.
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subjects can adapt to tES stimulation with increasing time, which has

significant implications for the design of long-term use of the device or

repeated stimulation protocols. It also provides a reference for selecting

experimental durations for future experimental methods and devices

aiming to test tolerability and safety.

By analyzing the scores of the MoCA and SAS scales, it is evident

that this experiment does not induce changes in mild cognitive

impairment or anxiety state among the subjects. This indicates that

both the experimental design and tES itself have no obvious harmful

psychological effects on the participants. Furthermore, statistical analysis

of VAS, SSR, and AEs suggests that tDCS brought about more changes

in pain perception in subjects, while the vibration and other sensations

brought about by tACSmay be more influenced by the characteristics of

the AC current waveform. However, there was no discernible difference

between the two types of stimuli in terms of emotional responses and

Stroop performance. Generally, the tolerability and safety of tDCS were

found to be inferior to that of tACS in this study conditions.

The current study has some limitations. The study only targeted

basic tES and did not investigate the potential effects ofmore stimulating

parameters such as electrode position, duty cycle, and waveform on

tolerance and safety. Limited by the total stimulus duration, this study

did not include longer stimulus durations of more than 20 minutes per

session. The sample size was small, and the subjects were mostly from

universities, so future studies should consider selecting a larger and

more diverse sample to examine differences across various subjects.

Furthermore, the study was focused on the behavioral data, lacking

biomarkers to further explore neurophysiological mechanisms.
5 Conclusion

The study demonstrates significant differences in tolerability

and safety between tDCS and tACS when using preset gel particle

electrodes, suggesting that the choice of stimulation type should be

tailored to individual differences. There were no significant

differences in tolerance and safety effects for different stimulation

durations. It is recommended to select shorter durations when

validating other transcranial electrical stimulation devices and

treatment approaches to efficiently explore tolerability and safety.
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