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Behavioral addictive disorders (BADs) have become a significant societal challenge

over time. The central feature of BADs is the loss of control over engaging in and

continuing behaviors, even when facing negative consequences. The

neurobiological underpinnings of BADs primarily involve impairments in the

reward circuitry, encompassing the ventral tegmental area, nucleus accumbens in

the ventral striatum, and prefrontal cortex. These brain regions form networks that

communicate through neurotransmitter signaling, leading to neurobiological

changes in individuals with behavioral addictions. While dopamine has long been

associated with the reward process, recent research highlights the role of other key

neurotransmitters like serotonin, glutamate, and endorphins in BADs’ development.

These neurotransmitters interact within the reward circuitry, creating potential

targets for therapeutic intervention. This improved understanding of

neurotransmitter systems provides a foundation for developing targeted

treatments and helps clinicians select personalized therapeutic approaches.
KEYWORDS
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1 Introduction

With social progress and technological development, significant shifts have occurred in

people’s lifestyles and behavior patterns. Concurrently, the prevalence of behavioral addictive

disorders (BADs) is increasing, presenting with a wide range of manifestations. This trend is

particularly noticeable among younger demographics, where studies indicate that
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approximately 1.25% to 5% of minors meet the criteria for Internet

Gaming Disorder (IGD) (1). In the 11th Revision of the International

Classification of Diseases (ICD-11) (2) issued by the World Health

Organization (WHO), gambling disorder (GD) and IGD have been

classified as disorders caused by addictive behaviors, sparking

widespread research interest. Research indicates that other non-

substance addictive behaviors, such as compulsive sexual behavior

disorder (CSBD) (3), buying-shopping disorder (4) and internet-use

disorders (5), show similar clinical presentations and neurobiological

mechanisms to gambling and gaming addictions. The defining

feature of BADs is the repetitive engagement in rewarding

behaviors, accompanied by weakened control despite negative

consequences. Moreover, BADs may share clinical, genetic,

neurobiological, and phenomenological similarities with substance

addictions. Recent meta-analyses have revealed that (6) both

conditions exhibit disrupted resting-state functional connectivity

between the frontal network and other high-level cognitive

networks (including default mode, affective, and salience networks).

Therefore, studying the neurobiological basis of BADs and exploring

their mechanisms and treatment approaches has significant

theoretical and practical implications similar to substance addictions.

BADs and substance addictions share a common core feature: the

loss of behavioral control (7). This significant overlap in their

manifestations implies a shared neurobiological basis involving the

disruption of the “reward system,” also known as the reward circuit.

In contrast to previous perspectives, it is now acknowledged (8) that

individuals suffering from addiction are not addicted to a specific

substance or activity but rather to the corresponding brain responses

elicited. The reward circuit encompasses an intricate network of

neurons governing human reward and punishment responses

through interconnected pathways. It encompasses multiple brain

regions, including the ventral tegmental area (VTA), nucleus

accumbens (NAc)in the ventral striatum (VS), basal ganglia,

prefrontal cortex (PFC), amygdala (AMY), and hippocampus.

Among these regions, the mesolimbic dopamine pathway in the

midbrain serves as the ultimate common pathway for reinforcement

and reward triggered by physiological stimulation or addictive

behaviors (9). In the development and maintenance of BADs,

specific brain regions establish connectivity via neurotransmitter-

mediated signaling, resulting in intricate individualized

neurobiological changes.

In the past few decades, dopamine (DA) has held a prominent

position as the central factor in BADs, playing a pivotal role within

the reward circuit. Nevertheless, recent studies have underscored

the significance of other neurotransmitters and their intricate

interplay within the reward circuit, including serotonin (i.e., 5-

hydroxytryptamine, 5-HT), endorphins, gamma-aminobutyric acid

(GABA), glutamate (Glu), and norepinephrine (NE) (10, 11). The

coordinated interactions among these neurotransmitters, particularly

the DA-glutamate-GABA circuit in the NAc and the serotonin-DA

interactions in the VTA, form the neurochemical basis of the reward

circuit (12, 13). Furthermore, the interactions between

neurotransmitters can also affect the activity of the reward circuit

and the development and maintenance of BADs through mechanisms

such as synaptic plasticity, neuronal excitability, membrane potential,

and receptor binding (12, 13). Recent neuroimaging and molecular
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studies (6, 14, 15) have revealed specific neural pathways in BADs’

reward circuit, establishing direct links between psychological

symptoms and their neurobiological underpinnings.

This review explores the roles of neurotransmitters such as DA,

serotonin, endorphins, GABA, Glu, and NE in the reward circuit,

focusing on elucidating the intricate interactions between these

neurotransmitters. Additionally, this study will analyze the impact

of neurotransmitter interactions on reward circuitry activity and

BADs, providing insights and references for the neurobiological

research of BADs and theoretical support for developing novel

treatment strategies targeting specific neurotransmitter interactions.
2 Neurotransmitter interactions
in BADs

2.1 Dopamine

The neurobiological mechanisms associated with the reward

circuit in BADs remain partially understood. DA has been

identified as a pivotal factor in reward processing, motivation

control, and behavioral activation in BADs (16). The dopaminergic

system (17, 18) includes the mesolimbic system (from the VTA to the

NAc, AMY, and hippocampus), the mesocortical system (from the

VTA to the PFC), the nigrostriatal system (from the substantia nigra

pars compacta (SNc) to the striatum), and the tuberoinfundibular

system, with the mesolimbic system playing a major role in the

reward circuit. The VTA, where dopaminergic neurons are located,

informs the organismwhether environmental stimuli (such as natural

rewards, substance abuse, online gaming, stress, etc.) are aversive or

beneficial. Nerve propagation takes place from the VTA which leads

to DA release in the NAc, and this dopaminergic signaling

contributes to feelings of pleasure and contentment. These

sentiments enhance motivation to pursue rewards. Current

literature indicates (19–22) that individuals with gambling

addiction may display inaccurate reward predictions or heightened

uncertainty concerning rewards, leading to phasic, peak DA signals

within the NAc. Moreover, prolonged and excessive engagement with

the internet and video games can swiftly elevate DA release in the

NAc. The PFC, encompassing the dorsolateral PFC and orbitofrontal

cortex, is another critical brain region linked to BADs. Following DA

release in the NAc by VTA neurons, the PFC contributes to decision-

making and emotional regulation. For instance, it may construe

addictive behaviors as manifestations of pleasure (reward) (20).

Simultaneously, exposure to visually stimulating reward cues or

pleasurable experiences during gaming triggers an upsurge in DA

release within the VS (23–25). In summary, with prolonged exposure

to specific activities or stimuli, brain regions integral to the reward

circuit interpret signals and provide responses. The pathological surge

in DA signaling within regions like the PFC and VS areas constitutes

one of the underlying mechanisms of BADs (26).

Elevated DA transmission is crucial in the pathology of BADs.

Research findings (27–29) are converging despite lacking cellular-

level consensus. In pathological gambling (30–34), the intensity of

gambling symptoms shows a positive correlation with heightened DA

release within the VS and dorsal striatum (DS). Linnet et al. (35)
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identified a direct correlation between DA release and subjective

excitement. In GD (36), D1 receptor activation in the direct striatal

pathway and D2 receptor inhibition in the indirect pathway increase

NAc dopamine, affecting decision-making. Moreover, the binding of

DA to inhibitory receptors D2 and D3 in the NAc or PFC is closely

associated with the impulsive characteristics of GD (37, 38). In

addition to binding with receptors in the NAc, DA has been found

to increase the severity and impulsivity of GD when it binds with D3

receptors in the SNc (34, 39). Experiments in animal models have also

revealed a relationship between D4 receptors and impulse control

and gambling behavior (40–42). Furthermore, a study showed (43)

that the dopamine transporter (DAT) plays a role in gambling

addiction, as the impulsivity of elderly individuals with GD is

positively correlated with DAT activity. The clinical manifestations

of GD are complex and diverse. It is not only associated with

increased synthesis and release capacity of DA in the reward

circuitry but also closely linked to the abundance of presynaptic

DAT and the availability of postsynaptic receptors. Studies (44–48) of

IGD show similar patterns, with increased DA secretion relating to

impulsivity and reward dependence. Additionally, both the density

and availability of DA receptors in the striatum are decreased in IGD

patients compared to healthy controls. It has also been found that

longer durations of internet gaming addiction can lead to a more

severe imbalance of D2 receptors. Furthermore, the severity of

internet gaming addiction and depressive mood negatively correlate

with DAT levels (49, 50). In summary, the prolonged use of internet

gaming can dysregulate the DA system, exacerbating the severity of

IGD and increasing susceptibility to impulsive behaviors.

In contrast, reduced release of DA induces cravings for DA,

increasing their vulnerability to engage in impulsive and compulsive

behaviors. Resulting in imbalanced decision-making, triggering

subsequent releases of additional DA. For example, a study using

positron emission tomography (PET) with the tracer [11C]

raclopride (51) found that in healthy control subjects, there was a

positive correlation between DA release in the VS and performance

on the Iowa Gambling Task (IGT) while individuals with GD

exhibited an inverse correlation. This suggests that diminished DA

release contribute to the imbalanced decision-making observed in

GD individuals within rewarding scenarios. Other studies (52, 53)

have supported this notion by demonstrating that reduced DA

synthesis and release are associated not only with imbalanced

decision-making but also with heightened craving and dependence

in patients. The intensified craving seen in individuals with BADs is

not only linked to reduced DA release but also to a decrease in the

density of D2 receptors (54). Reduced binding of D2 and D3

receptors within the VS can lead to heightened craving in gambling

addiction patients, accompanied by the emergence of negative

emotions such as anxiety and depression. The availability of DA

receptors is inversely correlated with emotional impulsivity

(“urgency”) in the striatum (30, 37, 55). Moreover, prolonged

internet use or video gaming (20, 45) can lead to a decline in DA

receptor sensitivity and frontal lobe dysfunction, resulting in cravings

for games and triggering negative emotions in individuals with

internet gaming addictions. Studies of CSBD neurobiology,

including dopaminergic pathways, represent an emerging field,

requiring further investigation to establish specific mechanisms
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(56). Although some studies indicate no significant differences in

DA release within the reward circuitry (34, 37, 38) and the availability

of D2 and D3 receptors (32, 33) when compared to healthy

individuals, the pivotal role of the DA system in BADs remains

indisputable based on the existing literature.

In summary, BADs emergence involves DA synthesis, release,

receptor availability, DAT, and enzymatic function. DA system

disruption and heightened reward circuit activity underlie control

loss and impulsivity in BADs. The DA system serves as both the

neurobiological foundation of BADs and a significant target for their

treatment. This establishes a theoretical framework for the utilization

of pharmacological interventions in BADs from a neurobiological

standpoint in clinical settings. Specifically, D2 receptors play a role in

the interaction with DA release within the reward circuitry of BADs.

Several studies have indicated that the use of dopaminergic drugs

(such as levodopa) in the treatment of Parkinson’s disease and restless

leg syndrome may increase the likelihood of developing gambling

problems or other potential impulsive or compulsive behaviors, such

as shopping, sex, binge eating, etc. (57–61). Symptom severity in

BADs patients also tends to decrease when dopaminergic

medications are reduced. Furthermore, the heightened risk of

BADs associated with levodopa is not solely attributed to its

binding with D2 receptors but also to its inhibition of GABA

release, a critical element (62). Some conflicting evidence exists

regarding the effects of dopamine D2 receptor antagonists (such as

haloperidol, olanzapine, etc.). While one study found (63) that

haloperidol reduced the inclination of individuals with GD to place

more aggressive bets after receiving a reward in a slot machine task,

another study reported (64) that haloperidol heightened the

rewarding effects and gambling desires reported by individuals with

GD. Additionally, olanzapine has not demonstrated positive effects in

the treatment of GD (65–67). These findings highlight the intricate

connection between dopamine D2 receptor function and gambling-

related motivations and behaviors. Another subset of DA receptors,

the D3 receptors (68), are highly concentrated in regions like the

NAc, olfactory bulb, and hypothalamus (HYP) and are involved in

functions such as reward processing, craving, and aversive emotions.

DA agonists like pramipexole and ropinirole, which selectively

target D3 receptors, increase the susceptibility to developing GD

(39, 69–72). An experimental study using the rat gambling task (rGT)

found that buspirone (a 5-HT1A receptor agonist) at a low dose level

(3mg/kg) exclusively occupied D3 receptors, while at a high dose

level (10mg/kg) simultaneously occupied D2 and D3 receptors,

resulting in a greater number of advantageous responses than

disadvantageous responses in the rGT for rats (73). In addition, the

D4 receptors are also associated with gambling behavior (74).

Activation of D4 receptors by the D4 agonist PD168077, primarily

in the anterior cingulate cortex (ACC), led to rats displaying incorrect

reward expectations during a rodent slot machine task. Since D4

receptor activation promotes gambling-like behaviors, this discovery

suggests that D4 receptor antagonists might be promising therapeutic

agents for treating BADs. DAT is a crucial protein that regulates DA

levels in the synaptic cleft and controls the duration of DA signaling

(75). In normal conditions, DAT reuptakes DA from the synaptic gap

into the cytoplasm of presynaptic neurons, and alterations in DAT

function significantly influence both intracellular and extracellular
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DA concentrations. Amphetamine is a dopaminergic drug (76) that

not only affects synaptic plasticity in dopaminergic neurons but

also causes reversal of the direction of DAT and dopamine release

in the striatum, which can increase the concentration of DA in the

synaptic cleft and may promote adverse effects such as gambling

thoughts and behaviors. Another central nervous system stimulant,

methylphenidate, inhibits the degradation enzymes of both DA and

NE, extending their presence in the synaptic cleft and augmenting

their effects. An 8-week trial administering methylphenidate

to children diagnosed with attention deficit hyperactivity disorder

(ADHD) and internet gaming addiction demonstrated significant

reductions in both internet addiction scores and usage time (77),

suggesting a potential for methylphenidate to be utilized as a

beneficial intervention for internet addiction in children with

ADHD. Additionally, supplementation therapy addressing

compromised DA function has shown promise in fostering

sustained dopaminergic activation, effectively treating impulsive

behaviors associated with BADs without adverse effects (78). In the

clinical treatment of BADs, attention should also be given to D1 and

D5 receptors and the catechol-O-methyltransferase (COMT)

enzyme. However, it is important to interpret the aforementioned

findings cautiously, as further experimental investigations are

required to comprehensively comprehend the role of DA in various

BADs to identify more precise targets for prevention and treatment.

Current addiction theories maintain some unresolved viewpoints

regarding DA’s role. Beyond DA research, exploring other

neurotransmitters is crucial for understanding BADs reward

circuitry. A previous study indicated (79) that systems involving

serotonin, endorphins, Glu and GABA are associated with substance

addictions to varying degrees. Furthermore, these systems (11) exert

significant interference on BADs andmay interact with DA and other

neurotransmitter systems in complex ways.
2.2 Serotonin (5-HT)

In addition to the DA system, there is compelling evidence (80)

implicating the serotonergic system (the 5-HT system), in the reward

circuitry of BADs, playing a role in the initiation and cessation of

addictive behaviors. The dorsal and median raphe nuclei (DRN/

MRN), located in the brainstem, are the primary sources of

serotonergic neurons. These neurons project widely throughout the

brain, particularly to key reward-related regions including the NAc,

and AMY, where they modulate dopaminergic transmission. The

NAc, through its core and shell subdivisions, is a pivotal brain area

associated with reward and pleasure processing, which has been

shown to be regulated by serotonin through 5-HT1B and 5-HT2C

receptors (81). Similarly, disruptions in serotonin levels within the

AMY have been linked to decision-making, impulse control, and

emotions such as anxiety and fear in the context of BADs (82, 83).

Furthermore, serotonin produced by serotonergic neurons in the

DRN/MRN projects to various brain regions, including the PFC

(84, 85). In the PFC, 5-HT primarily exerts inhibitory effects on

pyramidal neurons, thereby contributing to the prefrontal inhibition

of potentially harmful behaviors (86, 87). Thus, it is evident that

serotonin release in regions such as the NAc, AMY, and PFC
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influences decision-making, behavioral control, and emotional

changes in BADs by modulating the DA system.

While serotonin is not a part of the subcortical dopaminergic

regulatory system, it can exert influence over the DA system through

direct or indirect modulation. Specifically, dysregulation of the

serotonergic system may contribute to clinical manifestations such

as behavioral inhibition and impulsivity in GD. One study found (88)

a positive correlation between the severity of gambling problems in 10

males with GD and levels of 5-HT1B receptors in the VS and ACC.

Furthermore, factors like increased anxiety and depression in

individuals with GD suggest that 5-HT release in the serotonergic

system may play a crucial role in alleviating negative emotions in

patients (89). Previous research (90) investigated the availability of

serotonin transporters (SERT) in individuals with GD compared to

healthy controls and found no intergroup differences. However, a

recent study (43) discovered a positive correlation between increased

SERT activity in the PFC and impulsivity in elderly individuals with

GD. Another study (91) further demonstrated that higher SERT

binding potential in the prefrontal region was associated with

imbalanced decision-making (leaning more towards habit-based

control) in individuals with GD. These findings suggest that

abnormal increases in SERT may also be one of the pathogenic

mechanisms of BADs. Additionally, the levels of the serotonin

metabolite 5-hydroxyindoleacetic acid (5-HIAA) in cerebrospinal

fluid and the decreased activity of platelet monoamine oxidase

(MAO) in blood (considered as a peripheral marker of 5-HT

activity) (92–94) provide additional support for serotonin

dysfunction in male gambling. In addition to findings related to

gambling addiction, scholars have also discussed the significance of

the serotonin system in IGD. It has been reported that prolonged

exposure to electronic devices can lead to insufficient levels of vitamin

D3 and melatonin in the body, resulting in gradual dysregulation of

DA and serotonin neurotransmitter pathways in the brain, leading to

addictive behaviors (95–97). Decreased levels of 5-HT have been

found to be associated with the severity of internet gaming addiction

and depressive mood, while regular exercise can increase 5-HT levels

in the blood, alleviating negative emotions in individuals with IGD.

Furthermore, a study (47) reported a correlation between decreased

availability of 5-HT2A receptors in the temporal cortex and

decreased availability of dopamine D2 receptors in the striatum in

individuals with IGD. In addition to directly regulating DA release,

evidence suggests that serotonin may modulate endorphins release in

the HYP, potentially affecting GABA inhibition in the SNc and VTA,

which could influence DA release in the NAc (80). This pathway may

represent one of several mechanisms contributing to BADs. However,

caution should be exercised in interpreting the stability and

generalizability of the above research findings.

Collectively, serotonin dysregulation is another pathogenic

mechanism involved in BADs, as it influences key neural circuits

related to reward processing, decision-making, and impulse control,

primarily through its interactions with dopaminergic, glutamatergic,

and GABAergic systems. Previous pharmacological studies offer a

theoretical foundation for investigating the neurobiological aspects

of BADs and identifying key therapeutic targets. One such target is

the SERT, which plays a pivotal role in regulating 5-HT reuptake.

SERT’s function is to reabsorb 5-HT from the synaptic cleft back
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intopresynaptic neurons, thereby maintaining a stable 5-HT level and

regulating serotonergic signaling strength (98). Dysregulation of

SERT activity can lead to either excessive or insufficient

serotonergic transmission, contributing to behavioral and

emotional dysregulation in BADs. Previous studies have found that

selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine,

paroxetine, and citalopram are effective in reducing symptom

severity, craving, and maladaptive decision-making in GD (99–

101), IGD (102–105), CSBD (106–108), and compulsive shopping

disorder (109). The 5-HT1A receptors (110, 111) are inhibitory

receptors that, when activated on glutamatergic pyramidal cells

and/or GABAergic interneurons in the PFC, stimulate DA release

in the frontal cortex. Research has shown (112–114) that 5-HT1A

receptor agonists, such as buspirone, can ameliorate anxiety and

depressive symptoms during withdrawal from substance addiction

(e.g., cocaine, alcohol, nicotine). A study in rodents (73) has also

demonstrated that buspirone can improve decision-making in the

rGT. The 5-HT1B receptors are other inhibitory receptors primarily

located in the SNc, where their activation inhibits the release of

neurotransmitters such as GABA, acetylcholine (ACh), and Glu,

thereby modulating neural excitability and reward processing (115–

118). Preclinical and clinical studies (119–121) have highlighted the

role of the 5-HT1B receptors in managing depression and anxiety

and their association with aggression and impulse control. Meta-

chlorophenyl piperazine (mCPP) (122, 123), a metabolite of

trazodone, is a mixed agonist for 5-HT1 and 5-HT2 receptors,

particularly 5-HT1B receptors. In individuals with GD, mCPP

administration has been reported to elicit subjective feelings of

‘excitement’ or arousal, whereas control subjects typically report

aversive reactions. The 5-HT1D receptors (124, 125) primarily

distribute across regions, including the caudate putamen, NAc,

olfactory cortex, DRN, and locus coeruleus (LC) in the brain of

rats. A study (126) reported that individuals with GD exhibited a

reduced response to the selective 5-HT1D receptor agonist

sumatriptan in terms of growth hormone release, whereas in the

control group, growth hormone release increased. Furthermore, the

5-HT2A receptors (127, 128) are excitatory receptors, with a

significant concentration of binding sites in prefrontal brain areas,

including the cortical and hippocampal regions, basal ganglia, and

olfactory tubercle. These receptors are involved in modulating

glutamate release, synaptic plasticity, and emotional regulation.

Present research (129–132) showed that 5-HT acting on the 5-

HT2A receptors can enhance Glu release in cortical pyramidal cells

and GABAergic inhibition in the AMY. A study (133) on the

treatment of GD with a 5-HT2A receptor antagonist (nefazodone)

revealed that within eight weeks after treatment, the scores for Yale

Brown Obsessive Compulsive Scale adapted for Pathological

Gambling (PG-YBOCS) and the Pathological Gambling Clinical

Global Impression (PG-GCI) decreased by 37% compared to

baseline levels. In a recent case report (134), researchers used a

combination of fluoxetine and risperidone to treat GD patients and

noted that three patients did not experience gambling thoughts and

behaviors for a year and a half following treatment, suggesting that

fluoxetine, as an SSRI medication, primarily acts on the SERT, while

risperidone is an atypical antipsychotic medication that blocks the 5-

HT2A receptors with high affinity and has limited selectivity for the
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5-HT2C and DA receptors. Therefore, combining these

two medications may be more effective in controlling addiction

than using them individually, expanding the potential utility of 5-

HT2A antagonists in managing addiction. The 5-HT2C receptors are

primarily situated on postsynaptic serotonergic neurons that interact

with GABAergic, glutamatergic, dopaminergic, and cholinergic

neurons. For instance, stimulation of 5-HT2C receptors (135, 136)

in the VTA increases the firing rate of GABAergic interneurons,

leading to a decrease in the firing rate of dopaminergic neurons.

Conversely, it has been reported (137) that 5-HT2C receptor

antagonists can increase dopaminergic neurotransmission and DA

levels in the NAc and PFC. Furthermore, studies (138–140) have

found that when 5-HT from the MRN acts on the 5-HT2C receptors

of GABAergic interneurons in the PFC, it enhances the inhibitory

effects of these interneurons, thereby counteracting the inhibitory

effects of GABA on pyramidal output neurons. This relief of

inhibition leads to increased activity of pyramidal output neurons

and increased excitability of glutamatergic neurons. An animal

experiment (141) demonstrated that 5-HT2C receptor antagonists

can disrupt maladaptive decision-making patterns in rats in the rGT,

suggesting their potential role in modulating maladaptive behaviors,

though the translational relevance to humans remains to be

established. Similarly, a study (142) exploring the use of the

antidepressant agomelatine (an M1/M2 agonist and 5-HT2C

antagonist) in pathological gambling patients also indicated that

the medication not only ameliorates anxiety and depressive

symptoms in GD but also diminishes gambling thoughts and

behaviors. Additionally, while the mechanisms of 5-HT2B

receptors (143–146), 5-HT5A receptors (147) and 5-HT7 receptors

(148, 149) in BADs remain unclear, prior research has demonstrated

their involvement in substance addictions. For example, 5-HT2B

receptors are implicated in regulating impulsivity and aggression, 5-

HT5A receptors in circadian rhythm and mood regulation, and 5-

HT7 receptors in cognitive flexibility and emotional processing,

suggesting their potential as future pharmacological targets for BADs.
2.3 Endorphins

Endorphins play a pivotal role in the brain’s reward system, similar

to the roles of DA and serotonin. In individuals with BADs, DA is

believed to be associated (19, 22) with reward anticipation and

prediction error signals, while serotonin (12, 150) is involved in

impulse inhibition and behavioral control, particularly through its

effects on the PFC and its modulation of subcortical structures such

as the AMY and NAc. The endogenous opioid system (151–155)

influences DA neurotransmission in the mesolimbic pathway

extending from the VTA to the VS and is also involved in assigning

hedonic value to rewards and integrating reward-related information to

guide goal-directed decision-making and execution. Additionally, it

contributes to the perception of pleasure and the experience of cravings

while modulating responses to rewards and losses. The endogenous

opioid peptide system (156, 157) consists of b-endorphins (highest

content in the VTA, NAc and HYP) (158–160), enkephalins (highest

content in the VTA, NAc, SNc, HYP, striatum and hippocampus)

(161–163), dynorphins (highest content in the PFC, SNc, striatum and
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central AMY) (161, 164–166), and nociceptins (highest content in the

PFC and VTA) (167, 168). These peptides exert their effects through m-
opioid receptors (MOR), d-opioid receptors (DOR), k-opioid receptors
(KOR) and nociceptin opioid peptide receptors (NOPR). These

receptor systems are typically expressed at elevated levels in brain

regions responsible for processing emotions, rewards, and aversions,

such as the VTA, NAc, ACC, HYP, AMY and insula. b-endorphins
(169) can bind to MOR and DOR, with a higher affinity for MOR,

while enkephalins (170) have a stronger affinity for DOR than MOR

and KOR. Dynorphins (157, 171, 172) have the highest affinity for

KOR but can also bind to MOR and DOR within physiological ranges.

Nociceptins (173, 174) specifically bind to NOPR and have very low

affinity for other opioid receptors.

The role of endorphins in addiction appears to vary depending

on their binding to different receptors (175–177). Ligands targeting

MOR and DOR receptors may be associated with rewarding effects

and emotional regulation, while ligands for KOR receptors may be

linked to aversive effects. The function of NOPR receptor ligands in

BADs remains uncertain at present. However, preclinical studies

suggest that (178) NOPR activation may play a role in stress

modulation and the attenuation of reward-seeking behaviors,

indicating potential therapeutic implications for BADs. Previous

studies (80, 179–181) have found that gambling or gambling-like

activities (i.e., horse racing, slot machines, etc.) can trigger the release

of endorphins, particularly in the NAc and VTA, which are key

regions in the brain’s reward circuitry. Simultaneously, the increased

availability of MOR in the shell, caudate nucleus, and globus pallidus

is associated with presynaptic DA synthesis capacity, implying

that the release of endorphins not only directly augments DA

release but also, through MOR activation, inhibits the inhibitory

neurotransmitter GABA in the VTA, thereby facilitating DA release

in the NAc (182). Furthermore, it has been observed (183) that

endorphins in the NAc increase in response to DA activation,

suggesting a potential feedback loop between the dopaminergic and

opioid systems. Conversely, excessive activity of the endorphin

system can modulate dopaminergic function (184).

Up till now, researchers have investigated the effects of specific

opioid receptor agonists and antagonists in the addiction process (185).

On one hand, opioid agonists enhance DA release in the NAc,

significantly increasing pleasure and leading to orgasmic-like

cravings. On the other hand, opioid receptor antagonists inhibit DA

release in the NAc and the ventral pallidum by disinhibiting

GABAergic inputs to dopaminergic neurons in the VTA,

suppressing the excitatory and craving-related effects associated with

BADs. These findings may be important considerations for the future

development of treatments for BADs, particularly in targeting the

opioid-dopaminergic interactions that drive craving and reinforcement

mechanisms. Opioid antagonists, such as naltrexone and nalmefene,

primarily target MOR, DOR, and KOR (186), albeit with a lower

affinity for DOR and KOR. By blockingMOR, these antagonists reduce

the rewarding effects of addictive behaviors and substances, while their

effects on DOR and KOR may contribute to mood stabilization and

stress regulation. A recent meta-analysis of drug treatments for GD

investigating the findings from four randomized controlled studies on

naltrexone and nalmefene (187–190) found that opioid antagonists can

improve the severity of GD in the short term. However, there is
Frontiers in Psychiatry 06
currently insufficient evidence to determine their efficacy in addressing

the psychological symptoms of gambling, such as impulsivity and

craving, or their long-term effectiveness in preventing relapse. In this

regard, a study by Kim et al. (187) found that naltrexone was more

effective in treating individuals reporting severe impulsive behaviors

compared to those with low impulsive behaviors. Furthermore,

concerning the dosage aspect of pharmacological treatment, Grant

et al.’s research indicated that high doses of nalmefene (40mg/day)

were significantly more effective than placebo in treating GD

symptoms (188, 190). However, naltrexone (189) was found to be

effective at lower doses (50mg/day) with fewer adverse effects.

Additionally, despite the absence of large-scale randomized

controlled trials, naltrexone (191, 192) has demonstrated preliminary

efficacy in reducing CSBD symptoms and impulsive behaviors, while

nalmefene (193, 194) has demonstrated positive effects on addiction

symptoms and behaviors related to internet pornography addiction.

Presently, the mechanism of action of NOPR in BADs is still unclear.

Nevertheless, a human study (178) employing PET imaging to assess

changes in NOPR binding using radiolabeled nociceptin identified

increased NOPR levels in participants with cocaine use disorder,

particularly in the midbrain, VS, and cerebellum, providing insights

for further exploration of the role of NOPR in BADs.
2.4 Gamma-aminobutyric acid

GABA, a pivotal inhibitory neurotransmitter in the central

nervous system of mammals (195, 196), reduces neuronal

excitability. It is primarily synthesized from Glu via the enzyme

glutamic acid decarboxylase (GAD), with pyridoxal phosphate (the

active form of vitamin B6) as a cofactor. Like endorphins,

serotoninergic and glutamatergic neurons in the DRN can

modulate GABA input to the SNc, consequently impacting DA

release (197). Additionally, GABA (198–201) can also exert its

effects by projecting from the ventral pallidum, VTA GABAergic

interneurons and the medial spiny GABAergic neurons of the NAc,

inhibiting DA release from the mesolimbic system through GABAA

and GABAB receptors. It is important to recognize that although

both Glu and GABA can influence DA release, their effects on DA are

inversely related (202). Therefore, GABA plays a pivotal role in the

reward process associated with BADs, acting as a critical intervention

point and can directly impact DA release and indirectly modulate DA

release by influencing Glu projections within the NAc.

In the past, research on GABA has primarily explored substance

addiction, particularly its role in alcohol addiction (203, 204). Similar to

substance addiction, there are some similarities in the neurobiology

of BADs. With the advancement of experimental techniques, scholars

have gradually started investigating the specific manifestations of

GABA in BADs. For instance, a study (205) utilizing magnetic

resonance spectroscopy (MRS) technique found that in male

individuals with GD, the discounting of small immediate rewards

in the dorsal anterior cingulate cortex was negatively correlated with

GABA, while the discounting of larger delayed rewards was negatively

correlated with the ratio of GABA/glutamate-glutamine (Glx) in

the dorsolateral PFC. Mick et al. (206) used [11C]Ro15-4513 as a

radioligand for GABAA receptors and detected increased GABA
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binding in the right hippocampus of individuals with GD. They also

found a direct correlation between increased GABA binding to

GABAA in the AMY and impulsivity (negative urgency) related to

emotional factors in the GD group. Furthermore, Chowdhury et al.

(207) found weaker GABAA receptor activity but higher Glu receptor

activity in the primary motor cortex (M1) of problem gamblers

compared to non-gamblers and high-risk gamblers, suggesting an

imbalance in excitatory and inhibitory neurotransmission in this

region. Additionally, the compromised response inhibition ability of

individuals with gambling addiction correlated with reduced GABAA

receptor activity in M1, suggesting that decision-making and impulsive

behaviors in those with gambling addiction are influenced not only by

GABAA receptor activity within the reward circuitry but also by

alterations in glutamate-mediated neurotransmission. In a study

(208) investigating internet and smartphone addiction, it was

observed that addiction severity, as well as symptoms of depression

and anxiety, correlated with elevated GABA levels in the ACC. After

nine weeks of cognitive-behavioral therapy, GABA levels tended to

normalize. These findings contrast somewhat with research (209) on

substance addiction, which may be related to elevated GABA levels

leading to reduced ACC function (210). However, it is essential to note

that the sample size of this study was small, and further validation of

these findings is needed.

In summary, the dysregulation of the GABA system emerges as a

potential target for pharmacological intervention in BADs, with a

primary focus on GABAA and GABAB receptors. Previous animal

studies (74, 211) showed that the intracerebral injection of a

combination of GABAA receptor agonist (muscimol) and GABAB

receptor agonist (baclofen hydrochloride) results in receptor

inactivation in the PFC, ACC, and HYP regions. This inactivation

weakens rodents’ ability to differentiate between winning and losing

outcomes in a rGT, leading to a preference for disadvantageous options

and reduced selection of optimal choices. Moreover, this combination’s

effects have been observed to induce insular cortex inactivation in rats

during a radial arm maze test, prompting risky decision-making

behaviors (212). In clinical investigations, substance addictions such

as alcohol addiction (213), nicotine addiction (214) and heroin

addiction (215) have been found to be closely related to GABAA

and GABAB receptors. In BADs, only one experimental study (62)

indicated that compared to healthy volunteers, levodopa reduces the

availability of GABAA receptors in the PFC and insular regions of

problem gamblers seeking treatment, leading to decreased GABA

release and a loss of inhibitory control, suggesting that dysfunctional

DA regulation of GABA release may contribute to GD. While these

findings are promising, caution is necessary due to limitations such as

small sample sizes and insufficient control of confounding factors.

Further rigorous research is required to confirm these results and

establish their clinical relevance. Nonetheless, these findings offer new

strategies for the treatment of BADs in the future.
2.5 Glutamate

In the reward circuitry of BADs, not only are DA projections

from the VTA to the PFC (18, 216), serotonin projections from the

MRN to the NAc (81), and GABA projections from the NAc to the
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ventral pallidum involved (198, 217), but Glu projections from the

PFC to the NAc also play an important role (218, 219). Glu

projections contribute to changes in cognitive functioning,

especially cognitive flexibility, which is essential for adapting to

new situations and modifying behavior. These projections enable

individuals to consciously resist impulses and form new

associations between stimuli (e.g., gaming) and behavioral

responses, linking them to unconditioned responses such as

reward or punishment. Glu is a naturally occurring amino acid

and a fundamental component of proteins. It is the most widely

distributed excitatory neurotransmitter in the brain (220). Glu and

glutamine (Gln) can be interconverted through the action of

glutamine synthetase, establishing a “Glu-Gln cycle” between glial

cells and neurons. This cycle allows for the continuous recycling

and regeneration of Glu (221). Maintaining the balance of Glu

between synapses and glial cells is crucial for the PFC to effectively

regulate the reward-sensitive NAc. This balance ensures proper

excitatory signaling and prevents excessive Glu activity, which

could dysregulate reward processing and decision-making.

Insufficient Glu levels in glial cells can lead to increased Glu

release at synapses, significantly enhancing DA release in the NAc

(221). When the Glu pathway is compromised, individuals may

become more motivated by short-term rewards at the expense of

long-term objectives. This imbalance in decision-making is

associated with impaired cognitive control and heightened

impulsivity, which are characteristic of BADs.

Current theories and empirical evidence suggest (219, 222, 223)

that Glu from the PFC regulates DA levels through multiple

pathways. While direct glutamatergic projections from the PFC to

VTA are excitatory, the overall relationship between cortical Glu and

DA transmission is complex and can involve inhibitory circuits. Glu

from the PFC and/or AMY can modulate reward-driven behavior by

affecting the responsiveness of DA cells in the VTA-NAc pathway,

thus influencing DA’s reward-focused effects on decision-making. It

has been reported (218) that compared to the ADHD group, the

ADHD+IGD group showed decreased levels of Gln in the right PFC,

which may be associated with the increased DA levels caused by

excessive online gaming. Additionally, prolonged and excessive

exposure to electronic games and other digital entertainment that

provide immediate rewards can downregulate DA and Glu receptors

in the NAc, resulting in symptoms such as tolerance, withdrawal and

compulsive seeking of stimulation (48, 224). Furthermore, in a study

of male samples with GD (205), the researchers reported a negative

correlation between baseline Glx levels in the dorsal ACC and the

severity of gambling. In another study (225), compared to 10 healthy

males, 10 male pathological gamblers showed an increasing trend in

Glu and aspartate levels in cerebrospinal fluid.

To summarize the contents described in this section,

Glu can be considered as one of the essential elements for

understanding the mechanisms underlying BAD’s formation from a

psychopharmacological perspective. A number of pharmacologic

studies (226) also provide evidence for abnormal Glu function in

individuals with BADs, revealing that targeted interventions on Glu

receptors can positively alleviate BAD’s symptoms. Glu exerts its effects

through two different types of receptors (220), namely, metabotropic

glutamate receptors (mGluRs) and ionotropic glutamate receptors
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1439727
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Peng et al. 10.3389/fpsyt.2024.1439727
(AMPA, NMDA and Kainate). Specifically, N-acetylcysteine, which

acts on inhibitory mGluR2/3 receptors, first increases extracellular Glu

levels through the cystine-glutamate exchanger, which then stimulates

mGluR2/3 receptors, thereby effectively reducing Glu synaptic release

(227–229). When extracellular Glu levels are restored in the NAc, there

is a certain inhibitory effect on cravings and impulsive behavior

associated with addiction. Research (230) in rats has shown that N-

acetylcysteine effectively reduces reward-seeking behavior. Clinical

studies (231, 232) on GD have shown a significant reduction in

gambling severity with active N-acetylcysteine treatment, a change

that largely persists during the double-blind withdrawal phase. A recent

case study involving a 19-year-old male with IGD (233) reported that

after one month of N-acetylcysteine treatment at a dosage of 600mg

twice daily, the patient experienced a significant decrease in cravings for

gaming, consistent with findings from studies onGD and substance use

disorders. Although all of the aforementioned clinical studies are

preliminary and involved relatively small sample sizes, the consistent

anti-addiction properties of N-acetylcysteine provide compelling

evidence that this medication may be an effective adjunct in treating

BADs. NMDA receptors have also been found to play a role in animal

experiments (234). Blocking NMDA receptors (but not AMPA

receptors) with the antagonist MK-801 hydrochloride reduces

sensitivity to delayed reinforcement, uncertain reinforcement, and

the amount of reinforcement in rats in operant conditioning

chambers. In clinical trials, memantine, a non-competitive NMDA

receptor antagonist, has shown promise in reducing impulsive

behaviors and improving cognitive flexibility in individuals with GD

(235). Researchers have reported an average reduction of 35.1% in PG-

YBOCS scores compared to baseline and significant improvement in

cognitive flexibility during the intra-dimensional/extra-dimensional

(ID/ED) set shift task. These findings may be attributed to

memantine’s modulation of glutamatergic neurotransmission in the

PFC, reducing impulsive behaviors. Additionally, bupropion, which

also acts as a non-competitive NMDA receptor antagonist, has been

effective in reducing the severity of GD in patients and diminishing

cravings for video games in individuals with IGD (103, 236). In

addition to binding to NMDA receptors, bupropion can also interact

with AMPA receptors, Kainate receptors, 5-HT3 receptors, and MOR,

inhibiting DA andNE reuptake, thereby exhibiting a relatively complex

mechanism of action in addiction. Case reports have shown that other

NMDA receptor antagonists, such as acamprosate (237) and

amantadine (238), may also have therapeutic effects on BADs. The

AMPA receptor antagonist carbamazepine, as an antiepileptic drug,

has been shown to effectively treat patients with GD by binding to

AMPA receptors. By binding to AMPA receptors, carbamazepine

reduces excitatory glutamatergic signaling, which may help regulate

impulsive and compulsive behaviors associated with GD. In an open-

label study by Black et al. (239), five individuals with GD received

extended-release carbamazepine treatment for eight weeks, and the

findings showed significant reductions in the participants’ PG-YBOCS

scores and Gambling Severity Assessment Scale (GSAS) scores,

consistent with previous case reports on the use of carbamazepine

for GD (240). Topiramate, another antiepileptic drug, has multiple

mechanisms of action (241), including the inhibition of AMPA

receptors, mGluR5 receptors, and activation of GABAA receptors. In

a case study from Brazil (242), a 57-year-old elderly woman with
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bipolar disorder and GD showed significant improvement in her

gambling behavior when topiramate was added to her lithium

carbonate treatment at a dose of 200mg/day and reported no

cravings for gambling after two months of combination therapy.

Moreover, topiramate has demonstrated positive effects in the

treatment of CSBD (243) and compulsive buying disorder (244).

Currently, studies have identified several glutamate transporters as

key regulators of glutamatergic signaling in substance addictions. These

include glutamate transporter-1 (GLT-1)) (245), which facilitates Glu

reuptake into glial cells; excitatory amino acid transporters 1 and 3

(EAAT-1/3) (246, 247), which regulate synaptic Glu clearance; and

vesicular glutamate transporters 1 and 2 (VGLUT-1/2), which mediate

Glu storage and release from presynaptic neurons (248, 249).
2.6 Norepinephrine

NE, a catecholamine synthesized from DA by dopamine b-
hydroxylase (DBH), is primarily released under stress to enhance

individual excitability (186, 250). Due to its comprehensive role

in arousal and attention regulation, NE from the LC is increasingly

associated with addiction through its projections to the nucleus

tractus solitarius (NTS)-NAc area (251). In individuals with GD,

particularly male patients, excitement is often identified as a

significant factor contributing to gambling. Previous studies (252,

253) have found that problem gamblers exhibit significantly higher

levels of NE in their blood, urine, and cerebrospinal fluid during

gambling compared to control groups. Additionally, a study

investigating (179) psychological changes in players during a

pachinko game revealed that NE, b-endorphin and DA levels were

elevated during the initiation and winning phases compared to

baseline levels and that gambling behavior was associated with

increased heart rate and respiratory rate (254). These findings

suggest a connection between gambling behavior and the

autonomic arousal system targeted by NE. Recent research based

on electroencephalography (EEG) has shown (255) that the

enhancement of the P300 component during a two-choice

gambling task called a two-armed bandit was dependent solely on

the exploration phase, indicating that NE, rather than DA, plays a

crucial role in triggering exploratory decisions. Interestingly, studies

on IGD (256, 257) have found that compared to control groups,

individuals with IGD had lower levels of NE during resting states.

Furthermore, excessive playing of online games leads to decreased

peripheral adrenaline and NE levels over time, altering autonomic

regulation and increasing anxiety levels in adolescents. These findings

contrast with the elevated levels of NE associated with GD (254),

potentially due to the chronic stress stimulation caused by

prolonged internet gaming (21, 258), which leads to adaptive

responses such as receptor downregulation in the central nervous

system. Chronic stress and prolonged gaming lead to a shift in

behavioral control from goal-directed behavior, mediated by the

PFC, to habitual control, which involves the dorsal striatum. This

transition is driven by repetitive actions and changes in

neurotransmitter regulation.

Interests in the role of NE in BADs are resurging. Early clinical

and preclinical studies provide valuable insights for potential BAD
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treatments. DBH can convert DA to NE, and in a rodent experiment,

it was found (259) that disulfiram, a DBH inhibitor, improved the

performance of rats with disadvantageous strategies in the rGT, with

a decrease in NE and an increase in DA observed in the striatum.

Case reports have also suggested (260, 261) that disulfiram may

reduce gambling cravings in individuals with GD. However, larger

clinical trials are needed to confirm its efficacy and tolerability.

Disulfiram’s effects may be mediated by its inhibition of DBH,

which shifts the NE-DA balance in favor of DA. This mechanism

could reduce stress-induced arousal and impulsivity, which are key

drivers of gambling behavior. Further, the involvement of

norepinephrine transporter (NET) in BADs has also been reported.

Atomoxetine, as a NET blocker, has been shown to improve decision-

making in male and female rats in the rGT by increasing synaptic NE

levels (262). NE interacts with other neurotransmitters, such as DA

and Glu, to regulate reward sensitivity and cognitive control. NE

modulates DA release in the NAc, influencing the reward system’s

sensitivity to stimuli. Additionally, in adolescents with comorbid

ADHD and IGD, treatment with atomoxetine for 12 weeks resulted

in a significant reduction in impulsivity and severity of internet

gaming addiction (77). Other studies have revealed the important

roles of a-2 adrenergic receptors in preclinical studies (262).

Guanfacine, an a-2 adrenergic receptor agonist, which diminishes

NE neuron firing by acting on autoreceptors, selectively enhanced

decision-making abilities in risk-prone male rats and optimally

performing female rats. In clinical research (263), the atypical

stimulant modafinil was found to potentially reduce gambling

cravings, impulsive behavior and risky decision-making in

individuals with GD, which can be mediated through the

stimulation of a-2 adrenergic receptors, inhibition of GABA

release, elevation of extracellular Glu levels, weak inhibition of

DAT or stimulation of HYP orexin neurons. Additionally,

compared to healthy controls, male pathological gamblers showed

an increased growth hormone response to the a-adrenergic receptor
agonist clonidine (264). Furthermore, a study using functional

magnetic resonance imaging (fMRI) (265) demonstrated differential

activation in the AMY between individuals with GD and those

without GD in response to yohimbine, an a-2 adrenergic

antagonist. The b-adrenergic antagonist propranolol (266) has been
shown to reduce compulsive gambling behavior in rodents in a slot

machine task. Similarly, in a human gambling task (267), propranolol

treatment did not result in significant changes in subjective state or

mood compared to placebo. However, it did selectively alter decision-

making in volunteers, specifically attenuating the processing of

potential losses, indicating a reduced sensitivity to punishment cues.
2.7 Other neurotransmitters and
neurotrophic factors

The neurobiological mechanisms underlying BADs involve the

participation of multiple neurotransmitters. In addition to the

neurotransmitters discussed above, such as DA, 5-HT and Glu,

there are several other promising neurotransmitters and

neurotrophic factors that may play a role in the pathogenesis of

BADs, although current research in this area is still limited.
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2.7.1 Corticotropin-releasing factor
It has been implicated in the research on rGT in rodents. The

overexpression of CRF receptor 1 in the AMY of female rats has

been found to be associated with increased risk-taking behavior

(268). Additionally, compared to male rats, CRF receptor 1

antagonist (antalarmin) may be more effective in improving

decision-making in female rats. A study involving Korean

adolescent boys (269) also confirmed the association between

polymorphisms in the CRF receptor gene and IGD, and it was

found that individuals carrying the AA genotype and the A allele of

rs28364027 (CRF1 gene) were more prone to IGD. Furthermore,

several studies examining cortisol levels in BADs (270–275)

indirectly suggest that abnormalities in the CRF system may

underlie changes in decision-making patterns, cravings and stress

responses associated with anxiety and emotional states.

2.7.2 ACh
Previous animal studies have reported (276) that muscarinic

receptor antagonists (i.e., scopolamine) can improve decision-making

patterns in the rGT task, increasing rats’ preference for advantageous

options while reducing their selection of risky options. However,

contradictory results have also been reported (277). Nicotinic

receptor antagonists (such as mecamylamine) (276), while not

affecting decision-making, were shown to be associated with reduced

impulsive behavior in rats. On the other hand, another relevant study

in mice (278) suggests that neuronal nicotinic acetylcholine receptors

may play a crucial role in the decision-making process. Studies by

Montag et al. (279) and Jeong et al. (280) have both found an

association between rs1044396 (CHRNA4 gene, encoding the a-4
subunit of the nicotinic ACh receptor) and IGD. ACh receptors also

play a role in BADs by modulating the DA pathway, and increased

cholinergic tone may be one of the factors affecting decision-making

and impulse control in BADs.

2.7.3 Oxytocin
OXT has been found to primarily exert its effects through the

oxytocin receptor (OXTR) in research related to addiction. Studies

(281, 282) have indicated that rs2254295 and rs2268498 can

modulate the function or expression of the OXTR gene, and

individuals with the TT genotype have a lower risk propensity

compared to participants with the CT and CC genotypes. Young

male participants who inhaled intranasal OXT during the IGT

exhibited a significant reduction in risk-taking behavior during the

decision-making process under uncertainty. In regards to IGD, it

has also been found (283) that male carriers of the TT genotype

have lower levels of internet addiction. Furthermore, the level of

plasma OXT was found to increase when individuals with CSBD,

particularly those with problematic pornography use, were exposed

to positive social stimuli (284). Therefore, the hypothesis that OXT

may be a potential protective factor in BADs appears compelling.

2.7.4 Orexin
The role of the OX system (285) in regulating motivation and

reward-seeking behavior in substance addiction has been well-

established. Animal studies on BADs (286, 287) revealed that rats
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with a preference for high-reward outcomes exhibited increased

orexin receptor 1 (OX1R) expression in the HYP and hippocampus.

OX1R may be involved in impulsive behavior mediated by the HYP

and hippocampus and in the selection of positively reinforced

choices based on varying intensity and probability in the rGT

task. Choi et al. confirmed (271) an increase in plasma OX levels

in adolescents with IGD, indicating its potential involvement in

IGD. OX may participate in the formation of BADs through its

interaction with GABA and DA.

2.7.5 Leptin
Leptin has been suggested as a potential modulator of reward-

related behaviors by regulating satiety and possibly influencing

addictive behaviors through the mesolimbic reward pathway (288).

Previous studies on patients with substance use disorders (alcohol,

cocaine) (289, 290) have reported a positive correlation between

leptin levels and craving. A recent study on healthy participants

performing the IGT (291) demonstrated that individuals with higher

leptin levels had worse performance on the IGT, while another study

(292) revealed no relationship between leptin and craving in male

IGD and GD. Overall, leptin is believed to be involved in the

mechanisms underlying the formation of BADs through its

interaction with the hypothalamic-pituitary-adrenal (HPA) axis.
2.7.6 Melatonin
It is a well-known regulator of various signaling pathways and

biological rhythms (293). It has been reported that modulating

melatonin can alter the behavior and physiological functions of

individuals with substance addiction (294, 295). However, there is

limited research on melatonin in regards to BADs, with only one

study (142) indicating that individuals with GD showed

improvements in addiction severity, anxiety and depression after

treatment with agomelatine (a melatonin M1/M2 receptor agonist).
2.7.7 Brain-derived neurotrophic factor
BDNF is highly expressed in limbic structures and the

cerebral cortex and plays a crucial role in learning, memory, and

reward-related processes (296). Several studies (297–300) have

reported that BDNF levels positively correlate with the severity of

GD or IGD in individuals. The increase in BDNF in BADs may be

associated with alterations in DA transmission in the VTA and NAc.

However, some studies (301, 302) have found no correlation between

BDNF and BADs, suggesting the need for further investigation in

longitudinal experiments.
2.7.8 Glial cell line-derived neurotrophic factor
GDNF is a neurotrophic factor involved in the development of

dopaminergic neurons (303), and its role in reward mechanisms has

been demonstrated in animal models of substance addiction (304).

Current research (305) suggests that the GDNF gene variant

rs2973033 is significantly associated with GD. Furthermore, it has

been found (306) that plasma levels of GDNF in individuals with

IGD are significantly lower compared to healthy controls and are

negatively correlated with addiction severity.
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Research on the mechanisms of neurotransmitters and

neurotrophic factors in BADs remains limited, requiring validation

through large-scale multicenter studies. However, there are

promising indications that they may play a role in BADs by

modulating DA, serotonin or GABA pathways in the reward

circuitry. These mechanisms are integral to BADs and may present

a new hope for the treatment of BADs for clinicians.
3 Emerging technologies: potential
applications in BADs research

In recent years, emerging technologies have provided novel

perspectives for research on BADs, particularly through the

integration of CRISPR gene editing technology and neuroimaging,

significantly advancing our understanding of neurotransmitter

crosstalk mechanisms. CRISPR technology, through precise gene

expression regulation, has revealed molecular mechanisms of

dopaminergic neurons in the NAc (307). For instance, using

CRISPRa and CRISPRi tools, researchers discovered that

bidirectional regulation of Egr3 and Nab2 in D1-MSNs and D2-

MSNs is crucial for reward processing and impulse control, while the

innovatively developed light-sensitive Opto-CRISPR-KDM1a system

not only achieved dynamic regulation of these genes but also revealed

the key role of histone lysine demethylase in drug addiction (308).

Through precise CRISPR-mediated regulation of COMT gene

expression, researchers found that MB-COMT plays a crucial role in

PFC dopamine metabolism, and this regulation directly influences

cognitive control and reward processing through its balance with the

GABAergic system (309). Neuroimaging studies further demonstrate

significant dysfunction in emotion regulation networks among BADs

patients, particularly abnormal activities in the PFC, striatum, and

limbic system. Network-based fMRI analysis reveals that substance and

BADs share functional alterations in prefrontal-striatal circuits, closely

associated with dopaminergic system dysregulation (310). Recent

studies have found that drug abuse “hijacks” the brain’s reward

system, leading to enhanced dopaminergic neuronal ensemble

activity in the NAc and disrupted responses to natural rewards

(307). Complementary EEG studies have revealed characteristic

changes in beta-band power and brain network connectivity in

BADs patients, closely related to trait and behavioral impulsivity

(311). Non-invasive neuromodulation techniques such as rTMS have

shown promising results in treating GD, while the integration of

neuroimaging markers enables more accurate prediction and

monitoring of treatment responses (312). The integration of these

emerging technologies has not only deepened our understanding of the

neurobiological mechanisms of BADs but also established a solid

scientific foundation for developing personalized treatment

approaches and multi-target intervention strategies.
4 Conclusions and future perspectives

Advances in neuroscience have improved our understanding of

how neurotransmitters contribute to the development of BADs.
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This work provides an overview of the neurobiology of BADs,

focusing on the complex interplay of multiple neurotransmitters.

The phenotypes of addiction arise from disruptions in

neurotransmitter and neurotrophic factor expression and function.

DA, a key neurotransmitter in the reward pathway, plays a central

role in the mechanisms of BADs by modulating reward sensitivity,

motivation, and reinforcement learning. DA interacts with other

neurotransmitters, including serotonin, endorphins, GABA, Glu, NE,

and neuropeptides such as CRF, ACh, OXT, and OX. Additionally,

neurotrophic factors like BDNF and GDNF contribute to synaptic

plasticity and neuroadaptations associated with BADs (see Figure 1).

The interactions among these neurotransmitters influence biological

behaviors such as reward processing, impulsiveness, and stress

responses, which are closely linked to the onset and progression of

BADs. Addiction is increasingly recognized as a chronic brain

disorder, and evidence suggests it requires similar attention and
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treatment as other medical conditions. Neuroimaging and

psychopharmacological investigations have identified anomalies in

critical neurotransmitter targets among individuals with addiction.

While these findings offer novel insights, further research is needed to

validate their potential for treating BADs (see Figure 2). Despite

substantial progress in the neurobiology of BADs and the preliminary

efficacy and safety of pharmacological treatments for BADs, our

understanding of the neurobiological mechanisms underlying their

clinical features remains limited. To fully grasp the complexities of

neurotransmitter actions in the brain, further research is needed to

explore their interplay, regulation and how they ultimately drive

behavior. Additionally, while there are some similarities in the

neurobiology of different BADs, differences also exist. Therefore,

future investigations should aim to delineate both the commonalities

and unique neurobiological aspects inherent to various types of

BADs, which could hold promise for identifying novel targets that
FIGURE 1

Schematic representation of neurotransmitters crosstalk and regulation in behavioral addiction reward circuit. Dopamine, serotonin, endorphins,
GABA, glutamate, norepinephrine, and other neurotransmitters collectively form a complex regulatory network in the reward circuitry of behavioral
addictive disorders. These neurotransmitters interact and interfere with each other, influencing not only biological behaviors but also closely
associated with the occurrence and development of addiction. VTA, Ventral tegmental area; NAc, Nucleus accumbens; VS, Ventral striatum; PFC,
Prefrontal cortex; AMY, Amygdala; SNc, Substantia nigra pars compacta; HYP, Hypothalamus; MRN, Median raphe nuclei; LC, Locus coeruleu; NTS,
Nucleus tractus solitariu; DA, Dopamine; 5-HT, 5-hydroxytryptamine; GABA, Gamma-aminobutyric acid; Glu, Glutamate; NE, Norepinephrine; D2R,
Dopamine D2 receptors; D3R, Dopamine D3 receptors; DAT, Dopamine transporters; 5-HT1R, 5-HT1 receptors; 5-HT2R, 5-HT2 receptors; SERT,
serotonin transporters; MOR, m-opioid receptors; DOR, d-opioid receptors; KOR, k-opioid receptors; GABAAR, GABAA receptors; GABABR, GABAB
receptors; mGluR, Metabotropic glutamate receptors; NMDAR, N-methyl D-aspartic acid receptors; AMPAR, Alpha-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid receptors; DBH, Dopamine-beta-hydroxylase.
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could lead to more precise and personalized strategies for

preventing and treating BADs. Finally, as neuroscientists and

psychiatrists dedicated to addiction research, we advocate for the

global scientific community to reconsider the prevailing dopamine-

centric dedicated in BADs research. Leveraging advanced

methodologies, such as genetic molecular localization, advanced
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imaging modalities, high-throughput single-cell analyses, and

computational systems biology, offers an avenue for developing

highly targeted therapies. By building upon existing research efforts,

tailored “neurotransmitter therapies” may provide comprehensive

therapeutic benefits for BADs while minimizing adverse impacts on

the body’s physiological systems.
FIGURE 2

Schematic representation of potential pharmacological targets for the treatment of BADs. There are several important neurotransmitter targets involved
in the occurrence and development of behavioral addictive disorders. These targets hold potential therapeutic prospects, and targeted "neurotransmitter
therapies" may provide overall treatment benefits for individuals with behavioral addiction disorders without causing apparent damage to the body's
physiological systems. BADs, behavioral addictive disorders; D1R, Dopamine D1 receptors; D2R, Dopamine D2 receptors; D3R, Dopamine D3 receptors;
D4R, Dopamine D4 receptors; D5R, Dopamine D5 receptors; DAT, Dopamine transporters; COMT, catechol-O-methyltransferase enzyme; 5-HT1AR,
5-HT1A receptors; 5-HT1BR, 5-HT1B receptors; 5-HT1DR, 5-HT1D receptors; 5-HT2AR, 5-HT2A receptors; 5-HT2BR, 5-HT2B receptors; 5-HT2CR,
5-HT2C receptors; 5-HT5AR, 5-HT5A receptors; 5-HT7R, 5-HT7 receptors; SERT, serotonin transporters; MOR, m-opioid receptors; DOR, d-opioid
receptors; KOR, k-opioid receptors; NOPR, Nociceptin opioid peptide receptors; GABAAR, GABAA receptors; GABABR, GABAB receptors; mGlu2/3R,
Metabotropic glutamate 2 and 3 receptors; NMDAR, N-methyl D-aspartic acid receptors; AMPAR, Alpha-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid receptors; Kainate-R, Kainate receptors; GLT-1, Glutamate transporters-1; EAAT-1/3, Excitatory amino acid 1 and 3 transporters; VGLUT-1/
2, Vesicular glutamate 1 and 2 transporters; DBH, Dopamine-beta-hydroxylase; NET, Norepinephrine transporters; a2-R, alpha-2 receptors; b-R, beta
receptors; CRF1R, Corticotropin-releasing factor 1 receptors; M1/2R, Muscarinic acetylcholine 1 and 2 receptors; nAchR, Nicotinic acetylcholine
receptors; OXTR, Oxytocin receptors; OX1R, Orexin 1 receptors; SSRIs, selective serotonin reuptake inhibitors; mCCP, Meta-chlorophenyl piperazine.
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