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The regulative role and
mechanism of BNST in
anxiety disorder
Mingjun Xie, Ying Xiong and Haijun Wang*

School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine,
Jinan, China
Anxiety disorders, common yet impactful emotional disturbances, significantly

affect physical and mental health globally. Many neuron circuits are associated

with anxiety regulation like septo-hippocampal loop, amygdala(AMYG), bed

nucleus of the stria terminalis (BNST), ventral hippocampus (vHPC), and brain

regions like medial prefrontal cortex (mPFC). However, the concrete mechanism

of anxiety disorder in BNST is relatively unknown. Recent research showed BNST

plays a critical role in modulating anxiety owing to its anatomical location and

special circuit characteristics, which are considered to be a hub in the limbic

system regulating anxiety. BNST consists with multiple subregions, which can

project separately into different brain regions and exert projecting independently

to various brain regions with distinct regulatory effects. Moreover, multiple signal

pathways in BNST are reported to play significant roles in regulating anxiety and

stress behavior. This review briefly describes anxiety disorders and subdivisions

and functions of BNST, focusing on the main neural circuits that serve as

fundamental pathways in both the genesis and potential treatment of anxiety

disorders and the molecular mechanism of BNST on anxiety. The complexity of

structures and mechanisms has facilitated the development of imaging

techniques. Innovative multimodal imaging techniques, such as functional

magnetic resonance imaging (fMRI) and positron emission tomography (PET),

have non-invasively illuminated BNST activities and their functional connections

with other brain areas. These methodologies provide a deeper understanding of

how BNST responds to anxiety-inducing stimuli, offering invaluable insights into

its complex role in anxiety regulation. The continued exploration of BNST in

anxiety research promises not only to elucidate fundamental neurobiological

mechanisms but also to foster advancements in clinical treatments for

anxiety disorders.
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1 Introduction

Anxiety is a normal emotional expression that signifies heightened

arousal and negative emotions (1) that can enhance alertness even

when there is no immediate threat (2). It can potentially increase one’s

awareness and aid in survival by enabling quick reactions to potential

danger. This emotional state can be elicited by stimuli that do not pose

immediate harm or arise internally. On the other hand, fear is

associated with responding to an actual or perceived imminent

threat and diminishes as the threat subsides (2). While occasional

anxiety is common in healthy individuals, persistent, disruptive, or

disproportionate anxiety in the face of real dangers can result in a

constant state of excessive tension and fear, indicating is a pathological

condition. Pathological anxiety is classified into three main categories

by the Diagnostic and Statistical Manual of Mental Disorders, fifth

edition: obsessive-compulsive and related disorders, trauma- and

stressor-related disorders, and anxiety disorders (3). Excessive

anxiety, termed an “anxiety disorder”, is a maladaptive mood

disorder characterized by persistent worry, despair, tension, and
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distress, along with physical symptoms like tachycardia, nervousness,

and difficulty relaxing (4, 5).

There are some brain regions and neural circuits related with

anxiety disorders (Figure 1). Among them, the bed nucleus of the

stria terminalis (BNST) is an essential stress-responsive region that

regulates anxiety response due to its location and circuit

characteristics (6). Multiple signal pathways in BNST are reported

to play significant roles in regulating anxiety and stress behavior. Li

et al. found that histamine receptors expressed in BNST neurons

and infusion of histamine into the BNST exerted an anxiogenic

effect. In contrast, the blockade of histamine receptors reduced the

anxiogenic effect induced by acute restraint stress without

influencing behaviors in normal rats (7). It is found that

increasing the expression of SIRT1 in male mouse BNST could

ameliorate anxiety behaviors induced by chronic stress (8). In

addition, H1 and H2 receptors are also discovered to be involved

in regulating anxiolytic effect in stressed rats (7). Similarly, CB1 and

CB2 receptors controlled anxiety-like behaviors and they were

located in the anterior and posterior divisions of the BNST (9).
FIGURE 1

Brain regions and neural circuits associated with anxiety disorders.
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There are also sexual differences in the protein expression and

subsequent behavior in BNST. Rigney et al. discovered that

downregulation of AVP regulation in BNST reduced aggressive

behavior without influencing anxiety-like behavior in males. While

for females, none of the behaviors were altered (10). However,

human females are prone to having anxiety-related disorders. More

research is needed to be explored to solve the physiological basis

with the help of high-end equipment.

In anxiety research, integrating multimodal techniques has

greatly enhanced the investigation of bed nucleus striatum

(BNST) function over the years. These techniques encompass a

diverse array of methodologies, including neuroimaging,

optogenetics, chemogenetics, electrophysiology, and molecular

genetics (11). By combining these complementary approaches,

researchers are able to dissect BNST circuits with spatial and

temporal resolution, allowing for the interrogation of neural

activity, connectivity, and molecular signaling pathways involved

in anxiety regulation. The use of these advanced multimodal

techniques offers unprecedented opportunities to explore BNST

neurobiology with high precision and sensitivity, providing insights

into its involvement in anxiety regulation. We delve into the

significance of these techniques in BNST anxiety research,

emphasizing their contributions to elucidating BNST function at

both macroscopic and molecular levels.

Important brain regions related to anxiety disorders include

BNST,PFC, AMYC, and HPC, along with the main neural circuits

that function as crucial pathways in both the development and

potential therapies for anxiety disorders. These roles can be

assessed through behavioral testing methods in animals. adBNST

Anterodorsal bed nucleus of the stria terminalis, AMYC Amygdala,

BLA Basolateral Amygdala, BNST Bed nucleus of the stria terminalis,

CeA central amygdala, EZM Elevated zero maze, EPM Elevated plus

maze, HPC Hippocampus, LS lateral septum, OFT open field test,

ovBNST Ovoid bed nucleus of the stria terminalis, PFC Prefrontal

cortical, PVN paraventricular nucleus, vBNST Ventral bed nucleus of

the stria terminalis, VTA ventral tegmental area.
2 Anxiety disorders

2.1 General

Anxiety disorders are a common emotional disorder that

seriously affects people’s physical and mental health. Anxiety

disorders are one of the more common mood disorders,

significantly impacting individuals’ overall well-being and mental

health and placing a substantial burden on society. Studies have

indicated that the onset of anxiety disorders can occur as early as 11

years old, with the prevalence among adults reaching 18% and a

lifetime prevalence rate of 28.8%. In Western countries, anxiety

disorders are the most prevalent neuropsychiatric disorders (12, 13)

with a recent 3-year multi-method study across 30 European

countries and a population of 514 million people revealing that

anxiety has the highest 12-month prognosis among psychiatric

disorders at 14% (14). As a result of their high prevalence, chronic

nature, and comorbidity, anxiety disorders are ranked as the ninth
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leading cause of damage to health by the World Health

Organization (14).

Anxiety is primarily characterized by persistent arousal,

alertness, fear, concomitant defenses, and autonomic response

changes (82). The main anxiety disorders include separation

anxiety disorder and selective mutism, specific phobias, social

anxiety disorder, generalized anxiety disorder, panic disorder, and

agoraphobia (15).
2.2 Primary behavioral tests for
anxiety disorders

To study the pathological mechanisms of anxiety disorders

effectively, anxiety-related behavioral tests in experiments must

meet specific criteria. Currently, researchers utilize various

methods to assess anxiety by observing externally visible

phenotypes, which are crucial for drug development studies

focusing on stress and anxiety modeling (16). Among various

model organisms, rodents are preferred for investigating the

neural circuit mechanism of anxiety disorders. In “approach-

avoidance” conflict tasks, mice with avoidance-like anxiety traits

tend to remain in the enclosed safe area of the behavioral device.

The more commonly used behavioral paradigms for anxiety

assessment include the elevated plus maze (EPM), zero maze

(EZM), and open field test (OFT). In the EPM behavioral

paradigm, anxious animals avoid the open arm and favor the

closed arm of the maze (17). In the zero-maze, anxious animals

tend to stay within the closed quadrant (18). In the OFT, organisms

display anxious attributes by predominantly moving along the

perimeter of the maze. Researchers often assess anxiety-like

behaviors through the analysis of social interactions among

rodents (19). For instance, young mice emit ultrasound

vocalizations at fear-associated frequencies when separated from

their breeder’s cage, the pups emit ultrasounds at frequencies

associated with fear and anxiety responses, which can be reduced

effectively by anxiolytic drugs (20). Alongside behavioral

experiments, stress hormone levels and vital signs are often

monitored as indicators of anxiety in rodents. These physiological

indicators are based on the manifestations of anxiety in clinical

settings, such as increased sweating, dizziness, elevated heart rate,

and blood pressure (21).
3 Important neural circuits that
regulate anxiety

3.1 General

In the early stages of anxiety research, researchers focused on

identifying the brain nuclei associated with anxiety by observing

behavioral changes in experimental organisms following the

destruction of specific nuclei. The type of nuclei associated with

anxiety, such as the amygdala(AMYG), BNST, ventral hippocampus

(vHPC), and brain regions like medial prefrontal cortex (mPFC),

were visually determined through these methods. However, there has
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been limited exploration into the internal loops of brain regions

regulating anxiety. Modern techniques such as optogenetics have

enabled researchers to delve deeper into anxiety research by

selectively manipulating neural circuits. By controlling the

projections of specific neuron types towards downstream brain

regions, researchers can gain valuable insights into the relationship

between anxiety-like behaviors and their neural circuits. Anxiety is

influenced by both local or long-range connections among various

brain regions, including AMYG, HPC, BNST, and PFC (19). Patients

with generalized anxiety disorder exhibit dysfunctions primarily in

the PFC (22), while individuals with obsessive-compulsive disorder

(OCD) show changes in the structure and function of the striatum

(Corpus striatum, CS) and thalamus (Thalamus, Thal). These

interconnected brain regions form anxiety neural circuits involving

basolateral amygdaloid nucleus (BLA)- vHPC, mPFC-vHPC, and

BNST-central amygdala (CeA) pathways. The AMYG serves as the

central hub for information processing, interacting with the vHPC

through the BLA. Activation of the BLA-vHPC synapse promotes

anxiety, while its inhibition reduces anxiety levels. Additionally, the

BNST and CeA, collectively known as the expanded amygdala,

regulate anxiety through dense projection (23) The mPFC also

contributes to fear and anxiety regulation, particularly innate

anxiety, by cooperating with the vHPC.
3.2 Modulation of anxiety by other
neural circuits

The septo-hippocampal loop plays a crucial role in detecting

conflict and uncertainty in anxious environments, thereby

enhancing arousal and attention in organisms (24). This loop

involves the lateral septum (LS), a component of the septal

system that is closely related to the regulation of stress-induced

anxiety (25). Pharmacological inactivation of one side of the ventral

hippocampus and the contralateral LS hemisphere can reduce

anxiety levels in organisms by disrupting the connection between

them (26). In addition, manipulating the projections of CRHR2-

expressing GABAergic neurons from the LS to the anterior

hypothalamus (AH) can heighten anxiety levels (27). Activation

of these GABAergic neurons suppresses neural activity in the AH.

Interactions among these brain regions trigger enduring

neuroendocrine and behavioral aspects of anxiety (28).

Clinical data indicate that alterations in the volume of the

amygdala, such as an increase (29) or a decrease (30), are

associated with anxiety disorders. Notably, increased AMYG

anxiety is observed in individuals exhibiting symptoms of social

anxiety disorders (31). Animal studies have demonstrated that the

destruction of the AMYG is a key factor in anxiety disorders (32).

These findings underscore the significant role of AMYG activity in

anxiety disorders and suggest the presence of functionally distinct

subregions within the AMYG that interact with other brain regions

to regulate anxiety. BLA contains basolateral and basomedial

subregions and receives excitatory inputs from the thalamus and
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sensory cortex (33). The BLA processes this input information and

establishes a link between external stimuli and emotional responses,

evaluating different threats and rewards (34). Anxiety levels are

modulated by various mechanisms in the absence of threat presence

(35). Optogenetic activation of specific neuron types in the BLA

region increases anxiety levels, while stimulating excitatory inputs

from the BLA to the central amygdala (CeL) produces anxiolytic

effects (36), suggesting that different downstream projections from

the same region may have contrasting behavioral effects. Moreover,

direct stimulation of granule cells in the ventral dentate gyrus (DG)

alleviates anxiety-like behaviors in mice (37).

The brain area responsible for evaluating threatening signals in

the mPFC, which first processes threatening stimulus signals before

eliciting a subcortical response. The mPFC receives inputs from

various regions such as the thalamus, amygdala, and hippocampus,

and projects to areas like the amygdala and striatum (38). Studies

have demonstrated that inhibiting mPFC-CeA projections can

dampen neuronal activity in CeA brain regions, and lead to

anxious behavior. Moreover, environmental threat stimuli

influence the interconnection between the mPFC and the BLA

brain region, when BLA neurons are activated, the mPFC

rhythmically discharges and transmits safety signals to alleviate

anxiety levels (39). Neurons within the mPFC can encode anxiety-

related features in different environments (40, 41). However, the

precise role of the neural circuitry associated with projections from

the ventral hippocampus to the mPFC in anxiety regulation remains

unclear. Further investigations using optogenetic-specific

manipulation of these projections to downstream loci (IL or PL)

to assess their impact on anxiety are necessary. The prefrontal

cortex plays a dynamic role in modulating organism anxiety levels

in response to varying degrees of threatening stimuli (42).
3.3 Modulation by the basolateral
amygdala-terminal bed nucleus
output loop

The BNST processes fear and perseverative response afferents,

which are directly innervated by BLA afferents, as well as inputs from

the HPC and mPFC, Glu from the entorhinal cortex, and the insular

cortex (43). The presence of redundancy in the functions of the

AMYG and BNST ensures that fear learning remains robust even in

the face of localized damage and dysfunction. For instance, if the BLA

function is absent, the BNST compensates by playing a role in fear

memory acquisition, albeit requiring more training for BLA-

independent fear learning (44). In addition, specific subregions

within the BNST have been found to selectively modulate different

features of the anxiety phenotype. BLA inputs to the anterior ventral

BNST (anterodorsal BNST, adBNST) facilitate behavioral and

physiological anxiolysis; while localized inhibition of a BNST

subregion, the nucleus of the ovoid nucleus (ovBNST), to the

adBNST induces anxiety. These findings further emphasize the

significant role of the BNST in anxiety regulation (21).
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4 Bed nucleus of stria terminalis

4.1 Current status of research on bed
nucleus of stria terminalis

The BNST, located in the medial caudate nucleus, is a complex

limbic forebrain region that handles stress and reward, housing

various subregions and specific neuronal cell populations (45).

Functioning as a pivotal control hub for motivation and emotional

states, the BNST plays an important role in perceiving threatening

stimuli (80), orchestrating a neural network that interacts with

multiple brain regions to process a wide array of external signals

and modulate behavioral responses (46). For example, neural

pathways linking the BNST to the hypothalamus foster eating and

drinking behaviors while maintaining internal homeostasis through

connections with the brainstem (47). Additionally, connections

between the BNST and the LS and medial amygdala (MeA)

regulate reproductive behavior across species (48). Together with

the central AMYG and the nucleus ambiguus (NAc), the BNST forms

the extended amygdala (49). Functional magnetic resonance studies

have revealed significant activation of BNST neurons in patients with

anxiety disorders, with clinical evidence suggesting its involvement in

the modulation of persistent fear and anxiety, as well as regulating

aversive and reward-related behaviors. With its extensive

interconnections with various brain regions and diverse receptor

subgroups, the BNST has emerged as a pivotal region in the

investigation of mood-related psychiatric disorders, establishing

itself as a key player in the anxiety-related brain circuitry.
4.2 Structural subdivisions and main
functions of the BNST

It is essential to understand the organization of the BNST brain

region and its subregions to explore the mechanisms of integrating

information and executive functions (80, 50). Located in the ventral

septal nucleus, the BNST is situated near the ventral septal nucleus,

the anterior region of the hypothalamus, and fluctuates within and

down in the anterior commissure region (49). The BNST can be

subdivided into the anterior BNST (aBNST) and posterior BNST

(pBNST), with aBNST primarily regulating specific emotions and

pBNST mainly involved in reproductive behavior.

The aBNST consists of several major subregions, including the

ovoid nucleus (ovBNST), anterolateral BNST (alBNST),

anterodorsal nucleus (adBNST), saccular nucleus (juxtacapsulae

BNST, juBNST) (fusiform BNST, fuBNST), rhomboid BNST

(rhBNST), ventral BNST (vBNST), and dorsomedial BNST

(dmBNST), each of these subregions can project separately to

different brain regions and exert projecting independently to

various brain regions with distinct regulatory effects (51).

The ovBNST plays a crucial role in integrating information

related to negative emotional stimuli through neurotransmitters

such as corticotropin-releasing hormone (CRH), GABA, dopamine

(DA), and dynorphin, thereby influencing anxiety-like behavior

(21). It forms strong connections with other brain regions,

transmitting GABAergic projections to the CeA and receiving
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inputs from dopamine receptors in the VTA and the DR (52).

Increased CRH and mRNA expression in the ovBNST follow

certain chronic restraint stress and plantar electric shock (53).

In the alBNST, various receptors like oxytocin, dopamine, and

serotonin influence functional regulation, with GABAergic nerve

fiber transmitting output to the PVN of the hypothalamus (PVN).

Neuronal subpopulations expressing these receptors integrate

neural inputs, regulate mood and pain, and receive Glu inputs

from the VTB and PVNventral hypothalamic peduncle (26).

The vBNST region contains dense noradrenergic fibers (54),

receiving cytosolic inputs from the caudal ventral medulla and the

nucleus tractus solitarii (52), enabling the inhibition of cardiovascular

responses and facilitation of norepinephrine release in response to

stimuli, which is also facilitated by the administration of plantar

electric shock stimulation. The vBNST ultimately facilitates sensitive

responses to facial stimuli, leading to adaptive behaviors.
4.3 Advances in research on anxiety
disorders in BNST

Numerous experimental pharmacological studies have

demonstrated the significant role of BNST in modulating anxiety-

related behaviors (55). Patients exhibiting anxiety symptoms exhibit

elevated neuronal activity in the BNST region in response to

uncertain stimuli, in contrast to the normal population (56).

Clinical imaging studies have further revealed a positive

correlation between BNST activity and the severity of anxiety

symptoms (81). Boucher et al. found that the activation of

pituitary adenylate cyclase-activating polypeptide (PACAP)

receptor and the lateral parabrachial nucleus (LPBn) played an

important role in producing anxiety-like behavior (57). In addition,

researchers illustrated how chronic pain induced anxiety behavior

via regulating BNST. The molecular genetic approach verified a

specific subpopulation of BNST neurons expressing cocaine- and

amphetamine-regulated transcript (CART) was elevated by chronic

pain, which further led to increased inhibitory inputs to LH-

projecting BNST neurons. Finally, the anxiety-like behavior was

induced (58). Histamine receptors were also reported to induce

anxiety behavior. By blocking histamine H1 or H2 receptors in

BNST, the anxiety behavior was reduced (59). Based on those

experiments, the regulation mechanism of BNST on anxiety

behavior is complicated and variable. Owing to the complexity of

the BNST structure and involved underlying mechanism,

integrating multimodal techniques encompassing neuroimaging,

optogenetics, chemogenetics are applied to investigating

molecular mechanisms.

It has been illustrated through optogenetic manipulation studies

that different subregions of the BNST and their projections to

distinct downstream neural circuits can trigger varying anxiety-

like behaviors. The ovBNST and adBNST, as two subregions of the

BNST, exhibit opposing roles in anxiety regulation. Manipulation of

three separate downstream neural circuits from adBNST to the LH,

VTA, and parabrachial nucleus (PBN) resulted in mice displaying

anxiety-related behaviors and diverse functional phenotypes (21).

Studies have also demonstrated that the vBNST in the anterior part
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of the BNST transmits excitatory Glu and inhibitory GABAergic

projections to non-dopaminergic neurons in the VTA.

Optogenetics activation of Glu neurons in the vBNST projecting

to the VTA induces avoidance behaviors and increases anxiety

levels, while activation of the GABAergic neurons in the vBNST to

the VTA promotes rewarding and anxiolytic behavior (60). The

relationship between cellular and behavioral functions is evidenced

in the enhanced activity of Glu neurons and the suppressed activity

of GABA neurons in the vBNST following aversive plantar electrical

stimulation (61). This highlights the distinct roles played by

different types of BNST neuronal projections to the VTA in

anxiety production. Understanding the specific neuron types

within the BNST and their downstream projections to the neural

circuits is crucial for unraveling the mechanisms underlying anxiety

regulation (19). On the other hand, the results of functional MRI

scans showed that compared with normal controls, generalized

anxiety disorder patients exerted increased activity in the BNST

(56). BNST is thought to be involved in more chronic regulation of

sustained anxiety. Whereas, the dynamics of activation in this

region are rarely known, and a novel image technique is needed

to solve this problem.
5 Modal imaging techniques in
exploring anxiety in BNST

Recent advancements in neuroscience research have led to

significant breakthroughs in the study of anxiety disorders and

other mood disorders. Particularly, researchers have shown great

interest in investigating the role of the BNST brain region as a key

player in the development of anxiety disorders. Traditional imaging

techniques had limitations in accurately depicting the link between

BNST and anxiety due to its small size. However, the development

and utilization of multimodal imaging techniques have enabled

researchers to overcome these limitations and more precisely

uncover the connection between BNST and anxiety. These studies

not only enhance our comprehension of anxiety disorder

pathogenesis but also lay a crucial groundwork for future clinical

diagnosis and treatment.

One notable advancement in neuroscience and psychology is

the progress within fMRI technology. fMRI has significantly

enhanced spatial and temporal resolutions, leading to

advancement in data analysis methods and the exploration of

brain functional connectivity. Through task activation

experiments, resting-state functional connectivity experiments,

and brain network analysis, researchers have delved deeper into

the functional connectivity among different brain regions (62, 63).

This exploration has helped us understand the relationship between

these connections and various aspects such as cognitive functions,

emotion regulation, and diseases, thereby enhancing our insight

into the brain’s functional structure and dynamic regulatory

mechanisms. Examining recent studies in this field clarifies the

significance and utility of multimodal imaging techniques in

unraveling the neural mechanisms of anxiety disorders. These
Frontiers in Psychiatry 06
studies have immense potential to clinical practice positively by

providing new insights for diagnosis and treatment strategies.
5.1 Neural control of optogenetic and
tracer technologies in BNST and anxiety

The BNST serves as a crucial emotion regulation center, playing a

significant role in the processing of anxiety-related signaling input

and output pathways. Integrated incoming information from brain

regions such as the amygdala and prefrontal cortex occurs within the

BNST, which subsequently transmits signals through output

pathways connected to brain regions like the hypothalamus.

Disruptions in this signaling pathway can result in an anxiety

regulation imbalance, potentially contributing to the development

and onset of anxiety disorders. Various studies have demonstrated

the therapeutic potential of interventions targeting the BNST neural

circuitry. For example, manipulating the activity of BNST neurons

through optogenetic techniques or pharmacological agents has

shown promise in mitigating symptoms associated with anxiety

disorders, thereby introducing novel avenues for their treatment (64).

The complexity and significance of BNST neural circuits in the

etiology of anxiety disorders underscore the need for further research

efforts. Continued investigation will support a comprehensive

understanding of the pathophysiological mechanisms underlying

anxiety disorders, offering a theoretical framework and clinical

insight for the refinement of more effective therapeutic

interventions. Tracer and optogenetic techniques represent valuable

tools for probing these neural circuits. Tracer technology facilitates

the delineation of intricate neural connections between the BNST and

other brain regions by labeling and tracing neuronal trajectories and

connections (65). Conversely, optogenetic techniques enable precise

control over neuron activity (66), thereby elucidating their specific

contributions to anxiety regulation. The integration of these

methodologies enhances our ability to gain a nuanced

understanding of the role played by neural circuits in the

pathogenesis of anxiety disorders, fostering fresh perspectives and

strategies for the management of such conditions.

5.1.1 The BNST and the amygdala in anxiety
The amygdala and the BNST both play important roles in

emotion regulation, with the amygdala being more focused on

rapid, localized fear processing and fear memory, while the BNST is

involved in the long-term evaluation of threats and emotion

regulation. They form a complex network of emotion regulation.

The amygdala is recognized for its role in fear memory, particularly in

relation to the processing of threatening stimuli and fear mechanisms.

In contrast, the BNST is more associated with enduring anxiety

mechanisms, specifically the long-term assessment and emotional

regulation of potential threats in uncertain situations. The BNST

regulates emotional responses and stress levels through connections

with structures such as the amygdala and hippocampus, influencing

the pathogenesis of anxiety disorders by contributing to the

persistence and recurrence of anxiety.
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Russell et al. (67) suggests that neurons in the anterior

subdivision of the BA basal amygdala region (aBA) without

projections to the dorsal BNST (dBNST) are implicated in

contextual fear engrams, whereas neurons projecting to the

dBNST do not seem to partake in contextual fear engrams

directly. Instead, they may serve as a pathway from the BA to the

ovBNST, activated in the initial encoding of contextual fear

memories. Neurons projecting to the dBNST showed activity

during the initial encoding phase of situational fear memories,

indicating their importance in emotional learning. However, these

neurons are not directly involved in the long-term storage of

situational fear memories. The ovBNST, a subregion of BNST,

receives the unidirectional transmission from BA neurons,

suggesting that amygdala-BNST projections play a crucial role in

the processing of situational fear memories, which may contribute

to anxiety onset and maintenance by transforming and integrating

fear memories. The BNST is highlighted as a crucial component in

anxiety regulation, acting as a key relay station in the brain’s

emotion-emotion regulation loop. Neural projections from the

basal amygdala via the BA to ovBNST pathway are believed to be

involved in the initial encoding of situational fear memories. BNST

projections to the central nucleus modulate fear responses to

unlabeled threats and cued fear. The complex neurotransmission

between BNST and different amygdala subregions may enable

BNST to integrate information, ultimately influencing behavioral

manifestations of anxiety.

Increased BNST activity, influenced by inhibitory influences

from the centromedian amygdala (CM), could result in heightened

anxiety states through hyperactivation of downstream targets

involved in autonomic, neuroendocrine, and/or behavioral

regulation (68).

5.1.2 Interaction of the BNST with neural circuits
Through the application of Restraint Stress modeling in

conjunction with optogenetic, chemogenetic, and neural tracer

techniques, Luchsinger (69) found that activation neural

projections from the INSULAR to the BNST heightened anxiety-

like behaviors, while inhibiting this circuit resulted in anxiolytic

effects. Another study (70) found that neurons in the

paraventricular thalamus (PVT) receive excitatory neural inputs

from glutamatergic neurons in the insula cortex and send outputs to

glutamatergic neurons in the BNST, forming a loop that modulates

anxiety behavior induced by restraint stress in mice. This study

strategically manipulated the activities of insular cortex (IC), PVT,

and BNST neurons using optogenetic and chemical genetic

techniques, uncovering their interconnections and their roles in

modulating anxiety behaviors. Specifically, in response to stress, the

IC activates the PVT, which further activates the BNST, ultimately

influencing susceptibility to anxious behavior. The identification of

this novel neural loop paves the way for an enhanced understanding

of anxiety disorders. Furthermore, Xiao et al. (71) observed that

sNAcPV neurons in a mouse model of chronic stress displayed

heightened excitability, leading to increased avoidance behavior.

This also unveiled new GABAergic neural pathways from adBNST

to sNAcPV neurons, and new GABAergic neural pathways

originating from the anterior dorsal amygdala (adBNST) to
Frontiers in Psychiatry 07
sNAcPV neurons. Optogenetic activation of GABAergic neurons

in adBNST was found to decrease the excitability of sNAcPV

neurons, resulting in anxiolytic effects. Additionally, it was noted

that the majority of GABAergic input neurons express growth

inhibitory hormone (SOM). The coordination of SOM- and PV-

cell functions in the BNST to NAc circuit was found to exert an

inhibitory effect on anxiety-like responses, highlighting the intricate

neural mechanisms involved in anxiety regulation.
5.2 Neuroplasticity of the BNST in
anxiety regulation

In a mouse model, chronic social defeat (CSD) stress has been

demonstrated to induce mitochondrial dysfunction within the BLA,

triggering the activation of the PINK1-Parkin-dependent

mitochondrial autophagy pathway. This perturbation resulted in

an upsurge in mitochondrial autophagy, causing an excessive

elimination of mitochondria from the BLA. Consequently,

neurotransmission from the BLA to the BNST was disrupted.

This particular pathway is considered pivotal in modulating

anxiety levels in the brain. The study effectively showcased that

employing optogenetic techniques to boost synaptic transmission

from the BLA to the BNST could successfully ameliorate anxiety

behaviors induced by CSD stress. This discovery highlights the

potential therapeutic efficacy of targeting the BNST in anxiety

management. The optogenetic activation not only enhanced the

synaptic function of the BLA-BNST pathway but also led to a

significant reduction in anxiety-like behaviors in mice, thereby

establishing a direct link between BNST neuroplasticity and

anxiety regulation.
5.3 Anxiety modulation in the BNST at the
molecular level

Previous studies have explored the relationship between the

BNST molecule and anxiety Table 1, focusing on the role of CRH, a

hormone produced by the supraoptic nucleus of the hypothalamus.

CRH regulates cortisol release by activating the hypothalamic-

pituitary-adrenal (HPA) axis, which is central to the stress

response. Additionally, CRF expression in the BNST has been

associated with stress and anxiety behaviors. The BNST is a key

region of CRF expression (6) and various subnuclei within the

BNST show heightened levels of CRF in rats, mice, and rhesus

monkeys. This increased CRF expression in the BNST may

contribute to the development of chronic stress and anxiety

disorders. For example, chronic stress can alter synaptic plasticity

in CRF-expressing neurons, potentially leading to long-term

potentiation (LTP) and the manifestation of chronic stress and

anxiety symptoms (72). Moreover, The FK506 binding protein51

(FKBP51), an auxiliary protein of heat shock protein 90 kDa

(Hsp90) encoded by the Fkbp5 gene, is a recognized risk factor

for anxiety-related disorders and stress dysregulation. A study

manipulating FKBP51 expression in the ovBNST demonstrated

anxiolytic effects when FKBP51 was overexpressed and increased
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anxiety phenotypes upon FKBP51 knockout. This highlights the

importance of FKBP51 expression and regulation in the ovBNST

for normal anxiety-related behaviors (73). In a recent investigation

(8) reduced SIRT1 expression in the BNST and corticotropin-

releasing factor (CRF) expression were observed in mice model

anxiety induced by chronic stress exposure. Local overexpression of

activated SIRT1 in the ovBNST reversed anxiety behaviors in these

mice, decreased CRF upregulation, and normalized the overactive

CRF neurons. The mechanism of action involved SIRT1

enhancing GR-mediated CRF expression by interacting with the

Glucocorticoid Receptor (GR) co-chaperone FK506 Binding

Protein 5 (FKBP5), leading to enhanced CRF transcriptional

repression. Current results are oriented from basic experiments

like mouse or rat anxiety models, while there are rarely reports

about clinical data or targeted medicine. The associated molecule or

signal pathway is multiple and their signal axis action site is also

variable, which may lead to difficulty in targeting. Hence, more

clinical data about anxiety in BNST is needed to investigate.

Furthermore, Wang et al. (74) have identified different cellular

subpopulations in the adBNST, such as corticotropin-releasing

hormone-positive (CRH+) and protein kinase C-d-positive (PKC-d

+) neurons, which exhibit varied emotional behavior. CRH+ and

PKC-d+ neurons receive inputs from similar brain regions, and

exhibit significant variations in their downstream projection

density, thereby providing new perspectives on the circuit

organization of adBNST neurons (75). Furthermore, the study

reveals that chronic social isolation (PWSI) stress triggers

androgynous-specific anxiety-like behavior by enhancing the

excitability of DRD2+ neurons within the dorsal striatum bed

nucleus (dBNST). These neurons serve as a crucial neural

mechanism underlying PWSI-induced sex-specific behavioral

abnormalities and may represent a potential therapeutic target for

addressing social stress-related mood disorders (75). Additionally,

Assis et al. (76) demonstrates that, in stressful situations, the

endogenous cannabinoid (eCB) system in the BNST is activated to

counterbalance the effects of stress. This signaling pathway within the

BNST appears to play a pivotal role in modulating anxiety-like

behaviors, particularly in individuals with prior stress exposure.

Finally, Li et al. (7) observed that histaminergic neurons in the

hypothalamus have a direct projection to the BNST. Blocking or
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downregulating histamine H1 and H2 receptors in the BNST

attenuates anxiety triggered by acute restraint stress, indicating that

histamine signaling in the BNST is crucial for modulating anxiety

behaviors. Therefore, inhibition of histamine receptors could be a

promising therapeutic approach for treating anxiety disorders. Garcia

et al. (77) found that under natural conditions, 5-Hydroxytryptamine

(5-HT) release in the dBNST modulates anxiety-like behavior

through 5-HT1A receptors. The activation of 5-HT input to the

dBNST decreases anxiety. These findings suggest a complex role for

5-HT in regulating dBNST function. These studies suggest that the

regulation of BNST on anxiety is not only influenced by the

projection of hypothalamic neurons, but also differs in the

composition of multiple subregions and the regulation by different

hormones. Therefore, the study on the structural complexity of BNST

is of great significance for revealing the pathological mechanism.
6 Conclusion and prospect

This article mainly introduces the molecular mechanisms of

anxiety regulation of anxiety in BNST. The BNST is a sexually

dimorphic structure and at present, the effect of gender difference

on the regulation of BNST on anxiety is still controversial and needs

further study. The subregions and their distinct reactivity all deserve

further investigation, which might provide insight into a better

understanding of the mechanism of anxiety in BNST. By combining

techniques such as optogenetics and fMRI, we can more precisely

study the association between the activity patterns of BNST neural

circuits and anxiety behaviors. In the future, we anticipate an

increase in studies utilizing neuroengineering tools like brain-

computer interface technology and neuromodulation devices to

explore the association between the BNST and anxiety in more

dimensions. Furthermore, the application of artificial intelligence

and big data analytics represents an important direction for future

research. Through processing and analyzing large-scale neural data,

researchers can unveil hidden laws and patterns within the data,

leading to a deeper understanding of the relationship between

BNST and anxiety. By leveraging these technologies, smarter and

more personalized treatment plans can be developed to effectively

help patients with anxiety disorders.
TABLE 1 Summarization of recent effective molecule on anxiety in BNST.

Molecule Expression Effect Reference

CRF Upregulated Promoting the development of chronic stress and anxiety disorders (72)

FKBP51 Downregulated Increasing anxiety phenotypes (73)

SIRT1 Downregulated Decreasing CRF expression and over-activating CRF neurons. (8)

5-HT Upregulated Enhancing fear and anxiety and activating a subpopulation of corticotropin-
releasing factor (CRF)

(55)

Pituitary adenylate cyclase-activating
polypeptide (PACAP)

Upregulated Modulating BNST function and increasing anxiety-like behavior. (57)

Ketamine Upregulated Ketamine-induced anxiety-like behaviors (78)

Haloperidol (HAL) and aripiprazole (ARI) Upregulated Suppressing CRH expression in BNST (79)
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