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model for simulating structural
brain changes in schizophrenia
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and Yuichi Yamashita1*

1Department of Information Medicine, National Institute of Neuroscience, National Center of
Neurology and Psychiatry, Tokyo, Japan, 2Department of Psychiatry, Yokohama City University,
School of Medicine, Yokohama, Japan, 3Department of Psychiatry and Behavioral Sciences, Graduate
School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
Background: Recent advancements in generative artificial intelligence (AI) for

image generation have presented significant opportunities for medical imaging,

offering a promising way to generate realistic virtual medical images while

ensuring patient privacy. The generation of a large number of virtual medical

images through AI has the potential to augment training datasets for

discriminative AI models, particularly in fields with limited data availability, such

as neuroimaging. Current studies on generative AI in neuroimaging have mainly

focused on disease discrimination; however, its potential for simulating complex

phenomena in psychiatric disorders remains unknown. In this study, as examples

of a simulation, we aimed to present a novel generative AI model that transforms

magnetic resonance imaging (MRI) images of healthy individuals into images that

resemble those of patients with schizophrenia (SZ) and explore its application.

Methods: We used anonymized public datasets from the Center for Biomedical

Research Excellence (SZ, 71 patients; healthy subjects [HSs], 71 patients) and the

Autism Brain Imaging Data Exchange (autism spectrum disorder [ASD], 79

subjects; HSs, 105 subjects). We developed a model to transform MRI images

of HSs into MRI images of SZ using cycle generative adversarial networks. The

efficacy of the transformation was evaluated using voxel-based morphometry to

assess the differences in brain region volumes and the accuracy of age prediction

pre- and post-transformation. In addition, the model was examined for its

applicability in simulating disease comorbidities and disease progression.

Results: The model successfully transformed HS images into SZ images and

identified brain volume changes consistent with existing case-control studies.

We also applied this model to ASD MRI images, where simulations comparing SZ

with and without ASD backgrounds highlighted the differences in brain structures

due to comorbidities. Furthermore, simulating disease progression while

preserving individual characteristics showcased the model’s ability to reflect

realistic disease trajectories.
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Discussion: The results suggest that our generative AI model can capture subtle

changes in brain structures associated with SZ, providing a novel tool for

visualizing brain changes in different diseases. The potential of this model

extends beyond clinical diagnosis to advances in the simulation of disease

mechanisms, which may ultimately contribute to the refinement of

therapeutic strategies.
KEYWORDS

generative AI, deep learning, CycleGAN, brain MRI simulation, schizophrenia,
disease simulation
1 Introduction

Rapid advancements in image-generative artificial intelligence

(AI) have marked the beginning of new possibilities in various fields

(1). Significant breakthroughs include the emergence of DALL-E (2)

and stable diffusion (3), which have made the potential of AI for

generating realistic and complex images widely known (4). This

evolution has profound implications, particularly in the intricate

landscape of medical imaging, where concerns regarding privacy,

ethics, and legal constraints have historically constrained the

sharing of patient data.

The utilization of generative AI models has demonstrated

realistic and comprehensive potential for generating two-

dimensional medical images, such as chest radiographs and

fundus photography (5), and three-dimensional (3D) medical

images, including magnetic resonance imaging (MRI) of the

brain, chest, and knees (6). These studies have highlighted the

potential of generative AI for synthesizing authentic medical images

without compromising the confidentiality of sensitive

patient information.

The limitation of available medical images, in contrast to the

abundance of natural images, emphasizes the importance of generative

AI, which facilitates the use of large amounts of labeled data in model

training. In neuroimaging, the generative AI approach has been used to

generate brain MRI (7), single-photon emission tomography (SPECT)

(8), and positron emission tomography (PET) (9). Among these,

generative AI is commonly used in medical imaging to improve the

performance of models by generating a large number of images and

using them as training data, that is, for data augmentation (10–12). It is

difficult to increase the number of samples forMRI of actual psychiatric

and neurological disorders. Therefore, strategies using generative deep

learning techniques, such as generative adversarial networks (GANs),

have been adopted to enhance the learning process by expanding the

sample size (11, 13–15). Zhou et al. demonstrated that data

augmentation based on a GAN framework could be developed to

generate brain MRI images, improving performance and accuracy in

classifying Alzheimer’s disease and mild cognitive impairment (16).

Zhao et al. introduced a functional network connectivity-based GAN to

distinguish patients with schizophrenia (SZ) from healthy subjects
02
(HSs) using functional MRI data (17). Generative AI has also

demonstrated strength in neuroimaging segmentation (18).

Furthermore, it is imperative to investigate the efficacy of style

transfers derived from generative AI. Style transfer involves applying

the characteristics or style of one image to another while preserving the

content of the latter. This technique holds promise for transforming

easily obtainable images, such as computed tomography scans, into

images exclusive to a limited number of facilities, such as MRI scans

(19). In addition, the application of the style transfer technique is

expected to effectively reduce bias in image quality caused by

differences in imaging equipment and sites (20), which are

unavoidably included in MRI images (21).

Although existing neuroimaging research using generative AI

has been applied to data augmentation and image quality

harmonization, its primary goals have largely been limited to

specific areas, such as disease diagnosis and lesion detection.

However, the use of these techniques to simulate more complex

clinical phenomena presents an interesting area for further

exploration of the potential use of generative AI in neuroimaging

research (22). Examples from external medicine include attempts to

simulate automated automobile driving (23) and the design of novel

proteins (24).

Previous studies have highlighted the challenges of comorbidity

and heterogeneity in psychiatric disorders (25, 26). Specifically,

these studies have focused on the relationship between SZ and

autism spectrum disorder (ASD). SZ and ASD are defined as

distinct disorder groups based on diagnostic criteria but share

some common features, such as difficulties in social interaction

and communication (27). Furthermore, common features in brain

structures and genetic alterations have been noted (28, 29). Owing

to the complexity of their etiology, the relationship between these

two disorders and their comorbid phenotypes remains to be

elucidated. The ability of generative AI to simulate these

conditions can shed light on the intricate relationship between

these disorders and their overlapping phenotypes. However, to our

knowledge, no such efforts have been made yet.

The first step in this study was to develop a generative AI that

simulates brain volume changes caused by SZ, specifically a

generative AI using CycleGAN. This enables the transformation
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of brain images from healthy individuals into images similar to

those of patients diagnosed with SZ. We validated this artificial

schizophrenic brain simulator by analyzing specific brain regions

affected by transformation and comparing them with existing

findings on SZ. Furthermore, we aimed to evaluate the feasibility

of our “SZ brain generator” in simulations of the disease process of

SZ and in simulation experiments of the comorbidity of ASD

and SZ.
2 Materials and methods

2.1 Dataset description

In this study, we used the Center for Biomedical Research

Excellence (COBRE; http://fcon_1000.projects.nitrc.org/indi/retro/

cobre.html) dataset, which is anonymized and publicly available. All

the subjects were diagnosed and screened using the Structured

Clinical Interview for the Diagnostic and Statistical Manual of

Mental Disorders, 4th edition Axis I Disorders (SCID) (30, 31).

Individuals with a history of head trauma, neurological illness,

serious medical or surgical illness, or substance abuse were

excluded. We selected 142 subjects from this database, including

71 patients with SZ and 71 HSs.

We also used the Autism Brain Imaging Data Exchange

(ABIDE; http://fcon_1000.projects.nitrc.org/indi/abide/) dataset,

which is a multicenter project that focuses on ASD. It includes >

1000 ASD and typically developing (TD) subjects. The New York

City University dataset was used in this study. Finally, we included

184 subjects from this dataset: 79 subjects with ASD and 105

TD subjects.

The demographic and clinical characteristics of the COBRE and

ABIDE datasets are presented in Supplementary Table 1.

This study was conducted in accordance with the current

Ethical Guidelines for Medical and Health Research Involving

Human Subjects in Japan and was approved by the Committee

on Medical Ethics of the National Center of Neurology

and Psychiatry.
2.3 Data preprocessing

MRI data were preprocessed using the Statistical Parametric

Mapping software (SPM12, Wellcome Department of Cognitive

Neurology, London, UK, https://www.fil.ion.ucl.ac.uk/spm/

software/spm12/) with the Diffeomorphic Anatomical

Registration Exponentiated Lie Algebra registration algorithm

(32). The MR images were processed using field bias correction to

correct for nonuniform fields and were then segmented into gray

matter (GM), white matter, and cerebrospinal fluid sections using

tissue probability maps based on the International Consortium of

Brain Mapping template. Individual GM images were normalized to

the Montreal Neurological Institute template with a 1.5 × 1.5 × 1.5

mm3 voxel size and modulated for GM volumes. All normalized

GM images were smoothed with a Gaussian kernel of 8 mm full
Frontiers in Psychiatry 03
width at half maximum. Consequently, the size of the input images

for the proposed model was 121 × 145 × 121 voxels.
2.3 Cycle generative adversarial networks

The CycleGAN algorithm, a generative AI method that has been

actively used in recent years for style transformation, was used in

this study (33). This algorithm simultaneously learns to generate

Style B from Style A, and Style A from Style B using two style

datasets. In addition, whether the image is real or fake is

discriminated. This enables style transformations without the

need for supervised data. The GAN learns to progressively

generate high-resolution images through these competitive

processes. Figure 1 shows the schematic workflow of the

proposed method. In this study, we constructed a model to

transform images by learning two styles: MRI of HS and MRI of

SZ. Using the learned model, we transformed HS into SZ and

investigated how the brain regions changed pre- and

post-transformation.

Figure 1 shows the proposed CycleGAN architecture. A 3D

brain image was input into the proposed model to contain more

spatial information, and the background area was cropped as much

as possible (the voxel sizes were 96, 120, and 104). In the learning

phase, the training HS MRI was input to Generator 1 (HS to SZ) to

generate an SZ MRI (called virtual SZ). This virtual SZ was input to

Generator 2 (SZ to HS) to generate an HS MRI (called

reconstructed HS). Similarly, the training SZ MRI data were fed

to the two generators in reverse order to generate a virtual HS and a

reconstructed SZ. Next, two discriminators were used to judge the

reality of the virtual and reconstructed images.

The network of Generators 1 and 2 consisted of U-Net (34),

which is an autoencoder with skip connections. In this study, we

proposed a U-Net model consisting of six consecutive 3D

convolutional blocks (three encoding blocks and three decoding

blocks) with instance normalization and rectified linear unit (ReLU)

activation. The encoding blocks consisted of two convolutional

layers and one pooling layer. The decoding block consisted of three

transposed convolutional layers. Additionally, six layers of ResBlock

were added to the intermediate layer of U-Net, which was used in

the Residual Network to learn the residual function between the

inputs and outputs of the layers (35). This structure is often used in

GANs (2, 36, 37). The discriminator consisted of five blocks,

including a 3D convolution layer with instance normalization and

leaky ReLU activation. The proposed CycleGAN loss function

comprises two parts: adversarial and cycle consistency losses.

Adversarial loss is designed to optimize the generator’s ability to

produce images that are indistinguishable from those belonging to

the target domain by the discriminator. Generator G1 transforms an

image in domain X into domain Y, where DY represents the

discriminator for domain Y:

Ladv(G1,DY ,X,Y)

= Ey∼p(y)½loɡDY (y)� + Ex∼p(x)½log(1 − DY (G1(x)))�
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In addition, the same formulation is applied to generator G2,

transforming an image in domain Y into domain X, with DX as the

corresponding discriminator.

The cycle consistency loss ensures that the image is transformed

back to its original domain and then back. This loss component is

given by the following:

Lcyc(G1,G2) = Ex∼P(x)½jjG2(G1(x)) − xjj� + Ey∼P(y)½jjG1(G2(y)) − yjj�
The network structure was explored preliminarily based on

previous experiments (38, 39). The details of the architecture of our

framework are shown in Figure 2.

We conducted the experiments in Python 3.8 using the PyTorch

v.1.9.1 library (40). Our network was implemented on a workstation

running a 64 Gigabytes NVIDIA Quadro RTX 8000 GPU.
2.4 Verification of generated virtual
schizophrenia brain

In this study, we used a trained CycleGAN model to generate

virtual SZ MRI images of HSs. Subsequently, we analyzed the

different regions of volume pre- (original HSs) and post- (virtual

SZ converted from HSs) transformations and verified whether the

results were consistent with the brain changes due to SZ indicated in

previous case-control neuroimaging studies.
Frontiers in Psychiatry 04
To ensure robustness, we employed a 10-fold cross-validation

approach. The COBRE dataset was divided into 10 subsets, each

used as a validation set, and the model was trained on the remaining

9 subsets. For each fold, the dataset comprised 14 or 16 samples,

with 7 or 8 samples derived from HS and 7 or 8 samples from SZ.

For verification, we performed voxel-based morphometry

(VBM) using SPM12 (41, 42). VBM is a method for comparing

brain GM volumes from segmented MRI images using statistical

parametric mapping to identify and infer region-specific

differences. Standard and optimized VBM techniques have been

used to detect psychiatric and neurological disorders (43–48).

Whole-brain voxel-wise t-tests were performed, and paired t-tests

were specifically employed for pre- and post-transformation

comparisons. To account for potential scaling differences between

pre- and post-transformation brain images, global scaling was

applied to normalize the overall image intensity of each image.

Correction for multiple comparisons was conducted at a combined

voxel level of P < 0.001.

To ensure the reproducibility of the generation, we additionally

assessed any variations in the accuracy of age prediction between pre-

and post-transformations. Owing to the ultrahigh dimensionality of the

brain images, principal component analysis was performed for

dimensionality reduction, retaining all 71 dimensions corresponding

to our sample size. Subsequently, 5-fold cross-validation and linear

regression were used to derive age predictions. To compare the age
FIGURE 1

Our cycle generative adversarial network. The model is designed to enable the transformation between domains of healthy subjects (HSs) and
patients with schizophrenia (SZ). Generator 1 (G1) is responsible for transforming HS into SZ, whereas Generator 2 (G2) performs the conversion
from SZ back to HS. Discriminator 1 (D1) discriminates between real SZ images and virtually generated SZ-like images. Similarly, Discriminator 2 (D2)
discriminates between real HS images and synthetic HS-like images. The loss function is configured to optimize each component.
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values predicted from the brain images pre- and post-transformation, a

t-test was applied. The significance level was set at P < 0.05.
2.5 Brain alteration simulations using a
schizophrenia brain generator

To simulate brain alterations, we chose to utilize a model

trained on the entire COBRE dataset rather than on models

derived from individual cross-validation folds. This decision was

based on the observation that the model trained on all available data

produced more stable and reliable results, which are essential for

generating accurate simulation outcomes.

Two experiments were conducted to verify whether the

developed generator can simulate brain alterations. The first

involved simulating the comorbidities of the disease (Figure 3A).

We applied the SZ brain generator to an independent dataset called

ABIDE. This approach enables the virtual generation of an image

depicting individuals with ASD and SZ. Using the original TD and

ASD individuals as baselines, the SZ brain generator was used to

generate “virtual” TD + SZ, where TD is transformed into SZ, and

“virtual” ASD + SZ, where ASD is transformed into SZ. A

comparative analysis was then performed pre- and post-

transformation of ASD, specifically comparing ASD with “virtual”

ASD + SZ to observe the effects of SZ on individuals with ASD.

Furthermore, a comparative analysis of “virtual” TD + SZ and
Frontiers in Psychiatry 05
“virtual” ASD + SZ was conducted to identify brain differences that

emerge with or without ASD in the context of SZ. This method

employed VBM to examine and quantify changes in brain regions,

allowing us to identify specific areas affected by the transformation

and explore the interaction effects between SZ and ASD.

In the second experiment, we simulated disease progression, as

shown in Figure 3B. We repeatedly applied the trained generator to the

images and compared the results with those of the original images to

validate the changes. Our analysis aimed to ascertain the effectiveness of

this method for simulating brain alterations associated with disease

progression. To confirm that the original individual characteristics were

retained after repeated transformations of brain images, age predictions

were made using each transformed image. An analysis of variance

(ANOVA) was used to confirm the absence of significant differences in

these predictions. The significance level was set at P < 0.05.
3 Results

3.1 Generation of virtual
schizophrenia brain

Following an adequate learning process, our model was able to

generate brain MRI images qualitatively (Supplementary Figure 1).

We performed VBM analysis pre- and post-transformation to

confirm that the model generated from MRI of HSs to MRI of
FIGURE 2

Our proposed CycleGAN architecture. The numbers describe the number of channels and the size of the images. The generator consists of an
encoder and a decoder, and the bottleneck contains a ResBlock. The encoder and decoder were designed as a U-Net with skip connections. The
discriminator, a convolutional neural network, is trained to discriminate between the generated images and the ground truth.
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patients with SZ captured the characteristics of schizophrenic brain

structures. VBM analysis confirmed the regions of volume

reduction after transformation to an SZ-like state, including the

bilateral anterior cingulate cortex, thalamus, orbitofrontal cortex,

insula, temporal pole, and left superior temporal gyrus (Figure 4,

Supplementary Table 2). This result is consistent with the findings

of previous case-control studies on SZ (49–54), indicating that this

model can reproduce the brain volume changes caused by SZ.

In addition, age prediction was performed using brain images

obtained pre- and post-transformation, and there was no significant

difference in the predicted values (P = 0.495). In addition to the t-

test, the effect size was calculated using Cohen’s d, which revealed a

small effect (d = 0.115) (Supplementary Figure 2).

Using a generator model that transforms the MRI of HSs into the

MRI characteristics of patients with SZ, this model was applied toMRI

images, and the volume differences of brain regions pre- and post-

transformation were examined. After applying SZ brain generator
Frontiers in Psychiatry 06
images, volume reduction was observed in the bilateral superior

temporal gyrus, right middle temporal gyrus, right hippocampus,

and bilateral medial frontal gyrus to the anterior cingulate gyrus.
3.2 Simulation analysis of virtual
schizophrenia with autism spectrum
disorder brain

We performed a simulation using a trained SZ MRI generator,

generating virtual MRI images of ASD with SZ (“virtual” ASD + SZ)

by transforming existing MRI images. We then analyzed the

differences in brain structures pre and post the transformation to

SZ (i.e., comparing ASD with “virtual” ASD + SZ. In Figure 5A, the

cold-colored areas represent regions where the volume was reduced

when ASD was comorbid with SZ. We confirmed volume reduction,

mainly in the bilateral temporal lobes and insular cortex.
FIGURE 4

Difference in brain volume pre- and post-transformation. Voxel-based morphometry analysis was performed between pre- and post-transformation
magnetic resonance imaging images from HSs and those with schizophrenia. Cold colors represent a decrease, and warm colors represent an
increase. STG, superior temporal gyrus; TP, temporal pole; ACC, anterior cingulate cortex.
FIGURE 3

Simulation experiments by generative brain images. Panel (A) is an experiment simulating disease comorbidity. The autism spectrum disorder and
typically developing data were used to generate virtual images with the schizophrenia brain generator. Panel (B) is an experiment simulating disease
progression. Images were generated using one to five repetitions of the schizophrenia brain generator.
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Next, we performed a simulation to examine whether there

were differences in brain structure between individuals diagnosed

with SZ with and without background ASD. Virtual SZ MRI images

were generated from ASD and TD MRI images using an SZ brain

generator. Depicted in Figure 5B are regions where the cold regions

show a volume reduction in the virtual SZ generated from the ASD

(“virtual” ASD + SZ) compared with the virtual SZ generated from

the TD (“virtual” TD + SZ). Volume reduction was observed

bilaterally in the hippocampus. The warm regions showed volume

increases in the “virtual” ASD + SZ images. An increase in volume

was observed in the left middle temporal gyrus.
3.3 Simulation analysis of
repetitive transformations

We hypothesized that repeated transformations of brain images

could potentially reveal the evolutionary trajectory of a disorder. To

verify this hypothesis, we conducted VBM analyses on the original

images and the nth iterated transformation (n = 1–5). The results

showed that the regions of difference expanded with each repeated
Frontiers in Psychiatry 07
transformation. Initially localized, by the fifth transformation, these

differences had progressively become widespread, with a focus on

the temporal lobe (Figure 6). This progressive expansion suggests

that the model effectively captures the cumulative structural

changes associated with the disorder.

To confirm that the original individual characteristics were

retained after repeated transformations of the brain images, age

predictions were conducted using each transformed image.

Five-fold cross-validation and linear regression were used to

predict age from repeatedly transformed brain images. The

differences in prediction accuracy were evaluated using ANOVA.

The results showed no significant differences in age prediction

(P = 0.932, h²p = 0.01) (Supplementary Figure 3). This suggests

that the original individual characteristics are preserved after

multiple transformations.
4 Discussion

In this study, we introduced generative AI capable of depicting

structural differences in the brain resulting from psychiatric
FIGURE 5

Disease comorbidity simulation. (A) shows the volume differences before and after the application of the schizophrenia brain generator, which
enabled the generation of an image of autism spectrum disorder (ASD) combined with schizophrenia (SZ). (B) shows the volume differences
between the virtual SZ-like images with and without ASD. STG, superior temporal gyrus; ACC, anterior cingulate cortex; MTG, middle
temporal gyrus.
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disorders. Specifically, we developed a generative AI to transform

brain images into SZ images. Our results confirm the potential of

the model for facilitating several simulation experiments related to

psychiatric disorders.

Our model was qualitatively successful in transforming the MRI

images of HSs into images resembling those of patients with SZ.

Subsequent VBM analysis confirmed the alignment of the model

with previously established SZ studies. Patients with SZ exhibit

structural anomalies in the superior temporal gyrus, thalamus, and

hippocampus compared with healthy individuals, a finding that

corroborates our results (53–55). This study offers a compelling

solution to the problem of insufficient neuroimaging data by

effectively generating data that capture the characteristics of SZ-

related brain changes (56).

Subsequent simulations using a trained SZ brain generator

extended the investigation to individuals with SZ and ASD. SZ

and ASD are distinct disorders with unique clinical profiles and

natural histories. However, ASD carries a significantly higher risk,

three–six times, of developing SZ than TD individuals (57, 58).

Recent studies have indicated a convergence between SZ and ASD.

To investigate this intricate relationship, we conducted a virtual

brain simulation and proposed a new hypothesis. This exploration

revealed volume reduction patterns, primarily concentrated in the

bilateral temporal lobes and insular cortex, which are characteristic

of comorbidities. This observation suggests that the model captures

distinct structural changes specific to this subgroup, thereby

demonstrating its potential to unravel the complex interplay

between different psychiatric conditions.

Further simulations were performed assuming a retrospective

study. In this study, we generated brain images of patients with SZ

with and without ASD and examined whether it was possible to

analyze the differences in their structures. The distinct volume

reductions observed in the bilateral hippocampus in the ASD +

SZ group indicate a potential structural divergence associated with

the comorbidity. Conversely, the volume increase in the left middle

temporal gyrus in the same group offers an interesting avenue for

understanding unique structural variations in this population.

Zheng et al. reported that the higher the autistic traits, the lesser
Frontiers in Psychiatry 08
the improvement in psychiatric symptoms and life functioning after

a year (59). Therefore, it is important to determine the presence or

absence of ASD in the context of SZ to predict the prognosis and

determine the course of treatment. The proposed model can

provide decision support for treatment strategies.

The repeated transformation approach, which was designed to

explore the evolutionary trajectory of brain changes, provides novel

insights into ailment progression. The expansion of the difference

region with each repeated transformation, culminating in a

widespread pattern centered on the temporal lobe, underscores

the model’s ability to capture and magnify the cumulative effects of

structural alterations. A meta-analysis of longitudinal studies on SZ

revealed that patients with SZ exhibited significantly higher volume

loss over time (49). This loss included the entire cortical GM, left

superior temporal gyrus, left anterior temporal gyrus, and left

Heschl’s gyrus. These findings are consistent with the simulation

results generated using the proposed model. This repeated approach

can potentially aid in elucidating the progressive nature of the

impact of the disorder on the brain structure.

Investigation of the preservation of the original individual

characteristics after repeated transformations brought an essential

dimension to the study. By evaluating age predictions across the

transformed images, this study established the robustness of the

model in retaining individual-specific features. The absence of

statistically significant differences in age predictions reinforces the

credibility of repeated transformations in preserving the key

characteristics of the original images.

Generativemodels capable of producing high-resolution 3D brain

images with morphological features similar to real brain images have

been developed using large-scale datasets. Methods for modeling

changes caused by brain aging and Alzheimer’s disease have been

investigated (60, 61). However, no attempts have been made to

generate brain images of SZ combined with other psychiatric

disorders or to simulate the progression of the disease. Such

simulations have the potential to enhance our understanding of the

neural basis of psychiatric disorders and contribute to the

development of novel therapeutic and diagnostic methods. It is

important to acknowledge the limitations of this study despite these
FIGURE 6

Repetitive transformations. The volume differences were relatively localized at first but gradually became more extensive, especially in the temporal
lobe, by the fifth transformation.
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promising findings. One limitation is the reliance on a simulated data

approach, which may not fully capture the complexity of real-world

brain structural variations. Additionally, even if there is no difference

in the accuracy of age prediction using the generated brain images, it

may not cover the entire range of demographic factors that could

influence brain structure. The disparate age and gender distributions

across the COBRE and ABIDE datasets may have impacted the

outcomes. Furthermore, it is well-established that the duration of

illness and the amount of medication administered can influence

brain structure in patients with SZ. Incorporating these parameters

may be essential for elucidating the intricacies of this complex illness.

Unfortunately, CycleGAN requires consistency of input factors across

domains, which limits the ability to utilize information not possessed

by HSs for training. Additionally, although this study simulated

brains with comorbid ASD and SZ, it is important to acknowledge

that real clinical cases cannot be fully represented by a simple overlay

of images. The primary aim of this study was to propose an

application of generative AI for simulation, focusing on a

straightforward model that transforms brain images. Future

research would benefit from developing models that incorporate a

wider range of confounding factors, potentially leading to more

realistic and comprehensive simulations.

In conclusion, this study demonstrated the potential of the

developed model to capture and simulate brain structural alterations

associated with SZ and its comorbidity with ASD. These findings

provide a foundation for exploring the mechanisms underlying these

conditions and their interconnections.
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