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Introduction: Electroconvulsive therapy (ECT) remains a critical intervention for

treatment-resistant depression (MDD), yet its neurobiological underpinnings are

not fully understood. This pilot study aims to investigate changes in loudness

dependence of auditory evoked potentials (LDAEP), a proposed biomarker of

serotonergic activity, in patients undergoing ECT.

Methods: High-resolution magnetoencephalography (MEG) was utilized to

measure LDAEP in nine depressed patients receiving right unilateral ECT. We

hypothesized that ECT would reduce the LDAEP slope, reflecting enhanced

serotonergic neurotransmission. Depression severity and cognitive performance

were assessed using the 24-itemHamilton Depression Rating Scale (HDRS24) and

the Repeatable Battery for the Assessment of Neuropsychological Status

(RBANS), respectively.

Results: Contrary to our hypothesis, findings indicated a significant increase in

LDAEP post-ECT (t8 = 3.17, p = .013). The increase in LDAEP was not associated

with changes in depression severity or cognitive performance.

Discussion: The observed increase in LDAEP suggests a more complex

interaction between ECT and neurobiological systems, rather than a direct

reflection of serotonergic neurotransmission. Potential mechanisms for this

increase include ECT’s impact on serotonergic, dopaminergic, glutamatergic,

and GABAergic receptor activity, neuroplasticity involving brain-derived

neurotrophic factor (BDNF), and inflammatory modulators such as TNF-a. Our

results highlight the multifaceted effects of ECT on brain function, necessitating

further research to elucidate these interactions.
KEYWORDS

electroconvulsive therapy, loudness dependence of auditory evoked potentials, major
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1 Introduction

Major depressive disorder (MDD) remains a pervasive global

health challenge, affecting millions worldwide and ranking among

the leading causes of disability. MDD leads to substantial healthcare

costs and contributes heavily to the overall disease burden (1).

Despite the widespread use of antidepressant medications, many

patients do not achieve sustained relief. As an alternative,

neuromodulation therapies such as electroconvulsive therapy

(ECT) play a vital role. ECT is a well-established intervention that

demonstrates exceptional efficacy in multiple psychiatric disorders,

including MDD. It involves the administration of electrical

currents, either unilateral or bilateral electrode placements on the

patient’s head, to induce a brief, controlled seizure. Ultimately, this

process is thought to elicit reorganization of key cortical networks

involved with mood and cognition. However, ECT can cause

significant adverse effects, such as memory loss and confusion,

rendering ECT to be reserved for severely treatment resistant

patients (2, 3). Identifying the specific neurophysiological changes

induced by ECT could lead to the development of safer and more

effective treatments. While the optimal stimulation methods and

parameters are still being investigated, ECT remains essential for

managing treatment-resistant depression.

More than eight decades have passed since its introduction as a

clinical intervention, yet the precise neurobiological mechanisms

underpinning ECT’s therapeutic effect remain elusive. Current

research suggests that ECT’s benefits are likely achieved through

multiple mechanisms. These include, but are not limited to, changes

in neurotransmitter transmission, enhancement of neurotrophic and

neuroplastic activities, modulation of cortical networks, reduction of

neuroinflammation, and regulation of the endocrine system (3–10).

Given the historical precedence of the monoaminergic theory of

depression, a plethora of studies in both animals and humans have

sought out to determine whether ECT’s efficacy is related to changes

in serotonergic activity (11, 12). While the evidence remains

inconclusive, ECT appears to have some notable effect on

serotonergic neurotransmission (3). A significant challenge in this

area is that peripheral biomarker measurements do not reliably reflect

neurotransmitter levels in the brain. Advanced neuroimaging

techniques can be employed to gather insight into the effect of

treatments such as ECT on neurotransmitter activity.

Loudness dependence of auditory evoked potentials (LDAEP) is a

method used to measure the response of cortical potentials to

variations in the intensity (i.e., loudness) of auditory stimuli.

LDAEP is typically assessed using electroencephalography (EEG).

The relationship between stimuli loudness and evoked potential

amplitudes in the primary auditory cortex has been suggested as an

indicator of serotonergic neurotransmission (13). Serotonin is

thought to play a role in auditory processing, as layer IV of the

primary auditory cortex is densely innervated with serotonergic fibers

originating from the raphe nucleus (14, 15). Initial studies in animal

models reported that higher serotonin activity was correlated with

less dependence on stimulus intensity (i.e., similar amplitudes in

cortical evoked potentials regardless of loudness). Conversely, lower

serotonin activity was correlated with loudness-dependent changes in

evoked potential amplitudes (13, 16). Furthermore, LDAEP has been
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proposed to be a protective mechanism in auditory processing, which

helps prevent overstimulation and excitotoxicity (17). Within the

primary auditory cortex, the neurobiological mechanisms of a

reduced LDAEP being associated with high serotonin activity is

proposed to rely on serotonergic modulation of cortical excitability.

This modulation occurs indirectly via GABA-ergic interneurons,

which express excitatory 5-HT2A receptors, and directly via

pyramidal cells, which express both excitatory 5-HT2A and

inhibitory 5-HT1A receptors (13, 16, 18, 19).

An abundance of literature now exists exploring the relationship

between the LDAEP and other neurotransmitter systems and

biomarkers (20, 21). While evidence for the LDAEP’s relationship

with serotonin is controversial, it is clear serotonergic activity serves a

critical role in the functioning of the primary auditory cortex (20, 22–

26). Numerous studies provide robust support for the influence of

serotonergic activity on neuronal functioning across auditory

processing pathways (27–30). Notably, a recent positron emission

tomography (PET) study on the molecular mechanisms underlying

the LDAEP reported that this biomarker is strongly and positively

correlated with 5-HT1A binding in the temporal cortex, specifically in

the location of the primary auditory cortex (15).

Additionally, studies have demonstrated that serotonin plays a

crucial role at the intersection of psychiatric disorders and auditory

conditions, including tinnitus and hearing loss (27, 28). In

particular, MDD has been reported to be associated with

impaired auditory processing. Studies indicate that deviations in

serotonergic activity are evident in the auditory cortices of

individuals with depression compared to controls (25, 31–34). For

example, increased 5-HT1A binding and decreased 5-HT2A

binding specifically within the primary auditory cortex in

depressed patients has been reported (25). Moreover, treatments

for depression, including ECT, have been shown to have a

significant effect on auditory processing, demonstrated via

increased activity, excitability, and intrinsic connectivity within

the auditory cortices (31, 32, 35–37). Additionally, ECT has

shown a pronounced impact on auditory evoked potentials,

further underscoring the complex interplay between serotonergic

modulation and auditory functions in psychiatric contexts (38, 39).

Given the efficacy of serotonergic agents such as selective

serotonin reuptake inhibitors, and more recently psychedelics like

psilocybin, in the treatment of depression, it is likely regulation of

this monoamine system serves a pivotal role in ECT’s efficacy (40).

Studies show mixed results regarding ECT’s impact on serotonergic

receptors. For instance, some reports indicate that electroconvulsive

stimuli result in decreased binding and activity of both 5-HT1A and

5-HT2A receptors (12, 41–43). However, other studies reveal no

change in 5-HT1A activity, an increase in 5-HT2 activity, and

enhanced serotonin transporter (SERT) receptor levels following

ECT (44–47). Despite these discrepancies, there is broad consensus

that ECT has a robust impact on serotonergic receptors in the

treatment of multiple psychiatric disorders (8, 12, 48, 49).

Conventional LDAEP studies typically employ EEG. A 1982

study by Hari et al. compared simultaneous magnetic (AEF) and

electrical (AEP) responses to auditory tones, demonstrating that

AEF measured by MEG are highly comparable to AEP measured by

EEG for short interstimulus intervals (< 4s) (50). MEG can offer
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better spatial resolution than EEG, particularly for superficial

cortical sources (50). This comparison provides a foundational

basis for the application of MEG in auditory evoked potential

studies. Furthermore, subsequent studies have confirmed the

reliability and validity of using MEG to measure LDAEP (51).1

This study utilizes high-resolution magnetoencephalography

(MEG) to measure cortical activity and determine the LDAEP in

individuals before and after ECT. The primary aim is to explore the

changes in the central serotonergic neurotransmission attributable

to ECT, by analyzing variations in LDAEP. We hypothesize that

ECT will decrease LDAEP, indicative of enhanced serotonergic

neurotransmission. This approach not only promises to deepen our

understanding of the neurochemical environment in patients

undergoing ECT but also sheds light on the neurobiological

mechanisms that underpin ECT’s effectiveness.
2 Methods

Study participants and ECT treatment Ethical approval was

obtained from the Human Research Protections Office at the

University of New Mexico (UNM) before study initiation. The

research was conducted in full compliance with the ethical

standards outlined in the Declaration of Helsinki. Patients were

recruited from the UNM Mental Health Center’s inpatient and

outpatient services. All patients either had the decisional capacity

to consent or, where necessary, provided assent with a surrogate

decision-maker giving formal consent. All patients completed a full

course of electroconvulsive therapy (ECT) using the ultra-brief pulse

width, right unilateral electrode placement as previously described

(52). During the initial session, the seizure threshold was determined

using a dose titration method, which then guided the dosage for

subsequent treatments. Specifically, the stimulus dosage was set at six

times the threshold. Treatments were administered thrice weekly, and

continued until an adequate clinical response was achieved or a

decision was made to cease treatment due to non-response.
2.1 MRI

All MRI scans were conducted using the 3-Tesla Siemens Trio

scanner at the Mind Research Network (MRN). High-resolution T1-

weighted structural images were acquired using a 5-echo MPRAGE

sequence with the following parameters: echo times (TE) of 1.64, 3.5,

5.36, 7.22, and 9.08ms; repetition time (TR) of 2.53s; inversion time

(TI) of 1.2s; a flip angle of 7°; a single excitation; a slice thickness

of 1mm; a field of view of 256mm; and a resolution of 256×256.

Structural MRI preprocessing and the delineation of structural images
1 Note that “LDAEP” traditionally refers to potentials recorded via EEG. For

consistency with the literature, we retain this familiar nomenclature.

However, it is important to note that in the context of this study, “LDAEP”

denotes the magnet ic fie lds measured by MEG rather than

electrical potentials.
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were conducted using FreeSurfer 4.5.0 software (https://

surfer.nmr.mgh.harvard.edu) (53).
2.2 MEG acquisition and data processing

Prior to and following the ECT course, patients underwent

MEG scans (see Figure 1). MEG recordings were captured using the

Elektra Neuromag VectorView 306 system, which is equipped with

102 magnetometers and 204 planar gradiometers. To ensure

accurate alignment, the MRIs were coregistered with scalp fiducial

markers. While seated inside the MEG helmet, patients were

exposed to a series of auditory tones at five different intensity

levels: 55, 65, 75, 85, and 95dB. The tones were emitted through

biauricular earbuds at a frequency of 2kHz, lasting 50ms each. The

tones were presented in a random sequence, with interstimulus

intervals of 1.2–2s; each intensity block comprising 22 tones,

resulting in a total of 110 trials per intensity level.

Data analysis was performed with Brainstorm 3 (54), which is

documented and freely available for download online under the

GNU general public license (http://neuroimage.usc.edu/

brainstorm). The MEG data was filtered using a 1–100Hz

bandpass filter and a 60Hz notch filter to eliminate electrical line

noise. Malfunctioning channels were identified and excluded.

Artifacts arising from cardiac activity and eye blinks were

removed via signal-space projection, and independent component

analysis was used to eliminate other non-brain artifacts. Auditory

events were defined for a time window from −100 to 500ms around

the tone’s presentation. The data was normalized using the Z-

transformation relative to the 100ms pre-stimulus baseline.

Cortical structures were derived from each subject’s MRI scans

using FreeSurfer, and aligned with a standard brain atlas for cortical

reconstruction. The head model for the forward model utilized the

symmetric boundary element method (BEM) implemented in

OpenMEEG, provided by the INRIA institute. This model

established a computational link between the neuronal activity in the

source space and the recorded MEG data in the sensor space,

considering the conductive properties of head tissues. The inverse

model, which infers neural activity from the MEG data, was computed

using a data covariance matrix through the linearly constrained

minimum variance (LCMV) beamforming technique, focusing on

auditory evoked fields. Trial-averaged, source-level event-related

fields (ERFs) were extracted from the bilateral primary auditory

cortices. Finally, the LDAEP was calculated by evaluating the change

in normalized ERF amplitude between the N100 and P200 components

from the trial-averaged epochs. The LDAEP is represented by the slope

of the linear regression line fitted to these data points.
2.3 Statistical analysis

We evaluated the distribution of our data for normality using the

Shapiro–Wilk test. The tests indicated normality in the changes in the

LDAEP slope (W = 0.86, p = .10), HDRS24 (W = 0.90, p = .26), and

total RBANS scores (W = 0.84, p = .11). To investigate changes in

LDAEP slopes, depression scores, and cognitive functioning scores
frontiersin.org
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before and after treatment, we employed paired t-tests. Additionally,

we explored correlations among the pre-treatment and post-

treatment LDAEP slopes, the degree of their changes, and the

baseline, post-treatment, and changes in HDRS24 and RBANS

scores. Initially, we attempted to include age and sex as covariates

in a multiple linear regression model. However, given the small

sample size of nine participants, which limited the statistical power

and reliability of the estimates, and the lack of significant findings for

age and sex, we decided to revert to simpler Pearson’s correlations.
3 Results

3.1 Demographics and clinical outcomes

The study involved nine participants, six of whom were

female, with an age range from 50 to 78 years. The average age

of the participants was 68.1 years with a standard deviation of 10.7

years, and six participants were 65 or older. Prior to receiving

treatment, the average score on the 24-item Hamilton Depression

Rating Scale (HDRS24) for these patients was 37.2 (standard

deviation = 12.8). Additionally, the mean score on the total

Repeatable Battery for the Assessment of Neuropsychological

Status (RBANS) was 82.9 (19.4). Six of nine patients responded

(> 50% reduction in HDRS24 from baseline) to ECT with an

average post-ECT HDRS24 score of 9.1 ± 7.6 (t8 = 5.60, p < .001).

We collected seven of the nine patients’ RBANS data, and found,

on average, their cognitive functioning did not change with ECT

(t6 = 0.36, p = .73). Demographics and clinical measures before

and after ECT treatment are summarized in Table 1.
3.2 Change in LDAEP

Figure 2 shows the auditory evoked fields before and after

ECT treatment, with responses at varying stimulus loudness levels.
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The LDAEP slope significantly increased following ECT treatment

from 0.41 ± 0.64 to 0.75 ± 0.74) (Cohen’s d = 0.49, t8 = 3.17,

p = .013) (Figure 3).
3.3 Correlations between LDAEP and
depression and cognition scores

The change in the LDAEP slope was not significantly correlated

with baseline (r = −0.079, p = .84), post-treatment (r = 0.066, p =

.87), or changes in HDRS24 (r = 0.101, p = .80). The pre-ECT

LDAEP slope was not significantly correlated with baseline

(r = −0.194, p = .62) nor changes in HDRS24 (r = 0.339, p = .37).

We focused on assessing correlations with RBANS total scores.

The change in LDAEP slope was not significantly correlated with

the baseline (r = 0.208, p = .66), post-treatment (r = 0.403, p = .37),

or changes (r = 0.276, p = .55) in the RBANS total score. The pre-

ECT LDAEP slope was significantly correlated with the baseline

RBANS total score (r = 0.855, p = .014), but not correlated with

changes in the RBANS total score (r = −0.352, p = .44).
4 Discussion

In this study, we used LDAEP as a cortical activity biomarker to

monitor changes in neurotransmitter activity induced by ECT. Our

initial hypothesis posited that ECT would mitigate symptoms of

depression by boosting serotonergic neurotransmission, which

would manifest as a reduced LDAEP, reflected by weakening of

the response amplitude as a function of sound intensity levels.

However, our findings revealed a significant increase in LDAEP

post-ECT. Interestingly, the alterations in LDAEP did not correlate

with changes in depression severity or cognitive performance.

The neurochemical underpinnings of LDAEP suggest that ECT

should lead to a reduction in serotonergic tone within the primary

auditory cortex, but this assumption is subject to debate. Studies on
FIGURE 1

Workflow of MEG acquisition and data processing, detailing the steps from signal acquisition to data analysis. It shows the MEG setup, signal
preprocessing, auditory stimulus presentation, data normalization, brain activity source localization, and the quantification of auditory evoked fields
(AEFs) across different sound intensity levels.
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the relationship between LDAEP and serotonergic activity have

harbored conflicting evidence and perspectives (21, 26, 55, 56).

While numerous studies have found that the LDAEP is sensitive to

acute changes in serotonergic activity, such as following

administration of serotonergic-reuptake inhibitors, other studies

have presented contrasting findings (57–63). A recent narrative

review by Kangas et al. stated that LDAEP studies have generally

yielded no consistent difference between depressed and non-

depressed controls, though there appears to be a relationship with

depression-subtypes (20). Given this context, a possible explanation

for our results not supporting the original hypothesis could be that

the LDAEP does not precisely mirror serotonergic tone in the

primary auditory cortex.

Our findings did reveal a significant modulation of the LDAEP

after ECT treatment. Intriguingly, the observed increase in LDAEP
Frontiers in Psychiatry 05
may indicate that ECT prompted a reduction in serotonergic

receptor activity within the primary auditory cortex, particularly

5-HT1A and 5-HT2 receptors. This aligns with multiple studies

demonstrating a reduction in 5-HT2 and 5-HT1A receptors in

humans and non-human primates following ECT (41–43, 64, 65).

The initial LDAEP studies in animal models bolster the plausibility

of ECT-induced reduction in serotonergic receptors, in that a 5-

HT1A agonist decreased the LDAEP and a 5-HT2A antagonist

increased the LDAEP, suggesting that decreased serotonin receptor

activity results in a strengthened LDAEP (13, 66). However, pre-

clinical studies have largely found an upregulation of 5-HT1A and

5-HT2A receptors after electroconvulsive stimuli in animal models

(45, 47, 67). This discrepancy underscores the need for further

research to understand ECT’s impact on serotonergic receptor

activity in humans more comprehensively.

Several alternative explanations as to why the LDAEP increased

following ECT may be plausible. The LDAEP has been shown to co-

vary with symptom severity in disorders such as ADHD,

schizophrenia, and Parkinson’s disease, all of which are strongly

linked to dopaminergic dysregulation (68–70). Given that ECT has

been found to significantly alter dopaminergic neurotransmission

(45, 71–74), one possible explanation for the heightened LDAEP

could be ECT’s direct influence on dopamine receptor and

transporter activities. Furthermore, considering that the LDAEP

results from both excitatory and inhibitory post-synaptic potentials

within the primary auditory cortex, the altered LDAEP could reflect

changes in glutamatergic and GABAergic functions. Indeed, ECT has

been shown to increase GABA concentration, normalize glutamate

deficits, and alter excitation/inhibition ratios (28, 75–78).

For instance, the administration of a glutamatergic NMDA

antagonist has been reported to blunt LDAEP, suggesting that

increased glutamatergic activity correlates with a heightened

LDAEP (79). On the other hand, a study reported that the LDAEP

is not associated with GABA levels (80). Further exploration of the

relationships between ECT, auditory cortical activity, and excitatory

and inhibitory neurotransmitters could yield valuable insights.
FIGURE 2

Auditory evoked fields (A) before and (B) after ECT treatment, with responses at sound pressure levels of 55–95dB. The change in normalized
evoked field amplitude between the N100 and P200 (N1/P2) components of the trial-averaged epochs was calculated. The LDAEP is calculated as
the slope of linear regression line that best fits the N1/P2 amplitudes at each sound pressure level.
TABLE 1 Demographics and clinical measures before and after
ECT treatment.

Baseline Post ECT t p

N (no. female) 9(6) – –

Age, years, mean (SD) 68.1(10.7) – –

LDAEP, mean (SD) 0.41(0.64) 0.75(0.74) 3.17 .013

HDRS24, mean (SD) 37.2(12.8) 9.1(7.6) 5.60 < .001

RBANS scores, mean (SD)

Total 82.9(19.4) 84.4(18.0) 0.36 .73

Immediate memory 78.0(25.4) 83.1(24.2) 0.84 .44

Visuospatial/
Constructional

84.7(26.1) 90.7(17.7) 0.79 .46

Language 92.6(8.9) 89.7(8.0) 0.79 .46

Attention 92.4(14.7) 89.6(17.9) 1.05 .34

Delayed memory 85.3(22.1) 85.7(22.2) 0.08 .94
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Beyond neurotransmitter effects, there is a consistent body of

evidence indicating that ECT is associated with increased gray

matter volume in the temporal lobes, including the superior

temporal gyrus (5, 81–83), where the primary auditory cortex is

situated. It is possible that neurotrophic effects are related to the

increased LDAEP following ECT in this study. A recent meta-

analysis concluded that ECT directly increases concentrations of

brain-derived neurotrophic factor (BDNF) (84). Similarly, the

LDAEP has been found to be significantly positively correlated

with serum BDNF levels (85). One possibility is that ECT’s robust

neuroplastic effects within the temporal lobe are related to the

modulation of the LDAEP. Moreover, systematic reviews found that

ECT has consistently been reported to decrease levels of

inflammatory biomarkers, tumor necrosis factor alpha (TNF-a)
and interleukin-6 (IL-6) (86, 87). Notably, one study demonstrated

that the LDAEP was negatively correlated with TNF-a (88). This

could suggest that a reduction in TNF-a might contribute to the

LDAEP increase seen after ECT. Given these multifaceted biological

interactions, further research is indeed warranted to unravel the

complexities of ECT’s impact on the LDAEP and underlying

neurobiological mechanisms.

Moreover, the primary auditory cortex is located within the

superior temporal gyrus (STG). Significant changes in the LDAEP

likely indicate changes in neural activity within parts of the STG

anatomically and functionally connected to the PAC and potentially

within the temporal lobe in general. For example, in a 2020 study,

Pillai et al. found that the LDAEP was significantly correlated

positively with the 5-HT1a receptor and negatively with 5-HTT

throughout the temporal cortex (15). In the case of an altered

LDAEP, far-reaching effects within the brain are likely given the

temporal cortex’s pivotal role in the default mode network, social

cognition network, and executive control network. Future work can
Frontiers in Psychiatry 06
employ techniques such as dynamic causal modeling to estimate

how different brain regions interact during the processing of the

auditory stimuli, thus allowing for more insightful delineation of the

specific neural pathways involved in LDAEP.

In terms of cognitive performance, our study found that the

pre-ECT LDAEP correlated with baseline RBANS total scores.

However, change in LDAEP was not associated with changes in

cognitive performance post-ECT. While the reasons for these

findings warrant further investigation, our preliminary data does

suggest a link between LDAEP and cognitive performance metrics.

Finally, it is crucial to acknowledge the limitations inherent in

this pilot study. The small sample size of nine participants may not

fully represent the broader patient population; these findings must

be regarded as exploratory. It is important to recognize that the

participants in this study are older adults, with six participants aged

65 or older. Age can influence clinical responses and ECT-induced

biomarker changes. However, this study does not have the statistical

power to assess the influence of age adequately. Future studies with

larger and more diverse samples are needed to confirm our findings

and better understand the impact of age and sex on ECT treatment

efficacy and related biomarkers. Furthermore, the impact of the

patients’ ongoing psychotropic medication on the LDAEP results

also cannot be overlooked. The heterogeneous treatment responses

and age can also influence the LDAEP outcome. Despite these

limitations, this study provides meaningful insights into the

changes in LDAEP following ECT and signals the importance of

conducting larger-scale, more controlled research to elucidate these

preliminary observations.
5 Conclusion

Contrary to our initial hypothesis, ECT paradoxically led to an

increase in LDAEP, implying a reduction in serotonergic activity.

Given the complex roles ECT plays in the brain’s neurochemistry and

the multi-faceted nature of LDAEP as a biological marker, our results

might not signal a straightforward suppression of serotonin. They

could reflect compensatory adjustments in serotonergic receptor

activity or broader changes encompassing other neurotransmitter

systems, neuroplasticity, and neuro-immune interactions. This

unexpected outcome opens avenues for multiple lines of inquiry:

the intricate interplay between ECT and LDAEP, and how they might

influence 1) the activity of serotonergic, dopaminergic, glutamatergic,

and GABAergic receptors and transporters; 2) neuroplasticity and

BDNF levels in the temporal cortex; and 3) levels of the pro-

inflammatory cytokine TNF-a. Looking forward, further

investigation is needed to validate the LDAEP as a biomarker of

serotonergic neurotransmission and to elucidate ECT’s effect on

serotonergic activity in the human brain.
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