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Introduction: Difficulty falling asleep place an increasing burden on society.

EEG-based sleep staging is fundamental to the diagnosis of sleep disorder, and

the selection of features for each sleep stage is a key step in the sleep analysis.

However, the differences of sleep EEG features in gender and age are not

clear enough.

Methods: This study aimed to investigate the effects of age and gender on sleep

EEG functional connectivity through statistical analysis of brain functional

connectivity and machine learning validation. The two-overnight sleep EEG

data of 78 subjects with mild difficulty falling asleep were categorized into five

sleep stages using markers and segments from the "sleep-EDF" public database.

First, the 78 subjects were finely grouped, and the mutual information of the six

sleep EEG rhythms of d, q, a, b, spindle, and sawtooth wave was extracted as a

functional connectivity measure. Then, one-way analysis of variance (ANOVA)

was used to extract significant differences in functional connectivity of sleep

rhythm waves across sleep stages with respect to age and gender. Finally,

machine learning algorithms were used to investigate the effects of fine

grouping of age and gender on sleep staging.

Results and discussion: The results showed that: (1) The functional connectivity of

each sleep rhythm wave differed significantly across sleep stages, with delta and

beta functional connectivity differing significantly across sleep stages. (2)

Significant differences in functional connections among young and middle-aged

groups, and among young and elderly groups, but no significant difference

between middle-aged and elderly groups. (3) Female functional connectivity

strength is generally higher than male at the high-frequency band of EEG, but

no significant difference in the low-frequency. (4) Finer group divisions based on

gender and age can indeed improve the accuracy of sleep staging, with an increase

of about 3.58% by using the random forest algorithm. Our results further reveal the
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electrophysiological neural mechanisms of each sleep stage, and find that sleep

functional connectivity differs significantly in both gender and age, providing

valuable theoretical guidance for the establishment of automated sleep

stage models.
KEYWORDS

sleep, sleep stages, electroencephalography (EEG), polysomnography (PSG), machine
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1 Introduction

Sleep occupies one-third of human life (1). The daily alternation

between sleep and awakening is one of the most important

characteristics of our life (2). The functions of sleep are diverse

(3). Looking back on the research in the past ten years, we find that

sleep can enhance immune defense ability (4), improve cognition,

and promote memory consolidation (5, 6). In the short term, lack of

sleep can lead to impaired memory and attention (7). In the long

run, it will lead to neurological disorders and even death (8–10).

More and more evidence shows that sleep disorder can lead to

cognitive decline (11), and increase the risk of Alzheimer’s disease

(12). In addition, sleep deprivation is positively correlated with a

higher risk of cardiovascular disease (13) and higher all-cause

mortality (14). Insomnia is a predictor of depression and anxiety

(15), and it is also associated with suicidal thoughts and behaviors

(16). According to epidemiological statistics, the prevalence rate of

insomnia is about 10-20%, of which about 50% develop a chronic

course (17). Among them, children are mainly affected by sleep

bruxism, temporomandibular joint disorder (TMD) and untreated

dental caries negatively producing insomnia (18). TMD also

severely interferes with the quality of sleep in adults, leading to a

concomitant decrease in life satisfaction. Moreover, as a result of

transcranial magnetic stimulation effects, women demonstrated

significantly worse sleep quality as compared to men (19).

Insomnia is also particularly common in the elderly, with more

than 50% suffering from insomnia due to disease or aging factors

(20). Therefore, sleep disorders influence the quality and

satisfaction of life in general, not only influencing a lot of factors.

Sleep diseases have caused a very heavy burden on the medical

system, social economy, and human life (21, 22). The related

research on sleep is very urgent.

Sleep disorders may be caused by physiological factors such as

gender, age, eating disorders, mental factors such as adverse
int disorder ; PSG,

eep Medicine; NREM,
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; FP, false positives; one-
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psychological and physiological reactions, environmental factors

such as changes in light and sound intensity, lifestyle and

behavioral factors such as addiction to coffee, alcohol, and

cigarettes, as well as illnesses such as depression and anxiety. It

usually shows abnormalities such as sleepwalking, night terrors,

nightmares, snoring, teeth grinding, excessive sweating, sleep

talking, and easy waking. Therefore, sleep can be analyzed from a

number of parameters such as electroencephalogram (EEG),

ophthalmoplegia, mandibular electromyography, oro-nasal airflow

and respiratory motility, cardioplegia, oximetry, snoring, limb

movements, body position, and so on. Polysomnography (PSG)

can record many of these biosignals throughout the sleep process

(23), and is the most commonly used technique for sleep evaluation

and disease diagnosis in medicine, and is becoming more and more

popular both at home and abroad.

Sleep staging is an important process of analyzing PSG data, an

important part of sleep assessment, and the basis of disease

diagnosis (24–26). The brain activity in each stage of sleep is not

in a static state, but a series of periodic changes of active regulation.

In order to define the sleep process in a unified standard, the

“Interpretation Manual of Sleep and Related Events” issued by the

American Academy of Sleep Medicine (AASM) divides sleep into

five different stages: awake (W) stage, non-rapid eye movement

(NREM: N1, N2, N3) stage, and rapid eye movement (REM) stage

(27). Sleep staging is often applied in a variety of ways, including the

assessment of sleep quality (28) (such as sleep duration, sleep depth,

and sleep efficiency), the investigation of neural mechanisms (29),

and the evaluation of medication efficacy on sleep (30). For

example, REM sleep abnormalities have been associated with

neurodegenerative diseases, and are therefore often utilized in

clinical studies for diagnostic studies and efficacy assessment of

diseases such as Parkinson’s disease (31) and Alzheimer’s disease

(32). Sleep stages are usually interpreted by sleep experts (27).

Manual interpretation is time-consuming and labor-intensive,

vulnerable to subjective influence, unsuitable for processing large-

scale data, and unable to meet the needs of millions of patients with

sleep disorders (33). In order to improve efficiency and reduce labor

costs, researchers tried to use sleep EEG (from PSG) and artificial

intelligence to construct an automatic sleep staging method (34, 35).

Sleep EEG features are commonly used to explore sleep staging

(36). According to research reports, significant differences in EEG
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features in different sleep stages, such as power spectrum features,

nonlinear dynamics features, and functional connections (37–39).

Cantero et al. pointed out that alpha wave power is an important

feature of human REM sleep (40). Miskovic et al. found that in the

whole sleep cycle, the change of entropy strongly depends on the

time scale, and slow-wave sleep is characterized by the decrease of

entropy in the short time scale and the increase of entropy in the

long time scale (41). In a previous study exploring the temporal

evolution of the power spectrum and coherence spectrum between

cerebral hemispheres, the power spectrum and coherence spectrum

showed obvious peaks in the NREM stage, but did not in REM sleep

(42). In a study of sleep staging based on a single-channel EEG

signal using 22 features in the time domain, time-frequency, and

nonlinear analysis methods, the highest accuracy of sleep staging is

85.93% by comparing sample entropy, fuzzy entropy, fractal

dimension and complexity as feature parameters (43). In another

study, 18 features extracted from EEG, ECG, and EMG in the time

domain and frequency domain were extracted to construct feature

vectors, and the accuracy of sleep staging was 82.53% (44). The

existing researches on sleep staging are mainly based on time-

domain, frequency-domain, and nonlinear EEG features of a single

or a few channels. These features can only obtain local features,

while ignoring the global information between different

brain regions.

Brain functional connections are considered to be closely

related to brain activity, which can be used to study the

interaction between brain regions (45). Functional connectivity is

a statistical concept, that can quantify the time dependence of

neuron activation patterns in morphologically and physiologically

different brain regions by using statistical methods such as Pearson

correlation coefficient, spectral coherence estimation, phase-locked

value, and mutual information (MI) (46, 47). Functional

connectivity is widely used in disease research, such as exploring

neuroregulatory factors in depression treatment (48), predicting

epileptic seizures, and locating epileptogenic foci (49). The

combined use of EEG and functional connectivity may be a

powerful tool to study the basis of subconscious function under

physiological and pathological conditions (50). Functional

connections are quite different in different sleep stages, so they

can be used for sleep staging. In a study of analyzing brain

interaction in different sleep stages by functional connectivity

analysis method, it is found that the functional connectivity

strength increases in low-frequency bands (delta and alpha

bands) at different stages of NREM, and the classification

accuracy is high (51). To sum up, it is suggested that functional

connections may be an effective feature to distinguish different

stages of sleep. In this study, mutual information is used to

determine the functional connectivity due to its ability to

comprehensively evaluate the amplitude and phase information

between EEG channels, which is then applied for exploring the

changes and laws of functional connections in different sleep stages.

In existing studies of sleep staging based on EEG features, it has

been shown that the accuracy of automated sleep staging based on

different EEG features is generally not high. It may be related to not
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considering physiological factors such as age and gender, and also

the effects of gender and age on the connectivity of sleep EEG

function were not clearly revealed. The brain connectivity research

report points out that the functional network will change with age

(52). Large-scale data research found that Japanese sleep

characteristics (time, duration, and quality) are significantly

different from age and gender (53). In the study of insomnia

patients, women sleep longer than men, the relative beta power of

women is higher than that of men, the dominant frequency of the

occipital lobe of elderly patients is slower than that of young

patients, and the age effect of women is more obvious in clinical

variables and quantitative EEG (54). In order to improve the

accuracy of sleep staging, it is necessary to analyze the influence

of gender and age on sleep EEG function.

To sum up, this study will explore age and gender differences in

sleep EEG functional connectivity. A finer division of gender and

age groups will be made, and the research work will be carried out in

two dimensions: statistical analysis and machine learning

validation, with the aim of providing valuable theoretical

guidance for automated sleep staging models.
2 Materials and methods

2.1 Data introduction

The data for this study were downloaded from the Sleep-EDF

database (Sleep-EDF Database Expanded v1.0.0 (physionet.org)).

Sleep-EDF database has two datasets, one of which is a study of the

effect of age on sleep in subjects that had mild difficulty falling asleep

but were otherwise healthy. For this study, two full nights of sleep

data from 78 subjects with a mean age of 56.01 ± 22.20 (36 females,

and 42 males, aged 25-101 years) in the SC dataset were selected, with

a total of 156 samples, and due to incomplete data in 21 of them, a

total of 135 samples were finally included in the analysis. As shown in

Table 1, there were a total of 39 samples of young subjects aged 25-45

years, 56 samples of middle-aged subjects aged 46-69 years, and 40

samples of elderly subjects aged 70-101 years. As shown in Table 2, all

samples consisted of 56 samples of male subjects with a mean age of

57.89 ± 21.34, and 79 samples of female subjects with a mean age of

54.39 ± 21.65. There was no statistically significant difference in the

mean age of the male and female groups. All subjects were not taking

sleep-related medications. Sleep EEG signals from bipolar leads Fpz-

CZ and PZ-OZ with a sampling frequency of 100 Hz were recorded

for each subject.
TABLE 1 Statistical results of samples divided by age.

25-45: Young 46-69: Middle 70-101: Old

Average age 28.69 ± 2.93 57.95 ± 6.61 81.375 ± 10.04

Sample size
(male/
female)

19/20 19/37 18/22
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2.2 EEG signal preprocessing

Sleep experts have manually labeled the sleep data of each

sample into eight categories according to R&K standards.

Combined with the AASM standard formulated by the

American Academy of Sleep Medicine, the N3 and N4 stages

are combined into an N3 stage, and motion and unknown data

are removed. Therefore, the sleep stages of each sample are

divided into five categories, W, N1, N2, N3, and REM. In this

study, the 30s sleep EEG signals are classified as a segment of

data, and 0.5-30Hz band-pass filtering is carried out by a

Butterworth filter. Then six rhythm waves are extracted from

two leads of EEG signals, and the features of each rhythm wave

are extracted on this basis. See Table 3 for the division of six

rhythm frequency bands.
2.3 Functional connectivity calculation

Functional connectivity is a brain science analysis method

used to study the interaction between different brain regions.

By measuring the signals between different regions of the

brain, the interaction between these regions in different tasks or

states is studied. In the functional connectivity representation

method, Mutual Information (MI) can measure the interaction

degree between different brain regions from both amplitude

and phase shown in Equation 1. Let the joint distribution of

two random variables (X, Y) be p(x, y) and the marginal

distribution be p(x), p(y), the mutual information I(X; Y) is the

relative entropy of the joint distribution p(x, y) and the marginal

distribution p(x), p(y):

I(X;Y) = o
x∈X

o
y∈Y

p(x, y) log
p(x, y)
p(x)p(y)

(1)
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2.4 Classification models and
evaluation metrics

In this study, in order to corroborate whether differences in

brain function among people of different genders and ages, three

machine learning models, namely, Support Vector Machine (SVM),

Random Forest (RF), and K-Nearest Neighbor (KNN), based on

functional connectivity features, were used to perform sleep staging

tests on samples of different genders and ages. The following will

introduce the characteristics of the 3 algorithms respectively.

SVM is a supervised learning algorithm, which is widely used in

the field of pattern recognition and data classification. Its core idea

is to maximize the interval between data points of different

categories by finding the optimal hyperplane, so as to achieve

effective classification of data.

KNN algorithm uses the training sample dataset with known

categories to classify the new samples by calculating the distance

between the test new samples and the samples in the training set.

The classification of the KNN algorithm is based on the category

which is the majority of the K nearest neighbors of the new samples.

In this study, the K of the KNN algorithm is set to 9.

RF is an integrated learning method constructed based on the

decision tree, which improves the performance of classification and

regression by randomly selecting features and samples, constructing

multiple decision trees, and fusing their prediction results. The

number of decision trees of Random Forest is set to 50 for

this study.

Since this dataset has a sample imbalance problem, the sample

numbers of N1 and N3 are significantly less than those of other

categories, down-sampling is adopted in this experiment. In the

down-sampling process, we randomly remove some samples from

the categories with more samples to make the number of samples

from different categories more balanced. Ten rounds of training are

repeated, and in each round, the dataset is randomly divided into

the training set and test set according to 7:3. Finally, the four

metrics: true positives (TP), false negatives (FN), true negatives

(TN), and false positives (FP) are utilized to calculate the Accuracy

(the proportion of correctly categorized samples to the total number

of samples), Precision (the proportion of correctly predicted positive

classifications to all the samples that are predicted to be positively

categorized), Recall (which refers to the proportion of correctly

predicted positive classifications to all the samples that are actually

positively categorized), and the F1 score (the harmonic mean of

precision and recall) of different models. The specific formulas are

given in Equations 2–5:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)
TABLE 3 The six rhythm band division schemes used in this study.

Rhythm Frequency range

Delta (d) 0.5-4Hz

Theta (q) 4-8Hz

Alpha (a) 8-13Hz

Beta (b) 13-30Hz

Sleep spindle 11-16Hz

Sawtooth wave 3-7Hz
TABLE 2 Statistical results of samples divided by gender.

Female Male

Number of samples 56 79

Average age 57.89 ± 21.34 54.39 ± 21.65
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F1 =
2� TP

2� TP + FP + FN
(5)
2.5 Statistical analysis method

One-way analysis of variance (one-way ANOVA) was

performed to determine the significant statistical differences in

EEG functional connectivity features among the groups. First,

one-way repeated-measures ANOVA was done between groups,

and if statistically different, then pairwise comparisons after

multiple tests were performed. Statistical differences were

considered significant when P< 0.05. All statistical analysis was

carried out using MATLAB 2019b software.
3 Results

Figure 1 shows the MI corresponding to the six sleep rhythm

waves in different sleep stages for all subjects. The results show that

most of the sleep rhythm waves corresponded to MIs that were

significantly different in pairwise comparisons between different sleep

stages. The most significant differences in beta and delta waves

mutual information were found between all sleep stages (p< 0.05),

except for the N1 and R stages, which did not differ significantly. In

addition, significant differences of MI in spindle wave were found

between all stages except between stages N2 and N3, and between

stages N1 and R (p< 0.05), where no significant differences existed.

For the MI of the sawtooth wave, there were significant differences
Frontiers in Psychiatry 05
between all stages except between N2, N3, and R (p< 0.05). The MI of

the theta wave had significant differences between the W stage and

other stages (p< 0.05), and between the N1 and R stages (p< 0.05),

and the rest had no significant differences. The alpha wave had the

smallest difference in MI, and only the W stage had a significant

difference from other stages (p< 0.05), and the differences between the

N1, N2, N3, and R stages were all non-significant. Except for the delta

wave, the mutual information values of the remaining five rhythmic

waves were lower in stage W than in the other sleep stages.

Figure 2 shows the mutual information values of the six sleep

rhythm waves in different age groups of subjects with different sleep

stages. As shown in Figure 2A, the a-wave mutual information

values were statistically significant only between the young and

middle-aged groups at stage N3 (p< 0.05), while there was no

statistical difference between the other stages and age groups. As

shown in Figure 2B, the b-wave mutual information was statistically

different between all age groups in stage N2 (p< 0.05), especially

more significant in the young and elderly groups (p< 0.001); it was a

significant difference between the young and middle-aged groups in

stages W, N1, N3, and R (p< 0.05); and it was even a highly

significant difference between the young and elderly groups in stage

N3 (p< 0.01); however, in stages W, N1, N3, and R, both the middle-

aged group and the elderly group differences were not statistically

significant. As shown in Figure 2C, the d-wave mutual information

values were only significantly different between the middle-aged

group and the old-aged group in the N2 stage (p< 0.01), while no

statistically significant difference was found between the other

stages and age groups. As shown in Figure 2D, for the sawtooth

wave mutual information, a highly significant difference was found
FIGURE 1

Mutual information values of six sleep rhythm waves alpha, beta, delta, theta, sawtooth, and spindle in different sleep stages of all subjects. * means
p< 0.05, ** means p< 0.01.
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between the youth group with the middle-aged, and elderly groups

at the N2 and R stages (p< 0.001), and a significant difference was

found between the youth group with the middle-aged, and elderly

groups at the N1 stage (p< 0.01), but there was no significant

difference between all other stages and age groups. As shown in

Figure 2E, in stages W and N1, the mutual information of the

spindle wave was significantly different between the young group

with the middle-aged, and old-aged groups (p< 0.01); in stages N2

and N3, the differences were highly significant between the young

and the old-aged groups (p< 0.001); the differences between the

young and the old-aged groups were statistically significant in stage

R (p< 0.05); however, there were no significant differences in all the

other stages and among the age groups. As shown in Figure 2F, the

theta wave mutual information value has a generally significant

difference between the young with middle-aged groups, and the old

age group in the N1 stage (p< 0.05), a significant difference between

the young with middle-aged groups, and the old age group in the N2

stage (p< 0.01), and a highly significant difference between the

young with middle-aged groups, and the old age group in the R
Frontiers in Psychiatry 06
stage (p< 0.001); but with no significant difference between all other

stages and age groups.

Figure 3 shows the mutual information values of the six sleep

rhythm waves in each sleep stage for different gender groups. As

shown in Figure 3A, the a-wave mutual information values of the

remaining 4 stages, except for stage W, were statistically different

between different gender groups (p< 0.05). As shown in Figure 3B, for

the b-wave mutual information values, statistically significant

differences existed between different gender groups for all sleep

stages (p< 0.05), with highly significant differences for stages

N1, N2, N3, and R (p< 0.001). As shown in Figure 3E, the mutual

information values for the spindle wave were statistically different

between the different gender groups for all sleep stages (p< 0.05), with

highly significant differences for stages N1, N2, and R (p< 0.01). As

shown in Figures 3C, D, F, the differences in d-, sawtooth-, and q-
wave mutual information values were not statistically significant

among different gender groups in each stage of sleep.

Using the functional connectivity features of all sleep rhythms as

inputs, the sleep staging task was accomplished based on SVM,
B

C D

E F

A

FIGURE 2

Mutual information values of six sleep rhythm waves, alpha, beta, delta, sawtooth, spindle, and theta, in different age groups at different sleep stages. (A)
shows the MI value of alpha wave, (B) shows the MI value of beta wave, (C) shows the MI value of delta wave, (D) shows the MI value of sawtooth wave,
Figure (E) shows the MI value of spindle wave, and (F) shows the MI value of theta wave. * means p< 0.05, ** means p< 0.01, *** means p< 0.001.
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KNN,and RF classifiers, and the performance is shown in Table 4.

The results show that the RF classifier has the highest average

accuracy of 50.14 ± 0.02%, SVM has the second highest accuracy

of 49.67 ± 0.01%, and KNN has an accuracy of 49.35 ± 0.01%. In

addition, the classification accuracies of different age and gender

groups (young female, young male, middle-aged female, middle-aged

male, old female, old male) were also calculated separately, and it

remained that the accuracy of RF was the highest in all groups, with

62.61 ± 0.02%, 58.20 ± 0.02%, 52.49 ± 0.01%, 48.41 ± 0.01%, 47.89 ±

0.01%, and 52.70 ± 0.02%. The accuracy of automated sleep staging

varied considerably across age and gender groups, with the young

female group having the highest accuracy, 12.47% higher than the all-

sample group, whereas the middle-aged male and older female

groups had slightly lower accuracy than the all-sample group. More

surprisingly, the average accuracy rate of the subgroups (53.72%) was

still higher than that of the full sample group (50.14%).
4 Discussion

This study aims to explore the differences of age and gender in

sleep electrical brain connectivity based on statistical analysis and
Frontiers in Psychiatry 07
machine learning validation. The main findings are as follows: First,

the functional connections of each sleep rhythm wave have great

differences in different sleep stages, the functional connections of

delta and beta can significantly distinguish each sleep stage. Second,

there were significant differences in functional connectivity between

young people with middle-aged, and young people with old people in

different age groups, while there were no significant differences

between middle-aged and old people. Third, in different genders,

the functional connectivity strength of female high-band is generally

higher than that of male, while the difference in low-band is not

significant. The results of these analyses are discussed in more

detail below.
4.1 Functional connectivity features of
effective sleep rhythms for sleep staging

In this study, mutual information is used as a measure of functional

connectivity to study the changes in functional connectivity of each

sleep rhythm wave in different sleep stages. The results show that the

functional connectivity of each sleep rhythm wave has great differences

in different sleep stages. What is most worth mentioning is that beta
B

C D

E F

A

FIGURE 3

Mutual information values of alpha(A), beta(B), delta(C), sawtooth(D), spindle(E), and theta(F) sleep rhythm waves of different genders at different
sleep stages. * means p< 0.05, ** means p< 0.01, *** means p< 0.001.
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and delta have the most significant differences in functional

connectivity in each sleep stage. With the deepening of NREM sleep,

the mutual information values of beta and delta increased, suggesting

coupling between the two EEG signals, increased dependence between

cortical regions, and increased sharing of information. This finding is

similar to the findings of a recent study that explored the commonality

of EEG functionally connected populations, with functional

connectivity intensity increasing significantly in the delta and beta

bands as NREM sleep deepened (55). In addition to mutual

information as a functional connectivity metric, other feature

extraction methods for sleep EEG, such as the power method, also

have strong specificity in beta and delta bands. In a study that used 73

features in the time domain to classify sleep stages, the EEG power ratio

of delta and beta was the most successful measure for distinguishing

between awake and deep sleep (classification error of 1%). It was also

the single best performing measure in distinguishing all five stages (56).

In another large-scale EEG spectrum analysis, it is also verified that the

mean power density of beta and delta bands is significantly different

(57). Similarly, a study that analyzed changes in brain activity during

sleep using a combination of signal power and two functional

connectivity indicators also found that changes in delta power and

connectivity were among the most relevant classification features (58).
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In addition, we also found that the functional connectivity strength of

each sleep rhythm wave in the W stage was lower, which was

considered to be related to the more active brain activity in the

waking stage (59). The functional connectivity strength of each sleep

wave in the N2 and N3 stages is relatively high, indicating that during

deep sleep, the complexity of brain activity is reduced, which is related

to the increase of shared information in the regions (60).Moreover, due

to the further decline in consciousness level, the interference from

external information is reduced, and the cerebral cortex

interdependence and synchronization are enhanced (61).

Another interesting finding is that except for theta and sawtooth,

the functional connections of the other four frequency bands are not

significantly different in the N1 and REM stages. In terms of the

waveform, the background wave in the REM stages is similar to the

N1 waveform in EEG, which is a low amplitude wave of 3-7 Hz (62).

Moreover, a study on the relationship between finger twitch and key

sleep parameters suggests that the finger twitch density in N1 and

REM stages is similar and difficult to distinguish (63). Because of the

feature similarity between N1 and REM stages, in order to improve

the accuracy of sleep staging, many studies combine stages N1 and

REM into one stage to train classifiers (64, 65). However, it is still

necessary to distinguish each stage clinically, and the accuracy of
TABLE 4 Sleep staging classification performance results for different subgroups.

Models Groups Accuracy Sensitivity Specificity F1

SVM

Young Female 60.52 ± 0.02 61.93 ± 0.01 60.64 ± 0.02 61.28 ± 0.02

Young Male 55.37 ± 0.02 55.99 ± 0.02 56.39 ± 0.02 56.18 ± 0.02

Middle-aged Female 49.16 ± 0.02 50.09 ± 0.01 49.82 ± 0.02 49.95 ± 0.01

Middle-aged Male 42.87 ± 0.02 42.44 ± 0.02 48.10 ± 0.03 45.09 ± 0.02

Elderly Female 44.07 ± 0.01 45.05 ± 0.02 48.37 ± 0.03 46.65 ± 0.02

Elderly Male 47.36 ± 0.01 48.36 ± 0.02 47.94 ± 0.01 48.15 ± 0.01

All 49.67 ± 0.01 50.45 ± 0.01 51.20 ± 0.02 50.82 ± 0.02

KNN

Young Female 60.81 ± 0.01 61.32 ± 0.01 60.69 ± 0.02 61.00 ± 0.01

Young Male 57.88 ± 0.00 57.63 ± 0.00 58.53 ± 0.01 58.08 ± 0.00

Middle-aged Female 51.02 ± 0.01 51.00 ± 0.02 51.30 ± 0.01 51.15 ± 0.01

Middle-aged Male 46.99 ± 0.02 46.90 ± 0.02 47.47 ± 0.02 47.18 ± 0.02

Elderly Female 47.14 ± 0.01 47.40 ± 0.02 47.322 ± 0.01 47.36 ± 0.01

Elderly Male 51.75 ± 0.02 52.18 ± 0.02 51.76 ± 0.02 51.97 ± 0.02

All 49.35 ± 0.01 49.37 ± 0.01 49.73 ± 0.02 49.55 ± 0.01

RF

Young Female 62.61 ± 0.02 62.97 ± 0.02 62.50 ± 0.02 62.73 ± 0.02

Young Male 58.20 ± 0.02 58.06 ± 0.02 58.60 ± 0.02 58.33 ± 0.02

Middle-aged Female 52.49 ± 0.01 52.02 ± 0.02 53.21 ± 0.01 52.60 ± 0.01

Middle-aged Male 48.41 ± 0.01 47.94 ± 0.01 49.21 ± 0.01 48.56 ± 0.01

Elderly Female 47.89 ± 0.01 47.85 ± 0.02 48.16 ± 0.01 48.00 ± 0.01

Elderly Male 52.70 ± 0.02 52.57 ± 0.02 53.14 ± 0.02 52.85 ± 0.02

All 50.14 ± 0.02 49.83 ± 0.02 50.69 ± 0.02 50.26 ± 0.02
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1433316
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Luo et al. 10.3389/fpsyt.2024.1433316
classifying the N1 stage is usually lower than other stages (62), so it is

particularly challenging to distinguish the N1 stage from the REM

stage. Therefore, it is still necessary to further find the characteristics

to effectively distinguish the N1 stage from the REM stage.
4.2 Functional connectivity features of
effective age grouping for sleep staging

According to the statistical analysis of different age groups, it is

found that there are significant differences in brain functional

connections between young people with old people and young

people with middle-aged people, but there is no significant difference

between middle-aged people and old people. For example, the

functional connectivity comparison of beta, sawtooth, spindle, and

theta in different age groups in different sleep stages shows that

differences are significant between youth and middle age, youth and

old age, especially spindle wave (sigma frequency), which is

significantly different between youth and old age in each sleep stage.

This is consistent with the results of another study (66), suggesting that

the density, amplitude, and power of sleep spindles in the elderly are

low. A study using cross-spectral coherence to evaluate the functional

connectivity of EEG shows that compared with young people, the

elderly show lower functional connectivity in the N2 stage, but higher

connectivity in the REM and N3 stage. REM has lower EEG functional

connectivity thanN3, especially in young people (67). Another research

combining EEG and fMRI to study brain functional connectivity found

(68), that compared with young people, the connectivity between

thalamus/basal ganglia and several brain regions and frontal lobe

regions of various networks in the elderly decreased less, which led

to slow response, increased mild sleep and piecemeal sleep, and had an

age effect on sleep-dependent brain plasticity. All the above conclusions

reflect that the brain functional connections were significantly different

between young and old people, which is similar to our research

findings. One point that cannot be ignored in our research is that no

significant difference in mutual information values of all frequency

bands between middle-aged and old-aged waves at different sleep

stages. To sum up, the results of this study reflect that the sleep

function connection of young people is quite different from that of

middle-aged and old people, but no obvious difference between

middle-aged and old people. The accuracy of existing sleep staging

algorithms based on EEG functional connectivity is generally low,

which may be related to the failure to distinguish the age of the

extracted samples. According to the results of this study, age can be

used as a variable, and the samples can be divided into young groups

and middle old aged groups for feature extraction and modeling, in

order to improve the accuracy of sleep staging.
4.3 Functional connectivity features of
effective gender grouping for sleep staging

The group division and statistical analysis according to gender

found that the EEG mutual information value of female samples in

all sleep stages was generally higher than that of males, the

functional connectivity difference between different genders was
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significant, and the strength of brain functional connectivity of

female was greater than that of male. This is mainly reflected in the

EEG samples in the frequency band above 8 Hz, and there is a

significant difference between males and females in terms of brain

functional connectivity in the high-frequency band of EEG, but no

significant difference in the low-frequency. There have been many

previous exploratory studies using gender as a variable, for example,

in a study in which the weighted phase lag index of sleep EEG

reflected the functional brain connectivity of people of different

genders, the results responded to significantly greater connectivity

in female than in male in the high sigma frequency range, but the

opposite pattern was observed in the alpha, low sigma, and beta

frequency ranges (69). Another study using the same index

calculation noted that synchronization strength showed

significant gender differences in all stages and bands, being higher

in females during the NREM stage and higher in males during the

W and REM stages in the alpha and beta bands (70). All of these

findings suggest differences in functional connectivity for sleep

staging by gender. This is similar to the results of the present

study. In addition, we also found that the spindle has the most

significant functional connectivity differences by gender, and its MI

values in sleep stages were significantly different between male and

female comparisons. The above findings are in perfect agreement

with those in a previous study exploring gender differences in sleep

neurophysiology in adolescents using sleep EEG (71), where the

conclusions exposed that females have higher sleep spindle waves

compared to males, which may imply stronger thalamocortical

circuits in adolescent females compared to males, as well as in

contrast to the low-frequency bands (< 11 Hz) of the absolute power

of the sleep EEG between males and females which did not show

differences. Not only in adolescents, but also in adult sleep EEG

studies (69), similar gender differences exist in the alpha and sigma

bands of the NREM stage, suggesting that these gender differences

are generalized across the human lifespan. Moreover, it has been

observed in MRI studies that both anatomical connectivity (72) and

functional connectivity (73) are stronger in females. In summary, it

is necessary to extract the EEG features of different genders

separately as classification and recognition to improve the accuracy.
4.4 Analysis of sleep staging
classification performance

Groups were divided for sleep staging classification according to

gender and age using SVM, KNN, and RF models. The accuracy of

the sleep staging results using the RF algorithm was the highest, the

average accuracy of the test set overall was 50.14%, and the average

accuracy of the grouping increased to 53.72%, of which the accuracy

of the grouping of young women was the highest of 62.61%.

Although the sleep staging performance was not so good, which

may be attributed to the fact that our EEG had only two bipolar

channels and a total of six functional connectivity features were

extracted, there were differences in the classification accuracy

between the groups, and the accuracy of the majority of the

grouping was greater than the overall average, which suggests that

the accuracy of the sleep staging was affected by gender and age, and
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grouping improved the accuracy of sleep staging. The effect of the

age variable on classification accuracy has been mentioned in a few

experiments on sleep staging, such as a study on sleep staging using

wavelets for feature extraction and the Random Forest method for

classification, the results of which found that the age of the subjects

affects the performance of the model, but there is a lack of in-depth

research on this (74). Even fewer studies have been conducted on

sleep staging models differentiating on gender. In a previous EEG

study exploring differences in brain function between adults and

older adults, the SVM classifier was used with 93% accuracy when

categorizing the brain by age group (52). Another study found

gender differences in EEG functional connectivity between sleep

stages and resting wake states based on weighted phase lag indices

(70). This coincides with our findings.
4.5 Limitations

In this study, mutual information was used to explore age and

gender differences in sleep EEG functional connectivity in

individuals with mild difficulty falling asleep. Although the results

of this study may be novel and valuable, some limitations should be

considered. First, the current study included only 135 samples, and

the results obtained can be used as a research reference and cannot

provide definitive conclusions. Second, the results of sleep staging

performance, although improved after fine grouping by age and

gender, are not sufficient for use in practical applications, possibly

due to the use of only six functionally connected features. In the

future, we will further expand the sample size, analyze other EEG

features and select the optimal sleep EEG features, and explore deep

learning algorithms to further determine whether grouping by age

and gender still improves sleep staging accuracy.
5 Conclusion

This study attempts to reveal the differences of age and gender

in sleep EEG functional connectivity based on functional

connectivity statistical analysis and machine learning validation.

The findings suggest that delta and beta functional connectivity can

be used as a potential electrophysiological marker for sleep staging.

There were significant differences in sleep functional connectivity in

both gender and age, as corroborated by the accuracy of grouping

by age and gender in a sleep staging experiment based on brain

functional connectivity. Therefore, in the study of, group division

needs to be more carefully formulated after analyzing the changing

pattern of sleep stages based on functional connectivity. The present

study will provide a theoretical basis for the use of EEG functional

connectivity in sleep auto staging at a deeper level.
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system using multi-channel data and machine learning. Comput Biol Med. (2022)
146:105653. doi: 10.1016/j.compbiomed.2022.105653

25. Zhao X, Sun G. A multi-class automatic sleep staging method based on
photoplethysmography signals. Entropy (Basel Switzerland). (2021) 23:116.
doi: 10.3390/e23010116
Frontiers in Psychiatry 11
26. Castro-Zaballa S, Cavelli ML, Gonzalez J, Nardi AE, MaChado S, Scorza C, et al.
EEG 40 hz coherence decreases in REM sleep and ketamine model of psychosis. Front
Psychiatry. (2019) 9. doi: 10.3389/fpsyt.2018.00766

27. Berry RB, Brooks R, Gamaldo C, Harding SM, Lloyd RM, Quan SF, et al. AASM
scoring manual updates for 2017 (Version 2.4). J Clin sleep Med JCSM Off Publ Am
Acad Sleep Med. (2017) 13:665–6. doi: 10.5664/jcsm.6576

28. Mikkelsen KB, Villadsen DB, Otto M, Kidmose P. Automatic sleep staging using
ear-EEG. Biomed Eng Online. (2017) 16:111. doi: 10.1186/s12938-017-0400-5

29. Liu D, Dan Y. A motor theory of sleep-wake control: arousal-action circuit.
Annu Rev Neurosci. (2019) 42:27–46. doi: 10.1146/annurev-neuro-080317-061813

30. Karsten J, Hagenauw LA, Kamphuis J, Lancel M. Low doses of mirtazapine or
quetiapine for transient insomnia: A randomised, double-blind, cross-over, placebo-
controlled trial. J Psychopharmacol (Oxford England). (2017) 31:327–37. doi: 10.1177/
0269881116681399

31. Zhang Y, Ren R, Sanford LD, Yang L, Zhou J, Tan L, et al. Sleep in Parkinson's
disease: A systematic review and meta-analysis of polysomnographic findings. Sleep
Med Rev. (2020) 51:101281. doi: 10.1016/j.smrv.2020.101281

32. Zhang Y, Ren R, Yang L, Zhang H, Shi Y, Okhravi HR, et al. Sleep in Alzheimer's
disease: a systematic review and meta-analysis of polysomnographic findings. Trans
Psychiatry. (2022) 12:136. doi: 10.1038/s41398-022-01897-y

33. Phan H, Mikkelsen K. Automatic sleep staging of EEG signals: recent
development, challenges, and future directions. Physiol measurement. (2022)
43:04TR01. doi: 10.1088/1361-6579/ac6049

34. Chriskos P, Frantzidis CA, Nday CM, Gkivogkli PT, Bamidis PD, Kourtidou-
Papadeli C. A review on current trends in automatic sleep staging through bio-signal
recordings and future challenges. Sleep Med Rev. (2021) 55:101377. doi: 10.1016/
j.smrv.2020.101377

35. Chriskos P, Frantzidis CA, Gkivogkli PT, Bamidis PD, Kourtidou-Papadeli C.
Automatic sleep staging employing convolutional neural networks and cortical
connectivity images. IEEE Trans Neural Networks Learn Syst. (2020) 31:113–23.
doi: 10.1109/TNNLS.5962385

36. Şen B, Peker M, Çavus ̧oğlu A, Çelebi FV. A comparative study on classification
of sleep stage based on EEG signals using feature selection and classification algorithms.
J Med Syst. (2014) 38:18. doi: 10.1007/s10916-014-0018-0

37. Acharya UR, Bhat S, Faust O, Adeli H, Chua EC, Lim WJ, et al. Nonlinear
dynamics measures for automated EEG-based sleep stage detection. Eur Neurol. (2015)
74:268–87. doi: 10.1159/000441975

38. Huang W, Guo B, Shen Y, Tang X, Zhang T, Li D, et al. Sleep staging algorithm
based on multichannel data adding and multifeature screening. Comput Methods
programs Biomed. (2020) 187:105253. doi: 10.1016/j.cmpb.2019.105253

39. Denis D, Bottary R, Cunningham TJ, Zeng S, Daffre C, Oliver KL, et al. Sleep
power spectral density and spindles in PTSD and their relationship to symptom
severity. Front Psychiatry. (2021) 12. doi: 10.3389/fpsyt.2021.766647

40. Cantero JL, Atienza M, Salas RM. Spectral features of EEG alpha activity in
human REM sleep: two variants with different functional roles? Sleep. (2000) 23:746–
50. doi: 10.1093/sleep/23.6.1b

41. Miskovic V, MacDonald KJ, Rhodes LJ, Cote KA. Changes in EEG multiscale
entropy and power-law frequency scaling during the human sleep cycle. Hum Brain
Mapp. (2019) 40:538–51. doi: 10.1002/hbm.24393
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