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and Xue Mei Song1,2*
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Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China,
2Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced
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Objective: Previous studies have found that patients with Major Depressive

Disorder (MDD) exhibit impaired visual motion perception capabilities, and

multi-level abnormalities in the human middle temporal complex (MT+), a key

brain area for processing visual motion information. However, the brain activity

pattern of MDD patients during the perception of visual motion information is

currently unclear. In order to study the effect of depression on the activity and

functional connectivity (FC) of MT+ during the perception of visual motion

information, we conducted a study combining task-state fMRI and

psychophysical paradigm to compare MDD patients and healthy control (HC).

Methods: Duration threshold was examined through a visual motion perception

psychophysical experiment. In addition, a classic block-design grating motion

task was utilized for fMRI scanning of 24 MDD patients and 25 HC. The grating

moved randomly in one of eight directions. We examined the neural activation

under visual stimulation conditions compared to the baseline and FC.

Results: Compared to HC group, MDD patients exhibited increased duration

threshold. During the task, MDD patients showed decreased beta value and

percent signal change in left and right MT+. In the sample comprising MDD and

HC, there was a significant negative correlation between beta value in right MT+

and duration threshold. And in MDD group, activation in MT+ were significantly

correlated with retardation score. Notably, no such differences in activation were

observed in primary visual cortex (V1). Furthermore, when left MT+ served as the

seed region, compared to the HC, MDD group showed increased FC with right

calcarine fissure and surrounding cortex and decreased FC with left precuneus.

Conclusion: Overall, the findings of this study highlight that the visual motion

perception function impairment in MDD patients relates to abnormal activation
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patterns in MT+, and task-related activity are significantly connected to the

retardation symptoms of the disease. This not only provides insights into the

potential neurobiological mechanisms behind visual motion perception disorder

in MDD patients from the aspect of task-related brain activity, but also supports

the importance of MT+ as a candidate biomarker region for MDD.
KEYWORDS

major depressive disorder, percent signal change, task-state fMRI, middle temporal
visual cortex, visual motion perception
1 Introduction

Major depressive disorder (MDD) is a severe mental disorder

characterized by a high incidence rate, recurrent episodes, and a

high suicide rate (1), but its etiology and pathological mechanisms

are unclear. A large number of potential biomarkers dominate the

progression of the disease, causing patients to exhibit a variety of

symptoms, including slowness in behavior, also known as

retardation (2, 3). A well-known visual paradigm can reflect the

processing of visual motion information in the human higher-order

occipital middle temporal complex (MT+) (4, 5). MT+ is a crucial

region in the brain for processing motion perception, essential for

understanding motion direction and speed (4–6). Our previous

study found that MDD patients exhibited abnormal visual motion

perception (7). The abnormal performance of MDD patients in this

domain may indicate a reduction in their ability to process dynamic

visual information, a capability that is vital for responding to

moving objects in daily life. However, there is a lack of related

task-state studies targeting this function in MDD patients, and the

underlying neural mechanisms are currently unclear. Our goal is to

study the neural activation pattern in MDD patients during the

perception of motion stimuli and its relationship with behavioral

manifestations of visual perceptual abnormalities.

Task-state functional magnetic resonance (task-state fMRI)

allows for the observation of brain activity in various brain

regions during the execution of related visual motion tasks. A

classic fMRI task can elicit neural activation in MT+ through

visual stimuli of moving gratings (5, 8). Research on suppression

and facilitation neural mechanisms revealed that, compared to

small grating stimuli, large grating stimuli evoke significant

suppression in fMRI response in both early visual cortex (EVC)

and MT+ (5). In another study, they found that higher baseline

levels of glutamate in MT+ enhance motion perception through

elevated neural responses in this region (8). These findings suggest

that this fMRI task serves as an available tool for exploring neural

activation patterns related to MT+ and primary visual cortex (V1).

Currently, there are several studies that have explored the

application of task-state fMRI in visual tasks for depression,
02
including the emotion processing task (9–13), emotional facial

recognition task (14–17), Go-NoGo task (18), memory task (19,

20), Stroop task (21–23), learning task (24), visual related task (25)

and visual attention task (26, 27). However, fMRI studies on

depressed patients performing visual motion processing tasks are

very limited, potentially requiring further scientific exploration.

Our previous research found that MDD patients exhibited

reduced Glu (glutamate) and GABA in left MT+ (7) and increased

Amplitude of Low Frequency Fluctuation (ALFF) as well as abnormal

functional connectivity (FC) in resting state (28). However, it remains

unclear whether there would be changes in the activation pattern of

MT+ during visual motion perception task in MDD patients. In this

study, we utilized psychophysical experiment and ultra-high field 7 T

MRI to explore the brain function of the visual cortex in MDD

patients during a visual grating motion perception task, based on the

classic task-state fMRI (5, 8). We hypothesize that, compared to the

healthy control (HC), MDD patients would exhibit impaired

performance in psychophysical experiment and reduced neural

activity during fMRI task. Considering the relationship between

resting-state ALFF in MT+ and retardation score identified in

previous research (28), we also examined the relationship between

task-related activity in MT+ and retardation score. To further

investigate task-related activation patterns in MDD patients, we

incorporated psychophysiological interactions (PPI) analysis to

explore task-modulated FC based on MT+.
2 Materials and methods

2.1 Participants

We initially recruited 24 MDD patients and 25 healthy adults

who were matched for age and gender. The MDD participants were

recruited from Hangzhou Seventh People’s Hospital. All the

subjects participated in MRI and psychophysical experiments. All

individuals had an education background above the college degree,

and normal or corrected-to-normal vision. Criteria for MDD

inclusion were: (i) presence of an acute depressive episode and
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the diagnosis MDD in accordance with the Diagnostic and

Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) as

(a) established by the assessing psychiatrist, and (b) confirmed with

Mini International Neuropsychiatric Interview (M.I.N.I.) (29)

(ii) clinical symptoms of depression as measured by a Hamilton

Depression Rating Scale (HAMD-17) ≥ 17; (iii) receiving treatment

with selective serotonin reuptake inhibitors (SSRIs). Exclusion

criteria included: (i) any other psychiatric disorder, or a mental

disorder caused by a physical illness or substance abuse or a

personality disorder; (ii) history of traumatic brain injury,

epilepsy, or other known organic lesion of the central nervous

system; (iii) psychotic features in depressive episodes; and

(iv) history of endocrine disease or blood, heart, liver, kidney

dysfunction, another medical disorder such as diabetes, or

pregnancy. The study received approval from the Ethics

committee of Hangzhou Seventh People’s Hospital. Written

informed consent was obtained from all the participants.

To reduce the effects of head motion on task-state fMRI results,

subjects with translations greater than 1.5 mm or rotations greater

than 1.5° in each direction were excluded: exclusion of 4 HC

subjects and 4 MDD subjects. After these exclusions, 20 MDD

patients and 21 HC subjects remained in our present study sample

(Table 1). Among them, 17 MDD patients and 15 HC subjects

completed the psychophysical experiment.
2.2 Measurement of visual
motion perception

All stimuli were created using Psychophysics Toolbox (30) based

on MATLAB (MathWorks, Natick, MA, USA) and displayed on a

linearized monitor (1920 × 1080 resolution, 100-Hz refresh rate,

Cambridge Research System, UK). Participants viewed the stimuli
Frontiers in Psychiatry 03
from a distance of 72 cm, with their heads stabilized by a chinrest.

Stimuli appeared on a gray (56 cd/m2) background.

The details of the procedure for measurement are available in

our recent studies (7, 28). Briefly, stimuli with diameter of 2° and

10° were vertically drifting sinusoidal gratings with high contrast

(contrast: 50%; spatial frequency, 1 cycle/°; speed, 4°/s) (see

Supplementary Figure S1 in 7). The edge of the grating was

blurred with a raised cosine function (width, 0.3°). The grating

was ramped on and off with a Gaussian temporal envelope, and the

grating duration was defined as 1 standard deviation (SD) of the

Gaussian function. The duration was adaptively adjusted in each

trial on a staircase procedure (three-down/one-up staircases) to

estimate the duration thresholds. Thresholds for large and small

gratings were obtained from a 160-trial block that contained four

interleaved. Stimulus demonstration and practice trials were

presented before the first run. Auditory feedback was provided

for each wrong response. The psychophysical experiment included

80 trials each of 2° and 10° stimuli, and recorded the grating

duration per trial. For each participant, the correct rate for

different stimulus durations was computed for 2° stimuli. These

values were then fitted to a cumulative Gaussian function, and the

duration threshold corresponding to the 75% correct point on the

psychometric function was estimated for 2° stimulus size. The

analysis in this study does not involve the 10° stimuli, as the

perception of these stimuli by subjects is influenced by spatial

suppression (4, 5, 7).
2.3 MR acquisition

We performed magnetic resonance imaging (MRI) experiments

in a 7T whole body MR system (Siemens Healthcare, Erlangen,

Germany) with a Nova Medical 32 channel array head coil. Sessions

included block-design task-state fMRI and structural image

scanning. Ear plugs and foam pads were used to minimize noise

and head motion when scanning. Task-state scans were acquired

with 1.5-mm isotropic resolution (transverse orientation, TR/TE =

2000/20.6 ms, 130 volumes, slice number = 110, flip angle = 70°). As

shown in Figure 1, in the task-state fMRI, thirteen blocks were

presented during a run (20 s each, 130 TRs total). Each block

contained 10 s baseline (offset) and 10 s stimulus presentation

(onset), the latter comprising 16 stimuli of 400 ms each,

interspersed with 16 intervals of 225 ms. The stimulus is a

moving grating (contrast = 98%, speed = 2°/s, diameter = 2°,

spatial frequency =3 cycle/°), moving in one of eight possible

directions in a randomized and count-balanced order.

Furthermore, within the task, participants were required to

respond by pressing a key when red dots appeared randomly at

the center of the screen, aiming to enhance their focus. Visual

stimuli were presented using the functional magnetic resonance

experiment system (SMARTEC, SA-9800) from Shenzhen Virtue

Medical. Participants with myopia were instructed to wear magnetic

resonance-compatible glasses to guarantee a corrected visual acuity

greater than 1.0. Structural images were acquired using a

MP2RAGE sequence (TR/TI1/TI2 = 5000/901/3200ms) with 0.7-

mm isotropic resolution.
TABLE 1 Demographic information of participants and clinical data
of patients.

Variables
Healthy
controls
(n = 21)

MDD
patients
(n = 20)

P value

Gender (M/F) 6/15 4/16 0.523a

Age, years (SD) 23.8 (2.4) 25.0 (5.3) 0.345b

HAMD-17 score (SD) – 19.3 (3.1) –

Retardation score (SD) – 6.3 (1.1) –

Treatment, n (%)

Antidepressants 15 (75.0)

Antipsychotics 6 (30.0)

Mood stabilizers 3 (15.0)

Benzodiazepines 7 (35.0)
HAMD, Hamilton Depression Rating Scale; MDD, major depressive disorder; SD,
standard deviation.
aChi-square test.
bTwo-sample t-test.
Retardation score was calculated by summing the scores of subitems 1,7,8,14 of the HAMD-
17 scale.
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2.4 Task-state fMRI data processing
and analysis

Task-state fMRI data were preprocessed using Data Processing

& Analysis for Brain Imaging (DPABI) Version 6.2_220915 (31) on

MATLAB R2020b. During the preprocessing stage, the images were

first realigned. To reduce the impact of head movements on the

result of task-state fMRI, participants were excluded when

movement parameters exceeded 1.5 mm or 1.5° in any direction.

After the step, 4 patients and 4 healthy controls were excluded.

Then the fMRI images were co-registered with the high-resolution

anatomical images, normalized to MNI (Montreal Neuroimaging

Institute) space using Diffeomorphic Anatomical Registration

through Exponentiated Lie algebra algorithm (DARTEL) with a

resolution of 1.5 mm3, and spatially smoothed with 3 mm full-wide-

half-maximum (FWHM) Gaussian kernel.

Regions of interests (ROIs) were defined for each hemisphere in 2

anatomical regions: MT+ defined by a cytoarchitectonically

probabilistic map (32), and V1 defined by Brodmann Area 17

(BA17) mask (Supplementary Figure S1). The inclusion of the V1

as a control region further supports the regional specificity of the

results. The calculation of percent signal change was consistent with

the method of previous studies (5, 33). Before calculation of percent

signal change, average time courses were obtained from each ROI

utilizing DPABI in MATLAB. The data were segmented into epochs

starting from the beginning of each block to 2 seconds after the start of

the next block, totaling 22 s. The baseline response was defined as the

average signal from 6-10 s of all epochs. Subsequently, the time course

data was converted into a percent signal change series by dividing the

signal at each time point by the baseline signal and then multiplying

by 100. For each subject, the percent signal change of each ROI was

defined as the average signal change from 18-22 s of all epochs.

Voxel-based first-level analysis of task-state fMRI was

conducted using the General Linear Model (GLM). A design

matrix was established for each participant, reflecting the two

states (baseline and visual stimulus presentation) in the visual

motion perception task. The blocks were convolved with a

canonical hemodynamic response function. To account for head

movements, the head motion parameters of six directions were

included as regressors in the GLM. Subsequently, the regression

coefficients (beta values) were estimated for each voxel. The first
Frontiers in Psychiatry 04
beta value was considered relevant to the visual task. Then, for each

subject, the mean first beta value of all voxels within the ROI was

taken as the beta value of this ROI.
2.5 Functional connectivity analysis

The dynamic functional connectivity (FC) with MT+ as the seed

region was calculated using the PPI analysis (34) based on SPM12

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). PPI analysis

was based on the SPM.mat file generated from the previous GLM

step, which contains the task design information, including

respective onset time series and duration for condition 1 (onset:

stimulus presentation) and condition 2 (offset: baseline). Next, the

time series of seed ROI (left and right MT+) were extracted. A PPI

model was created for each subject, comprising three main

components: the physiological component which corresponded to

the time series of the seed region left and right MT+, the

psychological component which corresponded to the conditions

of task (onset and offset), and the PPI component which reflected

the interaction between the psychological and physiological

variables. The association between the psychological component

and physiological component was achieved by constructing an

interaction term. The PPI calculation involved element-by-

element multiplying the deconvolved time series of the seed

region by a vector representing task conditions (35, 36). PPI was

derived for each subject by contrasting the onset and offset. Beta

weights map of the PPI component was generated for each subject

used in two-sample t-test across the entire brain.
2.6 Statistical analysis

In the study, outliers were defined as values that exceed 1.5

times the interquartile range and removed before statistical analysis.

One sample t-test was conducted to investigate the task-related

activation in the whole brain within MDD or HC group using

DPABI. Other statistical analysis was performed using SPSS 26

(IBM, USA). Student’s t test was used to examine the differences

between MDD group and HC group. Pearson’s correlation

coefficients were calculated to analyze the relationship between
FIGURE 1

Experimental design of the visual motion perception task. The task included 13 blocks. Each block contained 10 s blank (offset) and 10 s stimulus
presentation (onset). Drifting gratings (400 ms on, 225 ms blank) were presented within onset.
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imaging indicators, behavior measures and symptoms of patients.

Differences or correlations were considered statistically significant if

P < 0.05. Corrections for multiple comparisons were conducted

using false discovery rate (FDR) correction. All analyses were

adjusted for medication effects (see Limitation for more details).
3 Results

3.1 Demographic and clinical data

As shown in Table 1, after quality control of the head

movement, 20 MDD patients and 21 HC subjects remained in

our present study sample. According to results of chi-square test for

gender and two-samples t-test for age, there were no significant

difference in gender (Z = 0.963, P = 0.336) and age (T = 1.055, P =

0.298) between MDD and HC groups.
3.2 Abnormal visual motion perception
in MDD

In behavior level, duration threshold in MDD group

significantly increased (T = 2.216, PFDR = 0.034) compared to HC

group (Figure 2).
3.3 Reduced activity in MT+ of MDD

Compared to HC group, MDD exhibited reduced beta value in

left MT+ (T = -2.026, PFDR = 0.049) (Figure 3A) and right MT+

(T = -3.188, PFDR = 0.006) (Figure 3B). However, there was no

significant change in beta value within left V1 (T = -0.258, PFDR =

0.798) and right V1 (T = -1.808, PFDR = 0.157) between MDD and

HC groups (Supplementary Figure S2). Furthermore, MDD group

showed decreased percent signal change in left MT+ (T = -2.035,

PFDR = 0.049) (Figure 3C) and nearly significant in right MT+ (T =

-2.294, PFDR = 0.054) (Figure 3D), but no significant change in left

V1 (T = 0.377, PFDR = 0.708) and right V1 (T = 0.052, PFDR = 0.959)

(Supplementary Figure S2).
3.4 Relationship of activity in MT+ and
visual motion perception

In order to explore whether the phenomenon of MT+ activation

intensity related to visual perception in HC group (33) could be

extended to the MDD group, Pearson’s correlation analysis was

conducted. When combining the data from both MDD and HC

groups for correlation analysis, a significant negative correlation

between beta value in right MT+ and duration threshold was found

(R = -0.396, P = 0.028) (Figure 4). No significant correlation

between beta value in left MT+ and duration threshold

(R = -0.028, P = 0.879) (Supplementary Figure S3). In V1, beta

value and percent signal change were not significantly related to

duration threshold (P > 0.05) (Supplementary Figure S4).
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3.5 Activity in MT+ relates to psychomotor
retardation in MDD

To examine the relationship between task-related activity and

psychomotor retardation, Pearson’s correlation analysis was used to

test the correlation between activity, retardation score and HAMD-

17 total score. Relationships between beta value in left MT+

(R = -0.480, P = 0.032) and right MT+ (R = -0.491, P = 0.033)

and retardation score were significantly (Figure 5A, B). Percent

signal change in left MT+ and retardation score was significantly

negatively correlated (R = -0.465, P = 0.039) (Figure 5C). Percent

signal change in right MT+ did not relate to retardation score

(R = -0.255, P = 0.278) (Figure 5D). As a control region, there was

no significant correlation between V1 and the retardation score,

either in terms of beta value or percent signal change

(Supplementary Figure S5). Moreover, no significant results were

found when correlating the activity of MT+ and V1 with HAMD-17

total score (P > 0.05) (Supplementary Figure S6).
3.6 Altered functional connectivity with MT
+ as the seed region in MDD

PPI analysis revealed that when left MT+ was set as the seed

region, significant intergroup differences emerged in right calcarine

fissure and surrounding cortex and left precuneus (Figure 6).
FIGURE 2

The intergroup difference in duration threshold between MDD and HC
groups. MDD, major depressive disorder; HC, healthy control. *P < 0.05.
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Specifically, compared to HC group, MDD patients showed

significantly increased FC between left MT+ and right calcarine

fissure and surrounding cortex, and decreased FC between the left

MT+ and the left precuneus (Table 2). These FC were not

significantly related to behavioral duration threshold both in

MDD and HC groups (P > 0.05) (Supplementary Figure S7).

However, when the seed region was set to right MT+, no

significant intergroup differences were observed.
4 Discussion

This multi-modal study is the first to investigate the neural

activation pattern of MT+ and V1 in MDD patients during grating

motion perception task. Compared to HC participants, duration

threshold in psychophysical experiment was increased and activity

in MT+ in task-state fMRI were reduced in MDD group. In the

combined MDD and HC sample, a significant negative correlation
Frontiers in Psychiatry 06
was found between beta value in right MT+ and duration threshold.

However, no activation differences were noted in the V1.

Additionally, in MDD group, MT+ activity significantly

correlated with the retardation score. With left MT+ as the seed,

the MDD group exhibited greater FC with the right calcarine fissure

and surrounding cortex and reduced FC with the left precuneus

compared to HC group. This study reveals differences in behavior

and brain function of MDD patients when processing visual motion

information. The results fill the gap left by the absence of task-

related modalities in previous research, and a link was discovered

between behavioral performance and task-related activity in MDD

patients. The significance of these findings lies in their potential to

enhance the understanding of the neural mechanisms underlying

altered motion perception in depression, particularly how specific

brain regions like MT+ and their connectivity are impacted

in MDD.

Reduced task-related activity in MT+ of MDD patients may

indicate specific neurobiological changes. Our previous ultra-high
FIGURE 3

Comparison of task-related activation in MT+ between MDD and HC groups. Reduced beta value (A, B) and percent signal change (C, D) in left and
right MT+ in MDD compared to HC group. MT+, middle temporal complex; MDD, major depressive disorder; HC, healthy control. *PFDR < 0.05,
**PFDR < 0.01.
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field magnetic resonance spectroscopy (MRS) study found that

MDD group had reduced concentrations of various neuro-

metabolites including Glu and GABA, and identified abnormal

excitation-inhibition balance with decoupling of inhibitory GABA

from excitatory glutamate (7). Studies on the whole-brain structure

of MDD patients have found reductions in gray matter volume (37–

40) and cortical thickness (41, 42) within visual cortex. A multi-site

fMRI study discovered that the topological structure of functional

brain networks, including the visual network, was disrupted in
Frontiers in Psychiatry 07
MDD, with decreased degree of nodes (43). The abnormal brain

activity in MT+ during task may result from an interaction of

neurotransmitter imbalance, brain structural changes, and

abnormal connectivity in functional networks, forming multi-level

brain alterations. This provides new insights into the biological

basis of MDD.

Consistent with previous findings (7, 44), this study discovered

that visual motion perception is impaired in MDD patients, and

within a sample group including both MDD and HC, the

performance of psychophysical visual perception task is

significantly correlated with neural activity in task-state fMRI.

MT+ plays a crucial role in processing visual motion information,

responsible for identifying and analyzing the motion direction,

speed, and trajectory of objects (45, 46). Decreased percent signal

change and beta value in MT+ in our result indirectly reflects a

reduction in neural activity in this region in MDD patients,

potentially impairing their ability to process these motion

information (47, 48), thereby affecting the accuracy and efficiency

of motion perception. Our finding on the relationship between

neural activity in MT+ and visual motion perception corroborate

previous study in HC group (33) and further extend to the MDD

cohort. This suggests that although visual motion perception

functions and neural activity in MT+ are impaired in MDD

patients, the correlation between them still exists, MT+ may still

be a major contributor to the perception of briefly presented

moving stimuli (33). Furthermore, the reduction in MT+ activity

may impact emotional regulation and perceptual experience.
FIGURE 5

Relationships between task-related activation in MT+ and psychomotor retardation score within MDD group. Significant correlation between beta
value in both left (A) and right MT+ (B) and psychomotor retardation score. (C) Percent signal change in left MT+ significantly correlated with
psychomotor retardation score. (D) Percent signal change in right MT+ and psychomotor retardation score were not significantly correlated. MT+,
middle temporal complex; MDD, major depressive disorder.
FIGURE 4

Correlation between beta value in right MT+ and duration threshold
in the entire cohort including MDD and HC. MT+, middle temporal
complex; MDD, major depressive disorder; HC, healthy control.
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Changes in MT+ activation may reflect difficulties in processing

emotion-related dynamic visual information in MDD patients (49–

51), possibly related to negative emotional experiences (52, 53),

social difficulties (54), an exaggerated response to negative stimuli

(55, 56), or an insufficient response to positive stimuli (57). Visual

motion perception involves the brain’s processing of dynamic

information, not limited to the visual system but also including

integration with other sensory systems (58). Potential impairments

in MT+ for MDD patients may have widespread effects on daily

functioning and emotional states.

Our previous resting-state fMRI study (28) found that MDD

patients exhibited abnormally increased ALFF in the left MT+.

While in this study, the activity of MT+ in MDD group decreased

during perception task. And both findings were significantly

correlated with retardation score. The changes in activation of

MT+ in both resting and task states reveal the brain’s differential

processing of dynamic information under various states in MDD

patients (59). In the resting state, the brain is not in a complete rest

but is engaged in a series of internal processing activities, such as

memory consolidation (60) and emotion regulation (61). The

increased ALFF in left MT+ during the resting state in MDD

patients may reflect their brain’s overactivity in the absence of

specific external stimuli (62), which could be related to the patients’

persistent negative thinking and rumination (63–65). During task

performance, the brain typically increases activity in relevant areas

to process the task (59). However, the decreased activity of MT+ in

MDD patients during task may indicate a reduced efficiency in

processing external dynamic visual information (66, 67). This might

be due to the inability of individuals with depression to mobilize
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brain resources as effectively as healthy individuals during task

execution (68).

Psychomotor retardation is one of the common symptoms of

MDD, involving slowness in thought processing, speech, and physical

movements (3, 69, 70). In this study, compared to HC group, beta

value and percent signal change in both left and right MT+ were

decreased in MDD patients in the between-group comparison. It

indicates that task-related activity of both left and right MT+ are

impaired in MDD patients. Additionally, the impaired activity was

significantly correlated with psychomotor retardation score,

suggesting a specific link between brain activity patterns and the

symptoms of psychomotor retardation in depression (12, 28, 71).

PPI analysis aims to explore whether FC between brain regions

change under specific task conditions (34), measuring task-dependent

dynamic FC. In this analysis, we conducted statistical analyses across the

whole brain based on the seed region left MT+, and identified calcarine

fissure and surrounding cortex and precuneus as key regions showing

abnormal changes in MDD patients. Firstly, the calcarine fissure and

surrounding cortex is involved in the primary processing of visual

information (72, 73). MDD patients exhibit various structural

abnormalities in this region, such as cortical thinning (74), reduced

gray matter volume (75), and abnormal nodal efficiency (76, 77). We

observed increased FC between left MT+ and right calcarine fissure and

surrounding cortex, suggesting that MDD patients may require more

neural resources when processing visual motion information (78), or

may exhibit abnormal neural activity patterns. This enhanced

connectivity may serve as a compensatory mechanism for perceptual

processing impairments (79). Additionally, FC between left MT+ and

right precuneus weakened, particularly in the Brodmann Area 7 (BA7).
TABLE 2 Significant altered brain regions in FC between MDD and HC groups using left MT+ as the seed region.

Seed Region BA
Cluster
size

Peak
t-value

MNI coordinates

X Y Z

left MT+

MDD > HC right calcarine fissure and
surrounding cortex

\ 157 5.4 33 -57 6

MDD < HC left precuneus BA7 116 -4.8 -7.5 -48 37.5
FC, functional connectivity; MT+, middle temporal complex; MDD, major depressive disorder; HC, healthy controls; BA, Brodmann Area; MNI, Montreal Neurological Institute.
FIGURE 6

Group differences in FC with left MT+ as the seed region between MDD and HC. Compared to HC group, MDD exhibit increased FC in right
calcarine fissure and surrounding cortex (A) and decreased FC in left precuneus (B). MT+, middle temporal complex; MDD, major depressive
disorder; HC, healthy control.
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BA7, located in the parietal lobe, is crucial for processing visual inputs,

involving the integration of bodily sensations and visual information, as

well as regulating attention, visual-motor coordination, and self-

awareness functions (80, 81). Previous studies found reduced cortical

surface area of precuneus in MDD patients (82), accompanied by

abnormal functional connectivity with multiple brain regions (83–86).

The weakened FC between MT+ and precuneus may affect the effective

processing and integration of task-related visual motion information

and self-relevant information. It is worth emphasizing that the calcarine

fissure and surrounding cortex, MT+, and the precuneus all play

significant roles in visual processing. Therefore, abnormalities in

network function from visual perception to visual information

integration may impair MDD patients’ ability to process visual

stimuli. This underscores the importance of in-depth research into

MDD from visual cortex to better understand the neural mechanisms of

depression. But in PPI analysis, we found that only dynamic FC of left

MT+ showed between-group differences, while right MT+ did not. This

possibly reflects an asymmetry in task-related connectivity in MT+.

Observing abnormalities in the activity of MT+ through imaging

techniques may offer new perspectives for the diagnosis and treatment

of MDD. Compared to other psychiatric disorders, the specific

activation patterns within this region in MDD patients could serve as

biomarkers for auxiliary diagnosis (87). Understanding the abnormal

activations in MT+ of the brains of MDD patients can aid in

developing new therapeutic methods. For instance, targeting the

neural circuits that affect the function of MT+ through methods

such as neurofeedback (88, 89) and physical stimulation (25) might

provide more personalized and precise treatment options for MDD.

This study builds upon previous multi-modal research on

depression in MT+ by further measuring the abnormalities in beta

value, percent signal change and FC in MT+ of MDD patients during

visual motion perception task. It found that task-related activation

decreased and was significantly correlated with psychophysical

performance and psychomotor retardation. And MDD patients

exhibit abnormalities in the internal connectivity within the visual

functional network. In summary, our results not only enhance the

understanding of the neural mechanisms behind visual motion

perception impairments in MDD, but also further support MT+ as a

candidate biomarker region for MDD.
5 Limitations and future directions

We admit that the main limitation of the present study is the

potential confounding influence of pharmacological treatments. Indeed,

the majority of the acute MDD patients in our cohort were taking

medications, including mood stabilizers, antipsychotics, antidepressants,

and benzodiazepines, whichmay possibly affect results. Following recent

suggestions and standards, we examined the potential impact of the

psychotropic medication load—the number and dosage of different

medications, we then used the codes 0, 1, 2, and 3 to indicate no

medication, and dose-equivalents below, equal, or above the average

effective daily dose, respectively (90). A composite measure of the

medication load was calculated by summing all individual medication

codes across each category and for each MDD patient. We explored the

possible influence of medications on behavior and fMRI data by
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value and percent signal change in left and right MT+. The medication

load did not correlate with this measure in antidepressants,

antipsychotics, mood stabilizers, and benzodiazepines (P > 0.05).

Subsequently, to further control for an eventual effect of

pharmacotherapy on duration threshold, beta value and percent

signal change within left and right MT+, we conducted two-sample

t-test to compare the variables for each medication class (mood

stabilizers, antidepressants, benzodiazepines, and antipsychotics),

between those patients who were in treatment with the respective

drug and those who were not. We found no differences between

patients who were in treatment with mood stabilizers (n = 3) and

patients who were not (n = 17) (P > 0.05), between patients who were

in treatment with antidepressants (n = 15) and patients who were not

(n = 5) (P > 0.05), between patients who were in treatment with

benzodiazepines (n = 7) and patients who were not (n = 13) (P > 0.05),

as well as between patients who were in treatment with antipsychotics

(n = 6) and patients who were not (n =14) (P > 0.05).

Yet another limiting factor is the rather low subject number. The

limited number of subjects may reduce the statistical power of the study,

especially for correlation analysis. Furthermore, the cross-sectional

design employed in our study does not allow for tracking changes in

patients across these imaging indicators inMT+. Nevertheless, although

our research has combined psychophysical experiment with task-state

fMRImeasurements, it still lacks data frommodalities such as structural

neuroimaging and resting-state fMRI, which limits the scope of the

study. Integrating multi-modal types of data, such as resting-state fMRI,

structural neuroimaging, molecular, and physiological measurements,

can provide convergent evidence from different domains, thereby

enhancing the robustness and depth of conclusions. In sum, while

the current study contributes valuable insights into MT+ as potential

biomarker target of MDD, its limitations highlight the necessity for

further research that employs larger sample sizes, longitudinal designs,

and more multi-modal approaches.
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