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Background: Growing evidence suggests that chronic inflammation, resulting

from intricate immune system interactions, significantly contributes to the onset

of psychiatric disorders. Observational studies have identified a link between

immunoglobulin G (IgG) N-glycosylation and various psychiatric conditions, but

the causality of these associations remains unclear.

Methods: Genetic variants for IgG N-glycosylation traits and psychiatric

disorders were obtained from published genome-wide association studies. The

inverse-variance-weighted (IVW) method, MR-Egger, and weighted median

were used to estimate causal effects. The Cochran’s Q test, MR-Egger

intercept test, leave-one-out analyses, and MR-PRESSO global test were used

for sensitivity analyses.

Results: In the Psychiatric Genomics Consortium (PGC) database, genetically

predicted IGP7 showed a protective role in schizophrenia (SCZ), major depressive

disorder (MDD), and bipolar disorder (BIP), while elevated IGP34, and IGP57

increased SCZ risk. High levels of IGP21 were associated with an increased risk of

post-traumatic stress disorder (PTSD), while elevated levels of IGP22 exhibited a

causal association with a decreased risk of attention-deficit/hyperactivity disorder

(ADHD). No causal relationship between IgG N-glycan traits and autism spectrum

disorder (ASD) and no evidence of reverse causal associations was found.

Conclusion: Here, we demonstrate that IgG N-glycan traits have a causal

relationship with psychiatric disorders, especially IGP7’s protective role, offering

new insights into their pathogenesis. Our findings suggest potential strategies for

predicting and intervening in psychiatric disorder risk through IgG N-glycan traits.
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1 Introduction

The widespread occurrence of psychiatric disorders among

millions globally profoundly impacts individuals’ well-being and

poses significant challenges to effective treatment and management

(1–3). The diverse etiologies and complex biological mechanisms

underlying psychiatric disorders have hindered our understanding

of their pathogenesis, leading to a scarcity of effective and long-

lasting treatments (4, 5). Therefore, there is an urgent need to delve

deeper into the potential mechanisms of these disorders, in order to

enhance our understanding of their pathogenesis and address the

current limitations in treatment options for psychiatric disorders.

The crosstalk between the immune and nervous systems is

received increasing attention across a diverse range of psychiatric

diseases. The central nervous system (CNS) is regulated by immune

processes that maintain homeostasis, enhance resilience, and

preserve brain reserve (6). Increasing evidences indicated chronic

inflammation plays a significant role in the development and

progress of psychiatric disorders (7–9). Chronic inflammation can

have many adverse effects on brain function, as it can cause

neurotoxicity and neurodegeneration. For example, the

production of cytokines during inflammation can lead to

neurotoxic effects by increasing the production of reactive oxygen

species, reducing monoamine transmission, and potentiating

glutamatergic transmission (10, 11). Hence, it is imperative to

identify the key factors involved in the inflammatory processes

contributing to the development of psychiatric disorders and to

maintain a suitable balance of inflammation to ensure the optimal

function of the CNS.

Many studies have attempted to identify key elements of immune

regulation in the pathogenesis of psychiatric disorders. However,

suitable key factors have not been found. Immunoglobulin G (IgG) is

the most abundant antibody subclass in the human circulatory

system. Blood levels of IgG increase in individuals with acute or

chronic inflammation, inflammatory disorders, and autoimmune

diseases (12, 13). IgG could bind to immune cells which expressed

Fc receptors for IgG (FcgR), enabling it to induce an inflammatory

response in peripheral or central immune cells. When N-glycans are

connected to the conserved asparagine 297 in the IgG Fc region, they

function as a regulatory switch, balancing the pro-inflammatory and

anti-inflammatory responses of IgG (14). Alterations in N-

glycosylation components of IgG, including galactose, fucose, sialic

acid, and bisecting GlcNAc, modify the pro- and anti-inflammatory

properties of IgG (15–18). Accumulating evidence has indicated that

alterations in serum N-glycans are associated with different

psychiatric disorders, including schizophrenia (SCZ) (19), major

depressive disorder (MDD) (20), bipolar disorder (BIP) (21), post-

traumatic stress disorder (PTSD) (22), attention-deficit/hyperactivity

disorder (ADHD) (23), and autism spectrum disorder (ASD) (24).

These findings suggest the presence of unique IgG N-glycosylation

patterns among different types of psychiatric disorders. IgG N-

glycosylation may influence the nervous system through the

following pathways, thereby leading to psychiatric disorders.

Increased fucosylation of IgG reduces its binding to FcgRIIIa on

natural killer (NK) cells, diminishing antibody-dependent cellular

cytotoxicity (ADCC), while increased sialylation enhances
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anti-inflammatory activity by promoting the binding to dendritic

cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) (25, 26).

These changes can result in the increased production of pro-

inflammatory cytokines like TNF-a and IL-6, and a decrease in

anti-inflammatory cytokines. This can provoke leakage of the blood–

brain barrier (BBB) and extravasation of serum proteins, including

IgG or IgG N-glycosylation, into the brain (27, 28). IgG N-

glycosylation can enter into the brain and bind to Fc receptors

which are expressed on microglia cells (29, 30). Activation of

microglia through Fc receptors can induce local inflammation

within the brain which may lead to synthesis of cytokines,

neurological dysfunction, and behavioral effects (29, 31). In the

hippocampus, FcgRII is expressed on parvalbumin-GABAergic

expressing interneurons localized at the pyramidal cells layer (32).

The hippocampus, crucial for emotion, learning, and memory, is

implicated in depression and shows IgG deposition alongside

activated microglia in the cortex, striatum, hypothalamus,

substantia nigra, and cerebellum (33). Additionally, in the brain,

inflammatory cytokines can reduce the availability and release of

dopamine in the basal ganglia, such as the striatum, while

simultaneously increasing the levels of the excitatory amino acid

glutamate. This increase in glutamate activity can be further amplified

by the activation of the kynurenine pathway. These alterations in

neurotransmitter metabolism affect multiple brain regions, leading to

disruptions in neurocircuits that regulate motivation, motor activity,

and sensitivity to threats and loss. Consequently, these circuit-based

changes contribute to symptoms such as anhedonia, psychomotor

slowing, anxiety, arousal, and heightened alarm (34). Both

underscore the significant role of IgG N-glycosylation in the

inflammatory processes associated with the development of

psychiatric disorders. Notably, there are no therapeutic targets for

IgG N-glycosylation in the treatment of psychiatric disorders. Due to

the limited number of studies on IgG N-glycosylation and psychiatric

disorders, establishing a causal relationship between these two

is essential.

Mendelian randomization (MR) is a groundbreaking tool that

utilizes genetic variants as instrumental variables (IVs) to visualize

causal relationships between exposures and outcomes of interest

(35). MR can avoid reversing exposure-outcome associations by

concentrating solely on the genetically regulated component of

exposures. Since genotypes remain largely unchanged from

conception (36), the evaluations obtained from MR are not

influenced by confounders, ensuring more accurate and reliable

results. Therefore, we performed a two-sample bidirectional MR

analysis using summary data from GWAS to assess the causal

association psychiatric disorders including SCZ, MDD, BIP, PTSD,

ADHD, and ASD on the risk of IgG N-glycosylation traits, as well as

the causal role of IgG N-glycosylation traits in these disorders.
2 Methods

2.1 Study design

A brief overview of our bidirectional MR analysis is presented in

Figure 1. In this study, we performed a two-sample bidirectional
frontiersin.org
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MR analysis to examine the bidirectional causal effect between IgG

N-glycosylation traits and psychiatric disorders (SCZ, MDD, BIP,

PTSD, ADHD, ASD). All MR analyses in our study needed to

satisfy three basic assumptions:(1) instrumental variables are

strongly correlated with exposures, (2) instrumental variables are

independent of confounding factors, (3) instrumental variables

influence outcomes only through exposure.
2.2 Sources of data on the N-glycosylation
of IgG

The data used for the summary-level GWAS analysis of IgG N-

glycosylation traits was sourced from the largest meta-analysis

conducted on 8090 individuals of European descent (37).

Summary statistics from GWAS were accessible for a total of 77

IgG N-glycosylation traits, which comprised 23 traits directly

measured through ultraperformance liquid chromatography

(UPLC) (IGP1-23) and 54 traits derived from the data (IGP24-

77). In the directly measured traits using ultraperformance liquid

chromatography (UPLC), each peak predominantly corresponds to

a significant diantennary complex N-glycan structure.
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These structures may display distinct features, including core-

fucose, bisecting N-acetylglucosamine (GlcNAc), terminal

galactose, and terminal sialic acids on the antennae. On the other

hand, the derived N-glycosylation traits characterize the quantities

or proportions of specific groups of glycans that share particular

structural characteristics (Additional File 1; Supplementary

Table S1).
2.3 Sources of data on
psychiatric disorders

The GWAS summary statistics for ADHD, ASD, BIP, MDD,

PTSD, and SCZ were extracted from the Psychiatric Genomics

Consortium (PGC) website (https://www.med.unc.edu/pgc/results-

and-downloads/). PGC stands as the most expansive consortium in

the annals of psychiatry, spearheading the most impactful meta-

and mega-analyses of genome-wide genomic data about psychiatric

disorders. The GWAS summary datasets, specific to individuals of

European ancestry, including SCZ (38)(33,604 cases and 58,113

controls), MDD (39)(246,363 cases and 561,190 controls), BIP (40)

(41,917 cases and 37,1549 controls), PTSD (41)(23,212 cases and
FIGURE 1

Flowchart of our bidirectional two-sample MR analysis. IVs, instrumental variables; MR, Mendelian Randomization; SNPs, single-nucleotide
polymorphisms; IVW, inverse-variance weighted. SCZ, schizophrenia; MDD, major depression; BIP, bipolar disorder; PTSD, post-traumatic stress
disorder; ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder.
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151,447 controls), ADHD (42)(20,183 cases and 35,191 controls),

and ASD (43)(18,381 cases and 27,969 controls). These datasets

were derived from comprehensive genome-wide meta- or mega-

analyses. More details are shown in Table 1.
2.4 Determination of exposure

In this MR study, SNPs associated with IgG N-glycosylation traits

at a genome-wide significance level (P < 5E-8) from the summary-level

GWAS were selected. We excluded SNPs in linkage disequilibrium

(LD, r2 < 0.001 within a 10Mbwindow). The R2 and F statistic for each

SNP were calculated using the formulas: R2 = 2 × EAF × (1−EAF) × b2

and F statistic = R2 × (N−2)/(1−R2). SNPs with F statistics > 10 were

recommended for subsequent MR analysis to avoid using weak genetic

instruments. We further used online tools PhenoScannerV2 (http://

www.phenoscanner.medschl.cam.ac.uk/) to detect potential SNPs

associated with the selected ones, which may affect results (i.e.,

autoimmune, rheumatoid arthritis, smoking, education, drinking,

obesity, etc.) (44). Additionally, we excluded the IgG N-

glycosylation traits with less than 3 SNPs to meet the minimum

requirement of the number of SNP for someMR sensitivity analyses

(45). Finally, we used 60 IgG N-glycosylation traits and a total of

325 SNPs for MR analysis (Supplementary Table S2).

To investigate the causal effect of psychiatric disorders on IgG N-

glycosylation traits, a genome-wide significance level (P < 5E-8) was

used. Other selection procedures were the same as those for IgG N-

glycosylation traits. There were some differences in calculating R2 and

F values of MDD as it does not sample volume. So we used 2 × ((b)
^2) × EAF × (1-EAF) and (b)^2/(se)^2) to calculate respectively.

Selected SNPs can be found in Supplementary Table S3. Since there

were not enough significant SNPs for PTSD, and ASD, we did not

include them in the reverse MR analysis. The excluded SNPs as

potential confounding factors of IgG N-glycosylation and psychiatric

disorders can be found in Supplementary Table S4.
2.5 Mendelian randomization analysis

To assess the causal effect of IgG N-glycosylation traits on the

risk of psychiatric disorders, the random effect inverse variance
Frontiers in Psychiatry 04
weighted (IVW) method was employed to estimate. Additionally,

MR-Egger and weighted median methods were employed to

enhance IVW estimates, as they offer robust estimates in a

broader range of scenarios, albeit with less efficiency (i.e., wider

confidence intervals [CIs]). All results were presented as odds ratios

(ORs) and corresponding 95% CIs for psychiatric disorder

outcomes per genetically predicted increase in IgG N-

glycosylation levels.
2.6 MR sensitivity analyses

Furthermore, comprehensive sensitivity analyses were

conducted to estimate potential violations of model assumptions

in the MR analysis. We performed Mendelian randomization

pleiotropy residual sum and outlier (MR-PRESSO) analysis, along

with leave-one-out analysis to detect outlier instrumental variables

(46). Instrumental variables identified as outliers by the MR-

PRESSO test were systematically removed to mitigate the impact

of horizontal pleiotropy. Cochran’s Q test was employed to assess

heterogeneity across individual causal effects, and MR-Egger

regression was conducted to evaluate the directional pleiotropy of

instrumental variables (47).
2.7 Data analysis

The Bonferroni correction for multiple testing was conducted to

correct P values. A P value less than 1.39E-4 (0.05/360) was

considered as strong evidence of a causal association. All analyses

were carried out using the TwoSample MR (version 0.5.6) and

MRPRESSO (version 1.0) packages in R software (version 4.2.0).
3 Results

3.1 The selection of IgG N-glycosylation
genetic instruments

To explore the bidirectional causal relationship between IgG N-

glycosylation traits and psychiatric disorders, we employed genetic
TABLE 1 Characteristics of included genome-wide association studies for MR analysis.

Phenotype Consortium Cases Controls Total Population PubMedIDlink

IgG N-glycans NA NA NA 8090 European 32128391

ADHD PGC 20,183 35,191 55,374 European 30478444

ASD PGC 18,381 27,969 46350 European 30804558

MDD PGC 246,363 561,190 807,553 European 30718901

PTSD PGC 23,212 151,447 174,659 European 31594949

BIP PGC 41,917 371,549 413,466 European 34002096

SCZ PGC 33,604 58,113 91,717 European 35396580
Detailed information of the studies and datasets used for Mendelian randomization analyses. SCZ, schizophrenia; MDD, major depression; BIP, bipolar disorder; PTSD, post-traumatic stress
disorder; ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder.
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variants strongly associated with these traits, derived from the most

extensive GWAS meta-analysis currently available. The selected

SNPs, with F-statistics ranging from 30 to 1499 (Supplementary

Table S2 and S3), demonstrated robust effects, avoiding weak

instrument bias. Consequently, a total of 325 SNPs associated

with 60 IgG N-glycosylation traits were identified and used as

exposures in the forward MR analysis, while 148, 42, 43, and 44

SNPs were selected for SCZ, MDD, BIP, and ADHD, respectively, in

the reverse MR analysis. (Supplementary Table S2, S3).
3.2 The causal effect of IgG N-
glycosylation traits on psychiatric disorders

To investigate the causal impact of IgG N-glycosylation traits on

psychiatric disorders, we used the IVW method as the primary MR

approach. We observed a significant causal association between

genetically predicted IgG N-glycosylation traits IGP7 and a reduced

risk of SCZ, MDD, and BIP (Figure 2). Each standard deviation

(SD) increase in genetically determined IGP7 was associated with a

12% decreased risk of SCZ (OR = 0.88, 95% CI = 0.84-0.92,

P = 2.98E-7), 8% decreased risk of MDD (OR = 0.92, 95% CI =

0.90-0.95, P = 4.96E-12), and 11% decreased risk of BIP (OR = 0.89,

95% CI = 0.87-0.91, P = 2.88E-12). Additionally, two IgG

N-glycosylation traits IGP34 and IGP57 were causally associated
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with an increased risk of SCZ, each SD increase in genetically

determined IGP34 and IGP57 was associated with a 13%

(OR = 1.13, 95% CI = 1.09-1.17, P = 7.37E-13) and 10% (OR = 1.1,

95% CI = 1.07-1.12, P = 1.55E-12) increased risk of SCZ. In

contrast, IGP34 and IGP57 were not associated with MDD or BIP

(Supplementary Table S4).

We observed a significant causal association between genetically

predicted IgG N-glycosylation trait IGP21 and the risk of PTSD

(Figure 2). Each SD increase in genetically determined IGP21 was

associated with a 9% increased risk of PTSD (OR = 1.09, 95% CI =

1.04-1.14, P = 8.67E-5). For ADHD, IGP22 was associated with a

reduced risk (OR = 0.95, 95% CI = 0.93-0.96, P = 1.43E-10), with

each SD increase in genetically determined IGP22 associated with a

5% decrease in the risk of ADHD. Additionally, no significant

causal relationship between IgG N-glycosylation traits and ASD was

observed (Supplementary Table S4).
3.3 The causal effect of psychiatric
disorders on IgG N-glycosylation traits

To assess the potential causal influence of psychiatric disorders

on IgG N-glycosylation traits, we employed the IVW method as the

primary MR approach. Because there were not enough genome-

wide significant SNPs for PTSD, and ASD, we only analyzed the
FIGURE 2

Forest plots of causal effects for IgG N-glycosylation traits on psychiatric disorders. Summary of the MR result derived from the inverse-variance
weight, MR-Egger, and weighted median method. The OR was estimated using different MR method. MR, Mendelian Randomization; SNPs, single-
nucleotide polymorphisms; OR, odds ratio.
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causal effects of SCZ, MDD, BIP, and ADHD on IgG N-

glycosylation traits. We did not detect significant causal effects of

four psychiatric disorders on the IgG N-glycosylation traits

(Supplementary Table S5).
3.4 Sensitivity analyses

We performed sensitivity analyses to validate our putative

causalities obtained with bidirectional MR. First, the results of

Cochran’s Q test showed no obvious heterogeneity for all

significant associations (Supplementary Table S6, 7). Second,

leave-one-out analyses showed the causal effect was not driven by

a single instrumental variable (Supplementary Table S8, 9). Third,

MR-Egger intercepts for all associations were in proximity to zero,

indicating the absence of significant pleiotropy detection

(Supplementary Table S10, 11). Fourth, the global MR pleiotropy

residual sum and outlier (MR-PRESSO) test did not detect any

evidence of horizontal pleiotropy (Supplementary Table S12, 13).

Overall, the sensitivity analyses confirmed the reliability of our

putative causal effects in both the forward and reverse MR results.
4 Discussion

Elucidating the causal links between IgG N-glycosylation traits

and psychiatric disorders could greatly enhance our understanding

of their pathogenesis. We conducted a bidirectional MR analysis to

assess the causal associations between IgG N-glycosylation traits

and the risk of psychiatric disorders including SCZ, MDD, BIP,

PTSD, ADHD, and ASD in European populations. Our robust

evidence strongly indicates causal relationships between IgG N-

glycosylation traits and SCZ, MDD, BIP, PTSD, and ADHD,

whereas no significant link with ASD is observed.

A compelling example of the pathogenic influence of the immune

system on brain function is the change in mood, social behavior and

cognitive abilities — known as sickness behavior — upon infection

and systemic inflammation. The release of pro-inflammatory

cytokines, affects the brain via neural (mainly vagal) pathways,

interaction with cytokine receptors on cerebral endothelial cells

and/or microglial activation (48). Various psychiatric disorders

have been verified to be associated with inflammation. IgG is an

antibody integral to the adaptive immune system, which has evolved

to safeguard the human species against pathogens and has a key role

in various immune processes. IgG glycans serve as a critical

determinant, acting as a switch between the pro- and anti-

inflammatory states of the IgG molecule (14). They possess the

capability to guide the immune response elicited by this antibody

(49). Although some MR studies have reported causal relationships

between systemic inflammatory regulators and circulating proteins

with psychiatric disorders, they do not investigate the role of IgG N-

glycosylation (50, 51). This study establishes causal connections

between distinct IgG N-glycosylation patterns and various

psychiatric disorders, highlighting their potential biomarkers.

Our findings suggest that an elevated level of the IgG N-

glycosylation trait IGP22 represents a decreased risk of ADHD.
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IGP22 serves as a direct metric for IgG N-glycans, primarily

modified by the three sugar molecules: fucoses, galactoses, and

sialic acids. In a recent study, there was no significant difference in

IGP22 levels between patients with ADHD and control group, likely

due to a small sample size. However, a statistically significant

decrease was observed in sialylated IgG levels within the ADHD

sample, as well as in chronic inflammatory and autoimmune

diseases (17, 52), suggesting the pivotal role of IgG sialyation in

patients. Notably, IGP22 differs from IGP17 by the addition of a

sialic acid molecule, and IGP17 exhibited a statistically significant

decline (23). Moreover, published data show that IgG sialyation

exhibits an anti-inflammatory activity (53). Numerous studies on its

mechanism have shown that its anti-inflammatory activity relies on

the inhibitory receptor FcgRIIB (54). Patients with chronic

neuroinflammation undergoing intravenous immunoglobulin

therapy with a-2,6 sialylated IgG infusion exhibit an enhanced

surface expression of FcgRIIB, leading to a reduction in

inflammatory response (55–57). Based on the observations, we

hypothesize that the sialylation of IgG plays a pivotal role in

exerting anti-inflammatory effects by enhancing the surface

expression of FcgRIIB, thereby underlying the pathogenesis of

ADHD. However, further works are necessary to validate the

assertion and elucidate the precise mechanisms involved.

Genetically predicted elevation in IGP7, an IgG N-glycosylation

trait directly measured and modulated by fucose and galactose,

appears protective against MDD, BIP, and SCZ. These findings

suggest potential shared pathophysiological mechanisms among

these psychiatric conditions, corroborating studies that have shown

overlapping etiologies in these three psychiatric disorders (58). A

study has shown that the IgG4- galactose trait is correlated with the

severity of MDD patients (20), which is inconsistent with our study.

On the other hand, another study has demonstrated a significant

decrease in the level of GP13 (which differs from GP7 by a galactose

molecule) in the high abundance serum proteins fraction of serum

from female patients with SCZ (19). These contradictory findings

suggest that the galactose molecule plays a crucial role in both

disorders. The presence or absence of additional Gal residues at the

glycan arms has been controversially linked to altered affinities to

diverse IgG effector structures. Depending on the circumstances,

galactosylation can either strengthen or weaken the affinity of IgG for

FcR, thereby modulating its functional properties (14). Nevertheless,

one consistent observation is that the presence of additional galactose

molecules at the glycan arms of IgG seems to exert a crucial influence

on its functional characteristics and is associated with promoting

anti-inflammatory processes. Notably, patients with autoimmune

diseases like rheumatoid arthritis (RA) and lupus erythematosus

(LE) exhibit elevated levels of agalactosylated total IgG, suggesting

the importance of galactose in regulating IgG function in these

conditions (59, 60). Future research on IgG N-glycosylation traits

in relation to MDD, and SCZ, should particularly focus on the

galactosylation of IgG.

However, existing research indicates that MDD, ASD, SCZ, and

BIP share genetic risk factors (61), while no significant causal

relationship between ASD and IgG N-glycosylation traits. There

may be some reasons as following. First, the statistical power of the

available ASD GWAS data may be lower compared to other
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disorders, which could limit the ability to detect significant

associations. Second, ASD is highly heterogeneous, both

genetically and phenotypically, which may dilute potential causal

signals. Additionally, the effects of IgG N-glycosylation on ASD risk

may be more specific to certain tissues or developmental stages that

were not fully captured in our analysis. The biological mechanisms

underlying ASD, particularly in terms of immune or

neurodevelopmental pathways, may differ from those of other

psychiatric disorders such as MDD, SCZ, and BIP.

Conversely, the elevated levels of IGP34 and IGP57 are

associated with an increased risk of SCZ and are not observed in

the MDD and BIP. Current observation has not directly examined

the relationship between these glycosylation traits and SCZ, and the

lack of direct evidence prompts us to explore potential underlying

mechanisms by analyzing the similarities and differences between

IGP34 and IGP57. IGP34 is characterized by the ratio of fucosylated

(without bisecting GlcNAc) monosialylated and disialylated

structures in total IgG glycans, while IGP57 is characterized by

the percentage of digalactosylated structures in total neutral IgG

glycans. The fact that IGP34 and IGP57 possess completely different

structures suggests that specific IgG N-glycosylation structures can

exert similar functional roles. Multiple studies have shown that

eliminating the core fucose residue enhances the binding affinity of

IgG to the human FcgRIIIA receptor, subsequently potentiating

antibody-dependent cell-mediated cytotoxicity (ADCC) activity

(62, 63). A study on COVID-19 patients revealed an association

between increased total IgG fucosylation and with severity of

COVID-19 (64). Based on what we discussed above of

galactosylation and sialylation, these indicate that various

glycosylation molecules ultimately exert pro-inflammatory effects

and suggest a pro-inflammatory role of IgG fucosylation in the

development of schizophrenia.

A directly measured IgG N-glycan, IGP21, is found to be

associated with an elevated risk of developing PTSD. In one study

on PTSD, IgG N-glycosylation traits do not exhibit notable

variations (22). In this study, the level of IGP21 in PTSD patients

was higher than the control, but had no statistical meaning, which

may be due to small samples or influenced by other confounding

factors. However, the IGP22 level was significantly lower in PTSD

patients (22). IGP21 is characterized by bisecting GlcNAc,

galactose, and sialic acid. The IGP22 differs from IGP21 by

adding fucose. These indicate the fucosylation of IgG may play an

important role in the development of PTSD. Core fucosylated N-

glycans on IgG are generally considered pro-inflammatory as core

fucosylation of IgG can drastically decrease ADCC (65).

Theoretically, IGP22 should have an increased risk of PTSD

according to our results, but the results of Lucija Tudor’s study is

the opposite (22). As we discussed above, we have focused on the

role of bisecting GlcNAc. In some chronic inflammatory diseases,

such as systemic LE, patients exhibit upregulated levels of bisecting

GlcNAc (66). Whereas in RA, it seems to have minimal or no effect

(67). These variations highlight the intricate and diverse roles of

bisecting GlcNAc across different inflammatory conditions.

Additionally, elevated levels of bisecting GlcNAc glycans have

been documented in immune diseases, including Alzheimer’s

(AD) (68), ischemic stroke (69), dementia (70). Significantly,
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There were some studies indicated IgG exerts an anti-

inflammatory effect when the bound N-glycan contains galactose,

sialic acid or fucose, while the addition of bisecting GlcNAc has a

proinflammatory effect (71, 72). Both underscore the vital role of

bisecting GlcNAc of promoting inflammation when different sugar

molecules exist in IgG. Future research on IgG N-glycosylation

traits in relation to PTSD should particularly focus on the bisecting

GlcNAc of IgG.

In this study, we offer new insights and directions for

psychiatrists dedicated to research on inflammation and

psychiatric disorders. Our study emphasizes the potential impact

of different IgG glycosylation patterns on psychiatric disorders and

the resultant pro-inflammatory or anti-inflammatory effects when

multiple glycan molecules are combined. Therefore, it is particularly

important to regulate glycan molecules that play a crucial role in the

pathogenesis of psychiatric disorders. Glycoengineering, which

involves changing the glycosylation patterns of proteins, is

therefore expected to be an effective means of overcoming the

problems of therapeutic proteins (73). Modifying the glycan

composition to achieve anti-inflammatory effects or to reduce the

pro-inflammatory actions of these molecules may be a promising

approach for the treatment of psychiatric disorders.

This study’s key strengths are primarily derived from the utilization

of the MR design, which effectively mitigates several inherent

limitations associated with observational studies. Additionally, we

systematically investigated the connections between IgG N-

glycosylation traits and psychiatric disorders using summary-level

data from extensive genetic consortia and cohorts. Another

noteworthy strength is the consistency observed across various MR

approaches, underscoring the robustness of our findings.

It is crucial to acknowledge several limitations in our study.

Firstly, our works are confined to individuals of European ancestry,

potentially limiting the applicability of our findings to other

populations, including Asian or African ancestry. Secondly, the

data itself may have inherent limitations, meaning that conclusions

drawn from it can only be considered reliable after experimental

validation. Our analysis aims to provide insights and direction for

future research. Thirdly, the discussion on the positive impacts of

IgG N-glycosylation traits on BIP is limited due to the lack of

relevant research. Forth, although we have used very strict criteria to

eliminate confounding factors, there are still unknown confounding

factors that affect our results.
5 Conclusions

This study revealed the causal relationship between distinct IgG N-

glycosylation traits and multiple psychiatric disorders. Notably, IGP7

may play a protective role in the development of SCZ, MDD, BIP.

Certain disorders share a causal link with identical glycosylation traits,

indicating a common underlying etiology among these conditions.

These findings highlight the potential of IgG N-glycosylation patterns

as predictive biomarkers for psychiatric disorders. These discoveries

call for further investigation to visualize the underlying mechanisms,

offering the potential to guide more personalized diagnostic and

therapeutic strategies in the management of psychiatric disorders.
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