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Introduction: Attention deficit hyperactivity disorder (ADHD) is a high-prevalent

neurodevelopmental disorder characterized by inattention, impulsivity, and

hyperactivity, frequently co-occurring with other psychiatric and medical

conditions. Current diagnosis is time-consuming and often delays effective

treatment; to date, no valid biomarker has been identified to facilitate this

process. Research has linked the core symptoms of ADHD to autonomic

dysfunction resulting from impaired arousal modulation, which contributes to

physiological abnormalities that may serve as useful biomarkers for the disorder.

While recent research has explored alternative objective assessment tools, few

have specifically focused on studying ADHD autonomic dysregulation through

physiological parameters. This study aimed to design a multiparametric

physiological model to support ADHD diagnosis.

Methods: In this observational study we non-invasively analyzed heart rate

variability (HRV), electrodermal activity (EDA), respiration, and skin temperature

parameters of 69 treatment-naïve ADHD children and 29 typically developing

(TD) controls (7-12 years old). To identify the most relevant parameters to

discriminate ADHD children from controls, we explored the physiological

behavior at baseline and during a sustained attention task and applied a logistic

regression procedure.

Results: ADHD children showed increased HRV and lower EDA at baseline. The

stress-inducing task elicits higher reactivity for EDA, pulse arrival time (PAT), and

respiratory frequency in the ADHD group. The final classification model included

4 physiological parameters and was adjusted by gender and age. A good capacity

to discriminate between ADHD children and TD controls was obtained, with an

accuracy rate of 85.5% and an AUC of 0.95.
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Discussion: Our findings suggest that a multiparametric physiological model

constitutes an accurate tool that can be easily employed to support ADHD

diagnosis in clinical practice. The discrimination capacity of the model may be

analyzed in larger samples to confirm the possibility of generalization.
KEYWORDS

ADHD (attention deficit and hyperactivity disorder), ADHD classification, physiological
parameters, multiparametric models, HRV (heart rate variabil ity) , EDA
(electrodermal activity)
1 Introduction

Attention deficit hyperactivity disorder (ADHD) is a highly

prevalent and heterogeneous neurodevelopmental disorder,

characterized by a persistent pattern of inattention, hyperactivity,

and impulsive behavior, leading to substantial impairment in

functioning (1). Estimates suggest a global prevalence of ADHD

of 7.6% in children aged 3 to 12 years, being more common in boys,

and frequently associated with other psychiatric and medical

conditions (2, 3). In addition to these core symptoms, emerging

evidence highlights emotional dysregulation (4) and sensory

processing difficulties (5) as potential associated features of ADHD.

The physiopathology of ADHD has been linked to cortical

imbalances due to a deficit in dopamine signaling, affecting some

specific areas of cortex related to executive function (EF). This is

relevant to the executive dysfunctional theory (6), which posits that

the ADHD symptoms stem from a primary deficit in executive

control due to structural, functional and biochemical abnormalities

in neural networks. Although there is evidence of EF weaknesses in

individuals with ADHD compared to controls, these deficits alone

are insufficient to account for all cases of ADHD (7). Therefore, a

different approach has gained significant research interest, the state-

regulation theory (8), which emphasizes neurophysiological

autonomic dysregulation as a key contributor to both behavioral

and cognitive symptoms in ADHD. This model suggests that a

diminished ability to regulate arousal through autonomic function

may impair an individual’s capacity to meet cognitive demands and

adapt to situational challenges. By integrating state factors such as

effort, arousal, and activation, this model provides a more

comprehensive perspective on the disorder’s heterogeneity.

Evidence suggests that the neuroanatomy and functioning of

children with ADHD can resemble those of neurotypical

individuals if symptoms are identified and treated early (9).

Nevertheless, clinical diagnosis is often delayed due to a lack of a

standardized procedure and limited access to specialized health

professionals (10). The current diagnostic process typically relies on

psychometric questionnaires, face-to-face interviews, and various

clinical assessments to identify the presence of symptoms, which is

time-consuming and costly. Furthermore, these methods may be
02
biased by inconsistencies in parent-teacher reporting (11) and the

clinician’s interpretation of the heterogenous presentations (12).

Thus, there is a critical need for objective instruments that provide

quick results for ADHD diagnosis, potentially alleviating the

clinicians’ workload.

In recent years, substantial efforts have been made to develop

objective assessment and predictive tools, such as various

neuropsychological tests (e.g. continuous performance test).

Despite these advancements, no specific and clinically valid

objective biomarker for ADHD has been identified to date (13,

14). A recent review analyzed studies that propose artificial

intelligence techniques, to make faster and more accurate

diagnoses (15). Among the diagnostic tools used as a reference,

neuroimaging, physiological parameters, psychometric

questionnaires, sustained attention tests and activity metrics stand

out. Cao et al. (16) pointed to the potential benefits that machine

learning techniques can add to the diagnosis process, developing

increasingly simple and accurate models. To achieve good

discrimination capabilities with these techniques, it is important

to use reliable labeled data for model design and training.

In line of state-regulation theory, autonomic dysregulation has

been described as a common characteristic of ADHD (17, 18). The

autonomic nervous system (ANS) plays a vital role in homeostasis,

and its inadequate modulation leads to reduced efficiency in

performing tasks that require attention, which affects information

processing (19). The inability of the ANS to respond flexibly to

moment-to-moment demands may leave an individual more likely to

be distracted by irrelevant stimuli and less able to detect relevant

stimuli. Some easily measured physiological parameters are

considered indexes of ANS functioning, including heart rate

variability (HRV), which is vagally-mediated (i.e., parasympathetic

pathway) and considered a marker of emotional self-regulation (20),

and electrodermal activity (EDA), which is modulated by the

sympathetic branch of ANS, being a reliable measure of autonomic

arousal (21).

Despite the great research interest in HRV in recent decades,

few studies have investigated HRV in children with ADHD, and the

findings remain inconsistent. Some studies found higher HRV in

patients with ADHD (22–24), while others found no statistical
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differences (25). Typically, higher HRV is associated with better

emotional regulation, which contrasts with ADHD’s hallmark

difficulties in this area. This paradoxical finding could be

interpreted as abnormal hypo-arousal in ADHD, consistent with

the arousal dysregulation theory underlying ADHD (26).

Additionally, research investigating HRV changes in response to

cognitive or behavioral tasks in ADHD remains limited. For

instance, Musser et al. (27) found reduced HRV in ADHD

compared to controls during an emotion-related task, while other

studies reported no differences during sustained attention tasks (28,

29). Bellato et al. (26) suggested that further studies should examine

stress-related changes in heart rate (HR) (i.e., HR reactivity), as this

may be a more appropriate indicator of ANS reactivity and social-

emotional processing.

Regarding EDA, a baseline reduction has been reported in

individuals with ADHD compared to controls, for both its phasic

(28, 30, 31), and tonic (32, 33) components. Negrao et al. (29)

suggested that unmedicated children significantly increase EDA like

the healthy controls during a sustained attention task. Halbe et al.

(34) demonstrated that the type of task also seems to have an

influence, since children with ADHD presented a higher EDA both

as an anticipatory response and during a decision-making task,

indicating greater emotional arousal than controls. Du Rietz et al.

(35) studied EDA in adults with ADHD and suggested that EDA is

context-dependent and appears to have fluctuating behavior, which

may account for the variability across studies.

Considering this evidence, further research is needed to explore

physiological behaviors in ADHD. Until now, no specific biomarker

has been established for the ADHD diagnosis, and relying on a

single parameter seems insufficient to capture the disorder’s

heterogeneity. The development of novel objective tools for

detecting ADHD may provide supplementary information,

complementing existing screening methods. A multiparametric

approach appears to be more appropriate and could yield more

comprehensive information related to ANS functioning, as

indicated by a similar study conducted in adults with ADHD and

healthy controls (36).

Based on previous evidence linking ADHD symptoms to

autonomic dysregulation and deficits in arousal, we hypothesize

that a set of resting-state physiological parameters provide an easy

and non-invasive measure for distinguishing between ADHD and

typically developing (TD) children. This study, therefore,

investigated a range of physiological parameters, including HRV,

EDA, respiration and skin temperature. A similar approach has

been applied in previous studies evaluating acute stress (37, 38) and

chronic stress (39), conditions also associated with ANS imbalance.

This study shows the potential of a multiparametric

physiological model in discriminating ADHD from TD controls,

thereby facilitating a faster diagnosis and enabling earlier treatment

implementation. We first identified the most relevant parameters

exploring the physiological behavior of children with ADHD

in contrast to a control group. Subsequently, we developed a

logistic regression model to discriminate between the children’s

class labels (ADHD vs. typically developing controls) using a

multivariate approach.
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2 Materials and methods

2.1 Participants and eligibility criteria

This observational study included two different groups. The first

group (ADHD Group) consisted of children recently diagnosed

with ADHD, treatment-naïve, recruited at Hospital Sant Joan de

Déu (HSJD), in the ADHD Unit, and the Child and Adolescent

Mental Health Services of Mollet del Vallés (Barcelona, Spain). This

sample was part of a randomized controlled trial to evaluate the

effectiveness of a mindfulness-based intervention. While the

intervention is beyond the scope of this manuscript, the data

analyzed corresponds exclusively to the pre-intervention phase. A

clinical interview was conducted by a specialist with the children

and their parents to screen for eligibility and confirm

their participation.

Inclusion criteria for ADHD group: aged 7-12 years; diagnosis

of ADHD by a specialist during the 3 months before the study

according to Diagnostic and Statistical Manual of Mental Disorders

(DSM-5) classification; score greater than 1.5 standard deviations

(SD) of normality for corresponding age and gender on the ADHD

Rating Scale-IV (ADHD-RS-IV) parents’ version. Exclusion

criteria: intelligence quotient (IQ) below 70; diagnosis of autism

spectrum disorder or bipolar disorder; being medicated.

The second group (TD group) was formed by typically

developing (TD) children recruited at the Hamelin-Laie

International School (Barcelona, Spain) as an extension of the

above-mentioned ADHD study.

Inclusion criteria for TD group: aged 7-12; absence of diagnosis

of ADHD or other neurodevelopmental disorders. Exclusion

criteria: IQ below 70; diagnosis of mental disorder.
2.2 Experimental procedure

After the approval of the Ethics Committee of the HSJD (PIC-

187-15), the ADHD group was recruited between July 2016 and

January 2019. Similarly, when the Research Committee of the

Autonomous University of Barcelona (UAB) approved the study

extension (CEEAH 4936), the TD controls were recruited between

February and March 2020. Written informed consent was obtained

from all the parents or legal guardians of the participants.

Firstly, the children auto fi l led some psychometric

questionnaires, and, subsequently, physiological monitoring was

carried out. The monitoring session was divided into two parts: (a)

Baseline stage: in a resting state with the eyes-open; and (b) Stress

stage: during a computer-based sustained attention task

(see Figure 1).

The specific task used differed between groups due to logistical

reasons. The ADHD group completed the CPT-3 (Conners

Continuous Performance Task, 3rd Edition) (40), while the TD

group performed the CSAT-R (Children Sustained Attention Task -

Revised) (41). Both tasks were designed to assess attention

performance in children. To minimize the impact of using

different tasks, the model described in subsection 3.3 was
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developed using only the physiological data collected during the

baseline stage.
2.3 Measures

2.3.1 Psychometric and clinical questionnaires
Fron
• Anxiety: assessed with the Screen for Child Anxiety Related

Disorders (SCARED) (42, 43). The instrument consists of

41 items and is designed to evaluate anxiety symptoms in

children and young people. A total score >30 indicates the

presence of clinical symptoms. An individual total score can

also be obtained for each domain.

• Quality of life: evaluated with the Child Health an Illness

Profile (CHIP) Child Report Form (44, 45). It contains 44

items and evaluates the perceived health-related quality of

life in children. The items are distributed in 5 domains:

satisfaction, comfort, resilience, risk avoidance, and

achievement. Higher scores indicate better perceived health.
To describe the ADHD group, we used 2 clinical scales:
• Intensity of ADHD symptoms: the parent version of the

ADHD-RS-IV (46) was used. This instrument includes 18

items that evaluate the diagnostic criteria of ADHD

according to the DSM-IV. The higher the scores on the

scales, the more intense the presence of the symptoms. It is

divided into 3 subscales: inattention, hyperactivity-
tiers in Psychiatry 04
impulsivity, and total symptoms. The internal consistency

of the Spanish version is good (a = 0.86) (47).

• Emotional dysregulation (DESR): deficient emotional self-

regulation refers to a theoretical concept characterized by

poor modulation of emotional responses, including

symptoms such as mood lability, impulsivity and temper

outbursts. DESR was assessed through the Child Behavior

Checklist (CBCL) scale (48). The emotional dysregulation

profile (49, 50) is calculated by the sum of the standardized

scores of anxiety/depression, attention problems, and

aggressive behavior scales. PT ≤ 179 indicates adequate

emotional regulation; PT≥180 and <210 indicate mild-

moderate emotional dysregulation; PT ≥ 210 points to

severe dysregulation.
2.3.2 Physiological parameters
All physiological signals were simultaneously recorded through

a medical grade device: Medicom 83 system, ABP-10 module

(Medicom MTD Ltd). The raw signals were analyzed in 1-minute

windows using the BioSigBrowser (51) in MATLAB software

v.2018a (The MathWorks Inc), and different parameters were

extracted (see Table 1). The signal conditioning and variable

extraction followed the procedure described in (37), which was

previously used for stress assessment in healthy students.

To process the electrocardiogram (ECG), beat detection was

performed using a discrete wavelet transform (52). Subsequently,

ectopic beats or false QRS detections were corrected before

computing the interbeat interval series (53). Heart rate variability
FIGURE 1

Scheme of the experimental procedure. ECG, electrocardiogram; HRV, heart rate variability; PPG, photoplethysmography; PRV, pulse rate variability;
EDA, electrodermal activity.
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(HRV) parameters were then calculated using both time-domain

and frequency-domain analysis by Fourier transform of the

instantaneous heart rate signal. For the photoplethysmography

(PPG), artifacts were suppressed using a Hjorth parameter-based

PPG artifact detector (54). Pulses were detected in artifact-free time

windows using an algorithm reported by Lázaro et al. (55). The

same ECG parameters are also extracted in PPG as pulse rate

variability (PRV). The mean time difference between the R peak in

the ECG signal and the point of 50% increase, corresponding to the

pulse detected on the finger by the PPG signal, was computed as the

pulse arrival time (PAT).

From the respiration signal, the respiratory rate was estimated

as the frequency corresponding to the maximum peak of the power

density spectrum (56). If the spectral peak was greater than 65%, the

time window was considered stable and valid. The EDA signal is

visually inspected to remove motion artifacts and linearly

interpolated. A time-domain analysis was performed using a

convex optimization model, called cvxEDA, to calculate the tonic
Frontiers in Psychiatry 05
and phasic components (57). A frequency-domain analysis was also

conducted to assess sympathetic tone through a parameter named

EDASymp (58). Finally, for the skin temperature (ST) signal, visual

inspection was performed to identify and discard segments with

large artifacts before calculating the parameters.

HRV is also analyzed using an extended band, i.e. the upper limit

of the high-frequency (HF) band adjusted at half the average heart

rate, as described in (59). This approach aims to avoid over or under-

estimating parasympathetic activity (related to the power in HF).
2.4 Statistical analysis

We conducted the statistical analysis using SAS v.9.4 (SAS

Institute). A 95% confidence interval was assumed, and the

significance level was 0.05. A descriptive analysis was performed

to summarize the children’s characteristics of the sample by groups.

Continuous variables are presented as mean and standard deviation
TABLE 1 Description of extracted parameters from electrophysiological signals.

Physiological
signal

Sample
frequency

Extracted
parameters

Description

ECGa for HRVb

or
PPGc for PRVd

1000 Hz

HRh, bpm Mean HR

SDNN, s SDi of normal beats intervals

RMSSD, s Root mean square of successive differences between beat intervals

PLF, s-2 Absolute power in LFj band (0.04-0.15 Hz)

PHF, s-2 Absolute power in HFk band (0.15-0.4 Hz)

LF/HF, ADl Ratio of LF to HF power

PHFn, nu Relative power of the normalized HF band

ECG and PPG 1000 Hz
PATm, ms Mean PAT, the time between the beat detected by ECG and the pulse by PPG

stdPAT, ms SD of PAT

Respe 256 Hz
RRn, Hz Mean RR

Pk, % Peak of the respiratory power spectrum

EDAf 256 Hz

Tonic, μS
Average value of the tonic component, i.e. slowly changing level, also known as

SCL°

stdTonic, μS SD of the tonic component

Phasic, μS
Average value of the phasic component, i.e. fast-changing responses typically

associated with short-term events, also known as SCRp

stdPhasic, μS SD of the phasic component

aucPhasic, μS·s Area under the curve of the phasic component

EDASymp, AD Electrodermal response in the power spectrum of 0.045-0.25 Hz

STg 256 Hz

TFinger, °C Mean finger temperature

TFace, °C Mean face temperature

TGrad, °C Average of successive ST differences every 10 s

TPow, °C2 Mean power of temperature

TRatio, AD Ratio between peripheral (finger) and proximal (face) temperature
aECG, electrocardiogram; bHRV, heart rate variability; cPPG, photoplethysmography; dPRV, pulse rate variability; eResp, respiration; fEDA, electrodermal activity; gST, skin temperature; hHR,
heart rate; iSD, standard deviation; jLF, low frequency; kHF, high frequency; lAD, adimensional; mPAT, pulse arrival time; nRR, respiratory rate; °SCL, Skin Conductance Level; pSCR, Skin
Conductance Responses.
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(SD), and categorical variables are presented as frequency and

percentages. To determine the association or independence

between categorical variables, the Chi-square test (c²) was used.

To contrast continuous variables, the Student T-test or the Mann-

Whitney U test were used depending on the data distribution.

The normality of the distribution was determined using the

Shapiro-Wilk test. Skewed variables were analyzed using a

log transformation.

To design the classification model, we performed a multiple

imputation (by Z scores) for missing data of physiological

parameters using the multivariate Maximum Likelihood method.

The imbalance between study groups regarding age and gender was

compensated with a propensity score matching (PSM) technique

using the logarithm of the propensity scores and a greedy nearest

neighbor method to match observations (60). For variable

reduction, the variance inflation factor (VIF) was the criterion

applied. A high VIF value indicates multicollinearity, i.e. a certain

parameter is already explained by other parameters, showing a high

correlation. Thus, following this approach, according to VIF

estimates and the reviewed literature, the parameters that provide

redundant information were eliminated.

Finally, we explored physiological parameters as explanatory

variables of the class label (ADHD vs. TD) using a logistic

regression model. The model was adjusted by age and gender.

Moreover, a backward stepwise selection method was used to obtain

a simplified model (criterion p < 0.05). We also explored the

presence of interactions between explanatory variables, but none

of them were found relevant. The area under the ROC curve (AUC)

assessed the model’s performance. All physiological data was

previously standardized so that the model’s coefficients could be

more easily interpreted. Generalized linear models were used to

verify the relationship between model-predicted scores and other

moderating effects.
3 Results

In total, 98 children were included in the study, 69 ADHD and 29

TD controls. All sample characteristics are detailed in Table 2. The

TD group was predominantly formed by girls (62.1%) with a mean

age of 9.14 years. On the other hand, the ADHD group was formed

mostly by boys (73.9%) with a mean age of 8.95 years. A significant

difference between groups was found for gender (p = 0.001).

The psychometric questionnaires showed no differences in

anxiety symptoms between groups. Regarding the quality of life,

differences were found in the domains of Risk avoidance (p < 0.001),

which refers to risky behaviors that can affect the child’s health, and

Achievement (p < 0.001), which includes expected functions for the

respective age, i.e. performance in school and with peers. In both

cases, the scores indicated a lower quality of life perception in the

ADHD group.

Concerning the disorder, the ADHD subtype was mainly

combined (60.9%), the mean intensity of symptoms score was 36

points, and most of the children (58%) presented mild to moderate

DESR. Regarding comorbidities, 19% of the ADHD children
Frontiers in Psychiatry 06
presented generalized anxiety disorder, 10% had a social phobia,

and 15% had oppositional defiant disorder (ODD).
3.1 Basal physiological parameters

The available physiological data of the ADHD group was

compromised by movement artifacts. Due to the poor quality of

the PPG signal, we will report only parameters extracted from the

ECG. Firstly, we compared the raw average values between the TD

group and the ADHD group at the Baseline stage (see Table 3). At

this point, no data imputation was made.

Significant differences were found in some HRV, EDA, and ST

parameters. The SDNN was higher in the ADHD group compared

to the TD children (p = 0.029). Regarding the EDA, both the tonic

(mTonic) and the phasic (mFasic) components were reduced in the

ADHD group (p = 0.004 and p = 0.041, respectively). In contrast,

the SD of the tonic component (stdTonic) was significantly higher

in the ADHD group (p < 0.001). Both peripheral and central
TABLE 2 Sociodemographic and psychometric characteristics of
the sample.

Variable

TD group
(n=29)

ADHD
group
(n=69)

p-
value (test)

Mean (SD)

Age 9.14 (0.92) 8.95 (1.51) 0.360 (A)

Quality of life (CHIP)
Satisfaction
Comfort
Resilience
Risk avoidance
Achievement

46.09 (11.62)
42.67 (10.50)
43.88 (13.40)
51.15 (9.57)
54.04 (9.57)

43.49 (13.80)
45.29 (11.75)
42.32 (11.64)
39.70 (13.39)
36.07 (11.44)

0.491 (A)
0.187 (A)
0.565 (B)
<0.001 (A)*
<0.001 (B)*

Anxiety (SCARED) 24.31 (7.92) 25.01 (12.41) 0.723 (A)

Intensity of ADHD
symptoms
Inattention
Hyperactivity
Total

19.83 (4.63)
16.14 (5.85)
35.83 (8.42)

n (%)

Gender
Male
Female

11 (37.9%)
18 (62.1%)

51 (73.9%)
18 (26.1%)

0.001 (C)*

ADHD subtype
Inattentive
Combined
Hyperactive-Impulsive

24 (34.8%)
42 (60.9%)
3 (4.3%)

DESR

Severe dysregulation
Mild-moderate
dysregulation
Adequate
emotional regulation

12 (17.4%)
40 (58.0%)

17 (24.6%)
N = 98. (A): Mann-Whitney U test; (B) Student’s t-test; (C): Chi-square test (c²); Significance
level: <0.05. *Significant p-values.
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temperatures were higher in the ADHD group, and the average

basal temperature was increased by 2.3°C with respect to the

TD children.
3.2 Stress reactivity

To mitigate the influence of physiological variability between

individuals, we compared the stress reactivity, i.e. the difference

between the Stress and the Baseline stages, which reflects the

physiological response provoked by the sustained attention task

(see Figure 2).

Both groups presented a similar response for HR and RMSSD.

However, the TD group presented an increased response of PHF

and, consequently, a reduced LF/HF compared to the ADHD group

(for all results refer to Supplementary Table 1 in Supplementary

Material). This increased reactivity was even more pronounced in
Frontiers in Psychiatry 07
the HRV parameters in the extended band, which adjusts the

frequency bands according to the average heart rate.

Greater reactivity for PAT was observed in the ADHD group,

although not significant. Regarding respiration, the ADHD group

showed slightly higher reactivity for RR, showing an increased

response to the stress-inducing task. Furthermore, Pk presented

lower values for the ADHD group, which suggests less stable

breathing in this group.

The tonic-level EDA and its SD showed a higher reactivity in the

ADHD group when compared to the TD group. About the

temperature, this analysis indicated differences only in peripheral

temperature, with increased reactivity in the finger temperature of

the ADHD children when facing the Stress stage. Furthermore, the

TRatio also differs between the groups, with TD children presenting a

reduction in the respective value, which indicates that the peripheral

and proximal temperatures move away from each other, e.g. the face

temperature increases while the finger temperature decreases.
TABLE 3 Comparison of physiological parameters between groups at Baseline.

Physiological parameter
Baseline stage

p-value (test)
n TD group n ADHD group

HR 28 91.19 (8.88) 53 86.93 (11.23) 0.087 (A)

HRV

SDNN
RMSSD
PLF
PHF
LF/HF
PHFn

28
28
28
28
28
28

0.053 (0.02)
0.022 (0.01)
0.488 (0.30)
0.462 (0.35)

158.28 (128.76)
47.06 (12.39)

53
53
53
53
53
53

0.072 (0.04)
0.030 (0.02)
0.611 (0.34)
0.663 (0.63)

163.66 (109.99)
47.77 (14.91)

0.029 (B)*
0.124 (B)
0.071 (B)
0.316 (B)
0.796 (B)
0.832 (A)

PHFex
PHFexn
LF/HFex

28
28
28

0.581 (0.41)
54.36 (11.64)
98.72 (46.24)

53
53
53

0.850 (0.83)
54.43 (14.04)
107.76 (59.97)

0.311 (B)
0.984 (A)
0.684 (A)

PAT

PAT
stdPAT

18
18

203.68 (17.18)
7.12 (3.16)

10
10

211.44 (12.78)
8.43 (3.48)

0.224 (A)
0.472 (B)

Resp

FR
Pk

19
19

0.36 (0.08)
70.06 (3.65)

26
26

0.32 (0.09)
69.95 (2.47)

0.117 (A)
0.945 (B)

EDA

mTonic
stdTonic
mPhasic
stdPhasic
aucPhasic
EDASymp

29
29
29
29
29
29

-0.139 (0.64)
0.155 (0.10)
0.115 (0.13)
0.084 (0.06)
6.89 (7.57)
0.534 (0.80)

51
51
51
51
51
51

-0.530 (0.59)
0.240 (0.11)
0.074 (0.08)
0.067 (0.06)
4.46 (4.79)
0.316 (0.45)

0.004 (B)*
<0.001 (B)*
0.041 (B)*
0.124 (B)
0.041 (B)*
0.198 (B)

ST

TFace
TGradFace
TPowFace
TFinger
TGradFinger
TPowFinger
TRatio

29
29
29
29
29
29
29

30.77 (1.05)
0.009 (0.01)
948.05 (65.58)
28.67 (5.09)
0.023 (0.06)

847.25 (282.23)
0.933 (0.17)

65
65
65
31
31
31
27

33.07 (1.12)
0.004 (0.02)

1095.12 (72.86)
30.66 (5.28)
0.029 (0.10)

967.37 (310.33)
0.919 (0.16)

<0.001 (B)*
0.019 (B)*
<0.001 (B)*
0.006 (B)*
0.750 (B)
0.006 (B)*
0.594 (B)
Mean (SD). n: available data included in the analysis. (A): Student’s t-test; (B): Mann-Whitney U test. Significance level: <0.05. *Significant p-values. No imputation was made.
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3.3 Multiparametric model design

Due to the sample imbalance related to the class label and

gender, the PSM technique was applied as a compensation strategy.

The procedure matched a TD child with one or more children of the

ADHD group with similar characteristics. A total of 27 pairs were

formed by 27 control children and 49 ADHD children, conforming

to a new dataset that was used to design the model. To verify

whether the procedure was effective, a mixed model for 2 effects
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(gender and age) was used, obtaining non-significant results after

the procedure (gender: 0.012 to 0.775, and age: 0.058 to 0.062),

which indicates that these variables have no longer influence on the

children’s class label.

To reduce the number of physiological parameters and avoid

overfitting, those highly correlated with each other were removed

using the VIF criterion (61). The logistic regression model

considered the children’s class label (ADHD vs. TD) as the

response variable and all selected baseline physiological
FIGURE 2

Boxplots of physiological parameters at Baseline and during the stress-inducing task. Differences in stress reactivity are indicated by *p<0.05 and
**p<0.005. Some parameters (indicated by an L) were previously logarithmically transformed for better graphical visualization. bpm, beats per
minute; AD, adimensional.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1430797
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Castro Ribeiro et al. 10.3389/fpsyt.2024.1430797
parameters as explanatory variables. Subsequently, a backward

stepwise approach was employed to select the predictor variables.

At this point, we decided not to include parameters such as the

PAT, which had few real observations (n=10), and the temperature-
Frontiers in Psychiatry 09
related parameters due to the basal differences found between

groups. Additionally, the variables gender and age, although

adjusted by the PSM procedure, were included in the final model

due to their importance related to the prevalence and intensity of

ADHD symptoms supported in the literature (3, 62, 63).

The final model (ADHDm) includes 4 physiological parameters

and is adjusted by age and gender (see Table 4). The variables

gender and age do not present statistical significance, which

represents the correct adjustment of the sample using the PSM

before its design. Some physiological parameters show no

significance either, however, in conjunction they contribute to the

discrimination capacity of the model.

The ADHDm obtained an area under the ROC curve of

approximately 0.95, demonstrat ing the model ’s good

discrimination performance (Figure 3A). Figure 3B shows the

ROC comparisons related to the physiological parameters

included in the model. The RMSSD only presented an AUC of

0.67, the RR of 0.77, and the set of physiological parameters reached

an AUC of 0.93, which supports the individual contribution of each

one in the model characterization capacity.
TABLE 4 Parameters and coefficients of the final model (ADHDm).

Parameter Coefficients
Standard
error

Wald
Chi-Cuadrado

Pr
> ChiSq

Intercept 4.6315 3.7986 1.4866 0.2227

Gender
| Male

0.4627 0.8897 0.2705 0.6030

Age -0.5639 0.4145 1.8504 0.1737

RMSSD
(log)

0.8023 0.5566 2.0779 0.1494

Fr -0.7679 0.4231 3.2937 0.0695

stdTonic
(log)

2.8265 0.8582 10.8476 0.0010

mPhasic
(log)

-2.2015 0.7825 7.9153 0.0049
Significance level < 0.05.
FIGURE 3

Performance of the ADHD classification model (ADHDm). Key: (A) ROC curve of ADHDm with an area under the curve of 0.95. (B) ROC curves for comparisons
of physiological parameters’ contributions. (C) Confusion matrix. TP, true positives; FP, false positives; FN, false negatives; TN, true negatives. (D) Model’s
classification for each group. ADHD, children with ADHD; TD, typically developing children. The darker gray line on the graph represents the cutoff point of 0.63.
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To maximize the classification capacity of the model, the

Youden index was used to select a cutoff point (64). This index

proposes to find the probability point where the sum of sensitivity

and specificity is greatest. For the studied sample, the sensitivity was

85.7% and the specificity was 85.2%, corresponding to the cutoff

point of 0.63. An accuracy of 85.5%, a precision of 91.3% and a F1

score of 88.4% was obtained. Figure 3C shows the confusion matrix

and Figure 3D shows the model’s classification according to the

predicted ADHDm scores for each group.

We also performed an exploratory analysis to investigate

whether the classification of intensity of symptoms (ADHD-RS-

IV) and DESR, could influence the model’s performance. There is

no significant effect regarding the DESR (p = 0.43) and the intensity

of symptoms (p = 0.45), albeit the estimates are higher for the severe

category (2.43 vs. 1.88 to mild and 1.68 to moderate categories).

We also investigated the effect of the ADHD subtype; similarly,

no influence was found (p = 0.76). The estimates were higher for the

inattentive subtype in comparison with the combined (2.04 vs.

1.87). In this instance, to ensure a more representative distribution

of subtype categories, the three children diagnosed with the

hyperactive-impulsive subtype were merged with those exhibiting

the combined subtype.
4 Discussion

In this study, a set of basal physiological parameters was used to

design a classification model of ADHD (ADHDm), which

demonstrates a good discrimination capacity between ADHD and

typically developing (TD) children. Limited research was found

exploring physiological parameters in children with ADHD, most

of the studies were centered on electroencephalogram (EEG)

analysis (15). EEG is a more invasive and challenging method to

apply in real-life context. In contrast, our multiparametric approach

combines four physiological parameters that can be gathered with

standard, non-invasive medical devices that are easily applicable in

clinical settings.

The model’s adjustment by gender and age contributes to a

more precise and personalized assessment, addressing key

demographic factors that can influence physiological responses

and the diagnosis of ADHD. Therefore, ADHDm represents an

objective and accurate tool to support health professionals in the

diagnosis process of ADHD. This model has the potential to

complement traditional screening methods, which are often time-

consuming and based on subjective clinical observations (12). By

offering a quantitative approach, ADHDm could facilitate early

intervention and improving patient outcomes. Moreover, this

model aligns with the growing demand for non-invasive, real-

world monitoring techniques in clinical practice. The ability to

continuously monitor physiological parameters in real-time using

wearable technology ensures a more personalized evaluation, which

enables continuous observation of physiological dynamics and

tailored interventions that address the unique needs of each

child (65).

The basal physiological differences indicate greater HRV in

ADHD children when compared with TD children. This finding is
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expected when the average heart rate is lower, which allows the

heart rate variability to be greater (29, 66) but also consistent with

abnormality in autonomic arousal present in ADHD (26). Both

tonic and phasic components of the EDA signal were shown to be

reduced in ADHD children, corroborating results from previous

studies, indicating autonomic hypoarousal (28, 30–33). Negrao

et al. (29) reported that the differences in EDA could be vanished

by the use of stimulant psychotropic drugs. Similarly, Kim, Yang

and Lee (67) found a reduction in HRV (RMSSD and PHF) after 12

weeks of stimulant treatment, suggesting that the predominance of

the parasympathetic branch in ADHD can be modulated by

medication. Given that ADHD children were drug naïve this

influence can be discarded.

The stress reactivity analysis indicated that ADHD children

may have a different response to stress compared to TD children.

Regarding HRV, more notable changes were observed in TD

children, with an increase in parasympathetic activity. On the

contrary, tonic EDA showed a more prominent response in

ADHD children, and also an increase in phasic EDA, although

not significant. The peripheral temperature showed opposite

patterns, increasing in ADHD children and reducing in the TD

group. The TRatio was also affected, indicating a more pronounced

stress response in TD controls. Additionally, an increment in the

respiratory rate and lower respiratory peak were also observed in

ADHD children, pointing to reduced breathing stability which is

expected in children with hyperactivity.

The final logistic model showed a good capacity to discriminate

ADHD children and TD controls, with an AUC of 0.95, an F1-score

of 88.4%, an accuracy of 85.5%, a sensitivity of 85.7%, and a specificity

of 85.2%. These results are equivalent to other approaches that

applied machine learning techniques using demographic and

clinical information (68), and cognitive task scores (69). Similarly,

age and gender were commonly included in the models to improve

their discrimination capacity (16). As an advantage, our model uses

parameters that can be continuously measured by a wearable device

in real-life scenarios. Thereby, through machine learning algorithms,

the ADHDm could be reliably trained with labeled data and improve

its estimation capacity.
4.1 Limitations

Although the sample size is small and further validation with

larger samples is necessary, the results clearly indicate potential

directions for refining and validating the model.

The signal recording was conducted with the same medical

device; however, the time scale was different due to the different

procedures adopted for recruitment, i.e. the hospital (for the ADHD

group) and at the school (for TD children). In any case, all data

collection occurred before the COVID-19 pandemic. Otherwise,

there could be an important confounding factor, as the literature

indicates increased mental health problems after the pandemic (70).

Another limitation was the imbalance between the class label

(ADHD vs. TD) and gender. Whilst the same age range was set (7 to

12 years), the number of participants and the proportion of males

and females could not be warranted owing to the unexpected
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interruption in the recruitment of TD children related to the

COVID-19 pandemic. We intended to attenuate this imbalance

with the PSM technique to reduce the bias when calculating the

classification model. Although this strategy was used, it was finally

decided to adjust the final model by gender and age due to their

influence on ADHD disorder. The literature indicates a higher

prevalence of ADHD in males, reaching a ratio of 3.3:1 for males

and females respectively (62). The tendency to reduce the severity of

symptoms with increasing age is also reported (63). Likewise,

ADHD rating scales consider different scoring tables based on

gender and age range.

Owing to logistical issues, the stress-inducing tasks applied in

the experimental procedure were different for each group. While

both tasks aim to evaluate the capacity for sustained attention, they

are based on distinct paradigms. The CPT-3 (Conners Continuous

Performance Task 3rd edition) (40), used for the ADHD group, is a

14-minute computerized task based on the continuous performance

paradigm. In this task, participants must respond most of the time

and inhibit certain stimuli (e.g. pressing the spacebar for any letter

except X). It represents a Go-No Go task in which the attentional

component is mixed with the capacity of motor inhibition.

Conversely, the CSAT-R (Sustained Attention Task in Infancy

Revised) (41), used for the TD group, is a computer-based task

grounded in the vigilance paradigm. In this task, participants are

required to sustain attention and respond only to a specific stimulus

(e.g. pressing the spacebar only if a 3-6 sequence appears). The

surveillance mechanism activated by the CSAT-R may differ from

that of the CPT-3, as reported by Servera, Sáez & Rodrıǵuez (71).

Consequently, the corresponding physiological data was examined

solely to shed light on stress reactivity dynamics. However, the

results should be interpreted with caution, as they do not permit

firm conclusions.
4.2 Future research

We highlight some critical points to enhance replication and

guide future research. First, standardizing tasks across different

groups is essential to minimize variability in results and enable

more robust conclusions regarding stress reactivity. Ensuring a

balanced sample in terms of age, gender and body mass index

(BMI) is equally important to avoid biases (72). Incorporating

participants from diverse backgrounds and socioeconomic

conditions will further generalizability of the findings (73).

Furthermore, including only treatment-naïve children allows

for the clearest assessment of physiological patterns associated with

ADHD. When children are on medication, its potential moderating

effect should be carefully considered. The same applies to comorbid

conditions, such as depression and oppositional defiant disorder

(ODD), since the emotional self-regulation profile plays a crucial

role in determining the most effective ADHD treatment (74).

Moreover, future investigations should focus on integrating

wearable technology and machine learning algorithms to

continuously monitor physiological parameters in real-world

environments (36, 75). This approach would facilitate ongoing

refinement of the ADHD model (ADHDm) by training it with
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larger datasets, enhancing predictive accuracy across diverse

populations. Expanding the model to incorporate additional

cognitive and executive function indexes could further improve

its diagnostic accuracy, although this may limit its usability in real-

time contexts. Alternatively, integrating measures related to activity

level, motion, and ecological momentary assessments in

longitudinal studies could provide deeper insights into disorder’s

progression, daily behavior, treatment effects, and facilitate more

personalized interventions for children with ADHD (76, 77).
5 Conclusions

Our study revealed increased parasympathetic (higher HRV)

and reduced sympathetic (lower EDA) activation in children with

ADHD, reinforcing the hypothesis of autonomic dysregulation

associated with the disorder. The designed classification model

combining a set of physiological parameters obtained a good

discrimination power between ADHD and typically developing

children. Therefore, it represents an objective and accurate tool to

support health professionals in identifying children with ADHD

and allowing the implementation of treatment at earlier stages.

Further research is needed to explore larger datasets, fine-tune the

model to better discriminate the severity of symptoms, and confirm

the generalizability.
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