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Background: Mitochondrial dysfunction is an important factor in the

pathogenesis of schizophrenia. However, the relationship between mitophagy

and schizophrenia remains to be elucidated.

Methods: Single-cell RNA sequencing datasets of peripheral blood and brain

organoids from SCZ patients and healthy controls were retrieved. Mitophagy-

related genes that were differentially expressed between the two groups were

screened. The diagnostic model based on key mitophagy genes was constructed

using two machine learning methods, and the relationship between mitophagy

and immune cells was analyzed. Single-cell RNA sequencing data of brain

organoids was used to calculate the mitophagy score (Mitoscore).

Results: We found 7 key mitophagy genes to construct a diagnostic model. The

mitophagy genes were related to the infiltration of neutrophils, activated

dendritic cells, resting NK cells, regulatory T cells, resting memory T cells, and

CD8 T cells. In addition, we identified 12 cell clusters based on the Mitoscore, and

the most abundant neurons were further divided into three subgroups. Results at

the single-cell level showed that Mitohigh_Neuron established a novel

interaction with endothelial cells via SPP1 signaling pathway, suggesting their

distinct roles in SCZ pathogenesis.

Conclusion:We identified a mitophagy signature for schizophrenia that provides

new insights into disease pathogenesis and new possibilities for its diagnosis

and treatment.
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1 Introduction

Schizophrenia is a multifaceted psychiatric disorder involving

genetic, neurological, immunological and other factors, although its

exact pathogenesis is still unclear (1). Most of the genetic factors

related to schizophrenia that have been identified so far are common

alleles with small effects, although there are reports of rare copy

number and coding variants (2–4). The involvement of these specific

genes and loci point to complex biological mechanisms.

Recent studies have shown that schizophrenia may be

associated with mitochondrial dysfunction, particularly aberrant

mitophagy (5, 6). Mitochondria are the main energy source of cells

and play an important role in physiological processes such as

apoptosis and oxidative stress (7, 8). Mitochondrial dysfunction is

closely related to the occurrence and development of multiple

neurological diseases, especially mental disorders (5, 9–12). In

fact, mitochondrial DNA damage and reduced mitochondrial

membrane potential (MMP) have been observed in the brain

tissues of schizophrenia patients (13–15). These abnormalities can

disrupt mitophagy and increase apoptosis, thereby affecting

neurological functions.

The aim of this study was to elucidate the role of aberrant

mitophagy genes in the pathogenesis of schizophrenia. To this end,

we analyzed the transcriptomic profiles of healthy controls and

schizophrenia patients and screened the mitophagy-related genes
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potentially involved in the pathogenesis of schizophrenia using

multiple machine learning approaches. The mitophagy signature

identified in this study can be a potential diagnostic marker or

therapeutic target for schizophrenia.
2 Materials and methods

2.1 Study design

The role of mitophagy genes in the pathogenesis of

schizophrenia were explored using machine learning methods

such as support vector machine (SVM) and random forest (RF),

cluster analysis such as weighted correlation network analysis

(WGCNA) and fast gene set enrichment analysis (fsGSEA), and

single-cell transcriptomic analysis. The study design is shown

in Figure 1.
2.2 Data retrieval

The schizophrenia datasets GSE38484 (GPL6947 Illumina

HumanHT-12 V3.0 microarray) and GSE38481 (GPL6883

Illumina HumanRef-8 V3.0 microarray) were retrieved from the

NCBI Gene Expression Omnibus (GEO) database. The mitophagy
FIGURE 1

Flow chart of this study.
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gene dataset was downloaded from an online source (https://

www.gsea-msigdb.org/) (16) (Supplementary Table 1). The

GSE184878 dataset including the single-cell RNA-sequencing

(scRNA-seq) data of four normal and 4 3D brain organoid SCZ

samples was also downloaded.
2.3 Differential expression analysis

The GSE38484 and GSE38481 datasets were corrected,

normalized, and merged using the “limma” package in R to

obtain a new dataset of 121 schizophrenia patients and 118

healthy controls (17). Genes with a p-value < 0.05 and |Log2FC

(fold-change)| > 1.5 were considered differentially expressed genes

(DEGs) for further analysis. Heatmaps of the DEGs was generated

using the “heatmap” and “ggplot2” R packages, respectively. We

identified Mito-DEGsby finding common genes between DEGs and

mitophage genes.
2.4 Gene set enrichment analysis

We employed the Molecular Signatures Database (MSigDB) to

obtain gene sets related to Homo sapiens in the “Hallmark” category

using the “msigdbr”R package. Gene set variation analysis (GSVA) was

performed using the “GSVA” package with the single-sample gene set

enrichment analysis (ssGSEA) approach using a Gaussian kernel

cumulative distribution function. GSEA was used to compare the

mitophagy pathways between SCZ and control samples based on the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
2.5 Identification of key genes through
machine learning

Multiple machine-learning techniques were used to make

predictions about disease states. Support vector machine (SVM) is

a supervised learning model and related learning algorithm for

analyzing data in classification and regression analysis. Random

forest is a widely used supervised learning model in ensemble

learning. This algorithm integrates the outputs of multiple

decision trees to generate a single result. SVM and RF machine

learning techniques were used to screen the potential mitophagy

genes with diagnostic potential, and the top ranked genes in each

gene were intercrossed to obtain the most potential candidate genes.

Subsequently, bootstrap method was used to establish a multiple

regression diagnostic model for internal validation.
2.6 Relationship between key genes and
immune infiltration

To explore the immune landscape of schizophrenia based on

mitophagy gene expression profiles, we employed the CIBERSORT

algorithm (18). The algorithm is based on gene expression profiling to

estimate the type and abundance of immune cells in a mixed cell
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population. This estimate result provides an understanding of the

immune cells in SCZ samples. Further to evaluate and visualize the

differences and correlations of immune cell infiltration between SCZ

and control samples, we used the “corplot” and “vioplot” functions in

the IOBR software package to evaluate the correlation between immune

cell types and seven key genes (19). In addition, the association between

inflammatory factors and diagnostic genes was analyzed. The results

were visualized using the “ggplot2” package in R (20).
2.7 Calculation of Mitoscore

To better evaluate the correlation of mitophagy genes among

different cell subsets, we calculated the signal-to-noise ratio changes

of different mitophagy genes at the single-cell level (21). Briefly, the

average normalized TPM values were calculated for each gene from

the scRNAseq data, and the genes were divided into 50 expression

bins using a random sampling method with 1000 replicates.

Randomly characterized genes were selected from each bin.

According to the relevant formula, Mitoscores belonging to

normal distribution or mixed normal distribution were

determined. Mitoscore is the fractional level used to quantify the

expression of mitophagy genes in individual cells or samples.

The Mitoscore was calculated by analyzing the expression levels

of specific gene sets associated with the mitophagy process. We first

identified a list of genes associated with mitophagy and then

calculated the expression levels of these genes in each cell. By

averaging or weighting the expression levels of these genes, we

obtained a Mitoscore for each cell. This score reflects the overall

expression level of mitophagy genes and can be used to compare

mitophagy activity between different cells, samples, or populations.

In our study, we used Mitoscore to identify and distinguish subsets

of cells with different mitophagy activities.
2.8 Classification of mitophagy subtypes

Consensus clustering is mainly used to determine the possible

large number of members in the data set and find new disease

molecular subclasses. The 24 mitophagy genes were clustered using

the R package ConsensusClusterPlus, and scored using calscore

(22). Two stable gene subtypes were obtained, and the heat map was

drawn. The differences in age, gender, predictive value, expression

levels of mitophagy genes, immune cells and inflammatory factors

were also analyzed. The plots were drawn using ggstatsplot

and ggboxplot.
2.9 Multiple reclustering analysis

The abnormal genes and samples were removed using the

goodSamplesGenes method of the R package WGCNA (23). The

scale-free co-expression network was constructed using WGCNA, and

the sensitivity was set to 3. The similarities and differences of module

characteristic genes were calculated, a tangent line for the module

dendrogram was selected, and some modules were merged. In
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addition, modules with a distance of less than 0.5 were incorporated,

resulting in 12 co-expressed modules. The gene sets that could not be

assigned to any module formed the grey module. The two mitophagy

subtypes were subjected to fGSEA, and the differentially enriched

pathways were analyzed using https://metascape.org.
2.10 Single cell analysis

The scRNA-seq data of 3D brain organoids from schizophrenia

patients and healthy controls were downloaded from the GSE184878

dataset. The SeuratR v4.4.0 was used for for single-cell analysis such as

quality control, dimensionality reduction, clustering, and more. The

cells with less than 200 genes ormore than 2500 genes were excluded to

obtain genes with high-fold changes in expression. The predominant

cell types were identified using the automated cell type annotation tool

SingleR v1.4.116 (24). The transcriptomic profile of each cell was

compared with the built-in reference data set in celldex v1.0.0 index 16,

and selected the cell type markers using the MonacoImmuneData

function. The cell types were extracted from the pooled dataset and

subjected to PCA, UMAP, and SNN analyses using the same

parameters as previously. The FindAllMarkers function in Seurat was

applied to each selected cluster for each selected principal cell type to

analyze the expression of the cluster-related genes. Inflammatory genes

were obtained from the Molecular Signature database v7.5

HALLMARK_INFLAMMATORY_RESPONSE (25). The mitophagy

gene scores of the individual cells in schizophrenia and control samples

were obtained by pseudo-time trace analysis using the R package

Monocle 3 (26). Finally, the neurons were classified into the

Mitohigh_Neuron, Mitomedian_Neuron, and Mitolow_Neuron

subgroups based on high, medium, and low mitophagy gene

scores respectively.
2.11 Analysis of
intercellular communication

Cell-cell interaction was analyzed in terms of the expression of

ligands/receptors between different cell types using the

CellphoneDB software package (27). The number of statistical

iterations in the scRNA-seq count matrix was set to 1000, and

genes expressed in less than 10% of the cells in each cluster were

eliminated. The CellPhoneDB repository was used to identify the

cell-cell interactions, and P value < 0.05 was the threshold for

significance. Average receptor expression levels in clusters and

average ligand expression levels in interacting clusters were

calculated. Network plots were used to illustrate the differences

between the ligand-receptor interactions of the Mitohigh_Neuron,

Mitomedian_Neuron, and Mitolow_Neuron groups.
2.12 SCENIC analysis of Mitoscore groups

Since the gene regulatory network(GRNs) dominated by

transcription factors (TFs) plays an important role in the

transcriptional state of cells, we used the Python-based pySCENIC
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package (version: 0.12.0)to analyze the gene regulatory network of TFs

(28).Single-cell regulatory network inference and clustering (SCENIC)

is a GRNs algorithm developed specifically for single-cell data. Its

innovation lies in the introduction of gene co-expression networks

inferred by TF motif sequence validation statistical methods, thereby

identifying highly reliable GRNs dominated by TFs.The algorithmwas

first used to identify modules of co-expressed genes and TFs from the

count matrix of scRNA-seq data. These modules were then trimmed

by cis-regulatory motif identification of possible target genes using

RcisTarget. Finally, the activity of each TF and potential target gene in

each cell was quantified and plotted using recovery analysis. The

difference in TF activity scores between the Mitohigh_Neuro and

Mitolow_Neuro groups was visualized with a heatmap.
2.13 Statistical analysis

All analyses were performed using R version 4.2.1. The relative

abundance of major cell types and clusters were expressed as

percentages using the R package ggpub v0.4.0. Wilcoxon rank

sum test was used to compare the measurement data. Spearman

correlation analysis was used to determine the correlation

coefficient between variables. Receptor operating characteristic

(ROC) curves were plotted and the area under the curve (AUC)

values were calculated to evaluate the diagnostic performance of

variables. P < 0.05 was considered statistically significant.
3 Results

3.1 Differential expression analysis of
mitophagy genes

After removing batch effects from the combined data set of 239

samples, we generated a comprehensive gene expression profile of

16908 genes, of which 24 mitochondrial genes were expressed in this

gene expression profile (Supplementary Table 2). GSVA analysis

revealed a significant increase in mitophagy scores in SCZ patients

compared with controls (Figure 2A). We identified 2,844 differentially

expressed genes, and only 10 mitophagy genes were differentially

expressed between the SCZ and control groups (Figure 2B)

(Supplementary Table 3). For example, CSNK2B expression was

upregulated in SCZ, whereas TOMM20 expression was

downregulated (Figure 2C). Furthermore, the correlation coefficient

between the 24 mitophagy genes and 10 mitophage DEGs were also

calculated (Figures 3A, B). CSNK2B showed the most significant

differential expression, and was positively correlated with TOMM40

(p=6.75e-04), and negatively with TOMM20 (p=6.22e-03),

MAP1LC3B (p=6.31e-04) and MFN1 (p=3.23e-06) (Figures 3C–G).
3.2 Construction of diagnostic
mitophagy signature

As shown in Figure 4A, the key mitophagy genes identified by

both SVM and RF were CSNK2B (OR=10.66, 95% CI=2.73-45.8),
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TOMM40 (OR=2.77, 95% CI=0.54-14.54), MAP1LC3B (OR=1.12,

95% CI=0.24-5.41), MFN1 (OR=0.4, 95% CI=0.04-4.07), CSNK2A2

(OR=3.27, 95% CI=0.52-21.45), PGAM5 (OR=0.00, 95% CI=0.00-

0.07) and ATG12 (OR=1.76, 95% CI=0.61-5.34). The AUC of the

diagnostic model constructed using 7 key mitophage genes was

0.729, indicating good diagnostic efficiency (Figure 4B).

Furthermore, we performed an internal validation with 1000

replicates using Bootstrap, and its performance is shown in

Figure 4C. The histogram of AUC and quantiles of standard

normal are shown in Figure 4D. In addition, we used Nomogram

for model validation (Figure 4E), Pr(group)=0.141, indicating a

high probability of diagnosis as a CT sample. The calibration curve

evaluated the predictive accuracy of the nomogram (Figure 4F). The

decision curve showed that the diagnostic efficacy of TOMM40 and

CSNK2B alone was similar to that of the 7 key genes model

(Figure 4G), indicating their potential as independent

diagnostic markers.
3.3 Analysis of immune landscape
associated with mitophagy

Neuroimmune responses play a key role in the occurrence

and development of schizophrenia. Therefore, we evaluated the

relationship between mitophagy genes and the relative

distribution of 22 immune cells using the CIBERSORT

algorithm. As shown in Figure 5A, the mitophagy genes were

significantly associated with neutrophils, activated dendritic
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cells (DCs), activated NK cells, resting NK cells, regulatory T

cells, activated CD4 memory T cells, and CD8 T cells. MFN1

(r=0.21, p=1.02e-03) and MAP1LC3B (r=0.48, p=3.77e-15)

showed positive correlation with the neutrophils, whereas

TMM40 (r=-0.58,p=7.67e-23), CSNK2A2 (r=-0.43, p=2.33e-

12), PGAM5 (r=-0.15, p=0.02), CSNK2B (r=-0.33, p=2.05e-07)

and ATG12 (r=-0.07, p=0.31) were negatively correlated with

neutrophils (Figures 5B–I). Based on the above results, we

further explored the relationship between 28 inflammatory

factors and 7 key mitophagy genes. As shown in Figure 6,

MFN1 was negatively correlated with IL-10, CD4 and IFNB1

(p<0.001), TOMM40 was positively correlated with PDGFA,

IL10 and CD4 (p<0.001), CSNK2A2 was negatively correlated

with IL10, CD4 and FGFB3, and positively with MAP1LC3B

(p<0.001), CSNK2A was negatively and positively correlated

with IL-15 (p<0.001) and CD4 (p<0.001), PGAM5 was

positively correlated with PDGFA (p<0.01), CSNK2B was

positively correlated with PDGFA, HLA-DRB4, CD4 and

HLA-DRB3 (p<0.001), and negatively with IFNG (p<0.001),

and ATG12 was positively correlated with IFNG (p<0.001),

and negatively correlated IL-10, CD4 and HLA-DRB3 (p<0.001).
3.4 Results of differential
mitophagy genotypes

Through clustering analysis, the schizophrenia patients were

divided into two distinct mitophagy clusters - C1 and C2 - which
FIGURE 2

Differential expression analysis of GSE38484 and GSE38481 after merging. (A) GSVA analysis of mitophage-related gene between SCZ and control.
(B) Bar graph of 24 mitophagy genes between SCZ and CT groups. (C) Heat map of 24 mitophage genes between SCZ and CT groups. (*p < 0.05;
**p < 0.01; ****p < 0.0001).
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were relatively stable as per the cumulative distribution function

(CDF) curves and delta area (Figure 7A). The C1 and C2

populations differed significantly in terms of the expression of

mitophagy genes (Figure 7B), but showed no significant

differences in clinical features like age or sex (Figures 7C, D).

Interestingly, the C1 cluster showed higher predictive accuracy
Frontiers in Psychiatry 06
compared to C2, indicating that individuals classified as C1 are

more likely to develop schizophrenia (p=0.0014; Figure 7E).

TOMM40 and CSNK2B were significantly activated in C1,

whereas TOMM20, MFN1, and ATG5 were activated in C2

(Figure 7F). In addition, while T cells and B cells were more

abundant in C2, the NK cells had higher abundance in C1
FIGURE 3

Mitophagy Gene Interrelationships. (A) Heat map of 24 mitophagy genes expressed in blood; (B) Heat map of the 10 mitophagy genes differentially
expressed; (C) Correlation between CSNK2B and TOOM40; (D) Correlation between CSNK2B and TOOM20; (E) Correlation between CSNK2B and
MAP1LC3A; (F) Correlation between CSNK2B and MAP1LC3B; (G) Correlation plot of CSNK2B and MFN1.
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(Figure 7G). The pro-inflammatory factor IL-7 was increased in C2,

and HLA-DRB3, CD4, IL-10, IL-15, and PDGFA were increased in

C1 (Figure 7H). Our results indicate a possible association between

mitophagy and inflammatory responses in schizophrenia, which

merits further investigation.
3.5 Multiple cluster analyses

Weighted gene co-expression network analysis (WGCNA) was

performed on the combined data set to screen the co-expressed

genes related to schizophrenia. The scale independence and mean

connectivity for WGCNA are shown in Figure 8A. We constructed

co-expression networks based on optimal soft thresholds and

plotted gene clustering trees (Figure 8B). An association analysis

was performed using heat maps for each sample and the identified
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modules. As shown in Figure 8C, the MEred module was

significantly correlated to C1 (r=-0.66, p=5e-16) and C2 (r=0.66,

p=5e-16). GO analysis of genes in the red module revealed

significant enrichment of adaptive immune system, cytokine

signaling transduction in the immune system, regulation of

leukocyte activation and other pathways related to immune

response (Figure 8D). We also compared the pathways between

C1 and C2 through fGSEA, and found that C1 was mainly enriched

in mucosal innate immune response, cell activation involved in

immune response and other immune response pathways, while C2

was enriched in metabolic signaling pathways such as

mitochondrial respiratory chain complex assembly and

neuropeptide signaling pathway (Figure 8E). These results

highlight the potential impact of neuroimmunity regulated by

mitophagy genes on clinical intervention and drug development

for schizophrenia.
FIGURE 4

The diagnostic model was constructed based on the 7 key mitophagy genes obtained by machine learning. (A) Multivariate logistic regression OR value and
95%CI nomogram; (B) ROC curve of diagnostic model, AUC=0.729; (C) The Bootstrap validation results of ROC performance was repeated for 1000 times;
(D) Histogram of AUC principal component distribution (left panel) and standard normal value quantile histogram (right panel); (E) Nomogram was used for
model validation. (F) Calibration curves were used to evaluate the predictive accuracy of the nomogram; (G) Decision curve analysis demonstrating clinical
benefit of the nomogram. (*p < 0.05; ***p < 0.001).
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3.6 Comprehensive single-cell analysis

We identified 19 sub-clusters based on the scRNA-seq data

(Figure 9A), and found that hypervariable genes were most

prominent in subclusters 6, 8, and 13 (Figure 9B). Single-cell PCA

identified six major cell populations, namely astrocytes, neurons,

proliferating cells, endothelial cells, oligodendrocytes, and myeloid

cells (Figure 9C). The neurons were the predominant population and

therefore selected for subsequent analysis. The neurons were classified

using Mitoscore (Figure 9D), and as shown in Figure 9E, the

Mito_Neuron score was significantly higher in the schizophrenia

group compared to the control group (p<0.0001). This suggested a

potential role of neurons in the pathogenesis of schizophrenia. We

further identified 12 sub-clusters of neurons using single cell

dimensionality reduction (Figure 9F), of which cluster 9 had the

highest mitophagy score (Figure 9G), whereas cluster 11 had the

lowest score (Figure 10A). Pseudotime analysis further showed that

higher Mitoscores mainly occurred at the end of the developmental

trajectory of cluster 9, suggesting that these cells were unique to

schizophrenia (Figure 9H). We next compared the expression levels of

various transcription factors, including CEBPB, FOS, CREB5, ATF3,

HDAC2, MAFF and TAF7, between clusters 9 (Mitohigh_Neuron)

and 10 (Mitolow_Neuron). As shown in Figure 10B, CEBPB and

TAF7 were highly expressed in Mitohigh_Neuron, while FOS and
Frontiers in Psychiatry 08
CREB5 were expressed at higher levels in Mitolow_Neuron. Given the

role of these transcription factors in the immune response, we surmise

that mitophagy may contribute to disease pathogenesis by regulating

the immune response.

Cell communication analysis was performed using the CellChat

package. The number and strength of cell interactions are shown in

Figures 11A, B, and the bubble plots of ligand-receptor interactions

for the 10 mitophagy subclusters are shown in Figure 11C. The

Mitohigh_Neuron-endothelial and Mitolow_Neuron-endothelial

interactions showed significant differences in the ADMM-

CALCRLHE, NAMPT-(ITGA5+ITGB1), and SPP1-(ITGA5

+ITGB1) signaling pathways. In addition, Mitohigh_Neuron and

endothelial cells showed enhanced SPP1 and NAMPT signals,

which were mainly contributed by the CALCR, VISFATIN, and

SPP1 signaling pathways (Figure 11D). Consistent with this,

Mitohigh_Neuron was associated with all three signaling

pathways (Figure 11E).

The regulatory networks of the significantly different transcription

factors between Mitohigh_Neuron and Mitolow_Neuron subsets were

analyzed using SCENIC (Figure 11F). As shown in Figure 11G,

BHLHE40 had the highest specificity in the Mitohigh_Neuron

group, and YY1 had the highest specificity in the Mitolow_Neuron

group. DDIT3_extended and BHLHE40_extended were significantly

up-regulated in the Mitohigh_Neuron group, while XBP1_extended
FIGURE 5

Analysis of the relationship between mitophagy genes and immune cell infiltration. (A) Heat map of CIBERSORT correlation analysis between 24 mitophagy
genes and 19 immune cells; (B) Heat map of CIBERSORT correlation between 7 key mitophagy genes and 19 immune cells; (C-I) Correlation analysis of seven
top mitophagy genes: MFN1, TOMM40, MAP1LC3B, CSNK2A2, PGAM5, CSNK2B, ATG12 and Neutrophils_MCPcounter abundance. (*p < 0.05; **p < 0.01;
***p < 0.001).
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and FOS_extended were significantly upregulated in the

Mitolow_Neuron group (Figure 11H). Furthermore, DDIT3, TAF7

and CEBPB were positively correlated with MFN1 and TOMM20 in

the Mitohigh_Neuro cluster, and negatively correlated with CSNK2A2

and CSNK2B. In the Mitolow_Neuro cluster, XBP1 showed a

significant positive correlation with CSNK2A2 and PINK1, and YY1

was negatively correlated with ATG12 (Figure 12). Taken together,

mitophagy genes may affect schizophrenia progression by regulating

specific transcription factors.
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4 Discussion

Schizophrenia patients exhibit changes in brain structure,

functional connectivity, nerve cells, and immune cells compared to

healthy subjects, which may directly affect disease progression and

symptoms (29–31). For instance, the cerebral neurons of schizophrenia

patients often appear structurally aberrant, with abnormal size,

dendritic and synaptic structures, etc., which may directly affect the

transmission of signals within the neural network (32, 33). The
FIGURE 6

Heat map analysis of correlation between 7 key mitophagy genes and 28 inflammatory factors. (*p < 0.05; **p < 0.01; ***p < 0.001).
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resulting dysfunctional coordination between different brain regions

can manifest as altered perception, emotion, cognition, etc (34). In

addition, schizophrenia patients often experience changes in the

volume of frontal lobe, temporal lobe, parietal lobe, and other brain

regions, which may be associated with the symptoms and cognitive

dysfunction of schizophrenia (35). Moreover, a dysregulated

neuroimmune response in schizophrenia patients may trigger an

inflammatory response that affects neuronal function and brain

homeostasis (36, 37).

Mitochondria are particularly abundant in neurons due to their

high energy requirements for maintaining normal electrophysiological

activity and synaptic transmission (38, 39). Therefore, structural and

functional abnormalities in the mitochondria may play an important

role in the occurrence and development of schizophrenia by affecting

the neurons. In fact, mitochondrial abnormalities, such as irregular
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morphology and distribution in neurons, have been observed in the

brain tissues of schizophrenia patients (7). Mitochondrial dysfunction

manifests as impaired respiratory chain, mitochondrial DNA damage,

and depolarization of the mitochondrial membrane, which culminate

in elevated intracellular oxidative stress (40, 41). Mitochondria-

induced oxidative damage in the neurons affects their signaling and

function. Mitophagy plays an important role in maintaining

mitochondrial homeostasis and removing damaged mitochondria

(42). Any dysregulation in the mitophagy process may lead to

excessive accumulation of damaged mitochondria, resulting in

neuronal apoptosis and abnormal brain function that may progress

to schizophrenia (43). Consistent with the above hypothesis, we

observed significant differences in the expression of mitophagy

genes between the schizophrenia patients and healthy controls.

Alternatively, differentially expressed mitophagy genes identified in
FIGURE 7

Analysis of different subgroups of SCZ patients based on Characteristics of mitophagy gene Expression and immunologic profile. (A) Correlation heatmap of
24 significantly different mitophagy genes in the two subtypes; (B) Age correlation analysis of the two subtypes; (C) Sex-related analysis of the two subtypes;
(D) Correlation analysis of the clinical diagnosis prediction model constructed by core genes of the two subtypes; (E) Bar chart of differential expression
analysis of 24 significantly different mitophagy genes in the two subtypes; (F) Differential analysis of immune cell infiltration scores between the two
subtypess; (G) Differential expression analysis of inflammatory factors in the two subtypes. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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both blood samples and brain organoids reveal systemic and localized

alterations in schizophrenia. The expression patterns of these genes in

blood samples may reflect broader systemic changes, while those in

brain organoids provide insight into local disruptions within the

central nervous system. Finally, we identified CSNK2B, TOMM40,

MAP1LC3B, MFN1, CSNK2A2, PGAM5 and ATG12 as the

diagnostic genes for schizophrenia. The nomogram based on these

genes showed good diagnostic performance.

The expression of mitophagy genes was also correlated with most

immune cells, including neutrophils, activated DCs, activated NK cells,

resting NK cells, regulatory T cells, activated CD4 memory T cells and

CD8 T cells. In particular, MFN1 and MAP1LC3B were positively

correlated with the neutrophils, whereas TMM40, CSNK2A2, PGAM5

and CSNK2B showed a negative correlation. By consistency cluster

analysis, schizophrenia patients were divided into two subgroups with

different mitophagy gene expression and immunological characteristics.

There were no significant differences in clinical manifestations between

C1 and C2 subsets, but there were differences in the distribution of

immune cells and the expression of inflammatory factors. Subgroup C1

showed higher prediction accuracy, suggesting that individuals in this

subgroup are more likely to develop schizophrenia.

We then identified 12 sub-clusters of neurons using single cell

dimensionality reduction. Furthermore, the proportion of type E

endothelial cells was significantly elevated in schizophrenia patients,

while the proportion of macrophages was significantly reduced. In

addition, 15 hypervariable genes, including MUC5B, FDCSP,

SCGB1A1, PRB4, ZG16B and BPIFA, were closely related to each

cell cluster. The expression of seven characteristic mitophagy genes

were also significantly different among the nine clusters. Taken

together, schizophrenia is associated with considerable

heterogeneity in transcriptomic and immunological profiles. Our

findings suggest a potential role for mitophagy in disease
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progression, highlighting the need for further research to

elucidate its impact.

CSNK2A2 and CSNK2B are protein kinases that regulate

mitophagy through a ubiquitin-independent pathway. CSNK2A2

phosphorylates acidic proteins and is involved in the regulation of

cell cycle, apoptosis, and circadian rhythm (44). CSNK2B catalyzes the

phosphorylation of other proteins and participates in the regulation of

cell growth, differentiation, apoptosis, and other biological processes

(45). TOMM40 encodes the mitochondrial outer membrane protein

TOM40, and various single nucleotide polymorphisms (SNPS) of

TOMM40 are associated with mitochondrial dysfunction and

neuropsychiatric disorders (46). MFN1 is located in the inner and

outer mitochondrial membranes and maintains organelle morphology.

Downregulation of MFN1 can sensitize neurons to apoptosis and

impair cerebral cortex development (47). MAP1LC3B is a key

component of autophagy and regulates the quantity and quality of

mitochondria to meet cellular energy demands and prevent excessive

ROS production (48). PGAM5 is involved in inflammatory responses,

mitosis, apoptosis, lipid metabolism and other processes, and plays an

important role in neurodegenerative diseases and ischemia-reperfusion

injury (49). PGAM5 induces mitophagy in response to hypoxia by

dephosphorylating FUNDC1 and is also involved in PINK1/Parkin

mediated mitophagy (50). ATG12 is a key gene in the autophagy

pathway, and its encoded ATG12 protein forms a complex with ATG5

and ATG16L1 proteins to regulate the early formation and extension

of autophagosome (51). Overexpression of ATG12 inhibits neuronal

axonal development in vivo (52).

In summay, Our study explored the disruption of mitophagy in

schizophrenia based on comprehensive single-cell and batch RNA

sequencing data combined with machine learning analysis. The

subsets of neurons that we identified on the basis of Mitoscore

(Mitohigh_Neuron, Mitomedian_Neuron, and Mitolow_Neuron)
FIGURE 8

Results of WGCNA and fGSEA analysis. (A) After consistency scoring, the SCZ samples were divided into two stable types: Cluster1 and Cluster2; (B)
Scale independence (left panel) and mean connectivity (right panel) of WGCNA analysis; (C) Feature association maps between 12 modules and two
types of SCZ samples; (D) GO analysis bar chart of key genes in e.ed module; (E) Cluster plots of Biological process enrichment analysis of two types
of SCZ samples.
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showed distinct patterns of mitophagy gene expression. In particular,

the novel interaction between Mitohigh_Neuron subsets and

endothelial cells, established through SPP1 signaling, may be a

potential molecular mechanism pathway in schizophrenia.(2(Our

analysis also highlights the role of mitophagy in immune cells. The

expression patterns of mitophagy genes in these cells suggest a potential

impact on the immune system’s functioning, which could influence

neuroinflammation and immune responses associated with

schizophrenia. Dysregulated mitophagy in immune cells may lead to

altered immune cell activation and infiltration, exacerbating the

inflammatory environment in the brain and contributing to disease

progression.(3(Both neuronal and immune cell disruptions in

mitophagy likely contribute to schizophrenia pathogenesis. The

interplay between these cell types could create a feedback loop where

neuronal dysfunction exacerbates immune dysregulation and vice versa.

However, there are several limitations of our study that need to be

considered. Firstly, the study’s reliance on publicly available datasets

may introduce biases related to sample selection and data quality.

Secondly, the single cell and RNA sequencing data used in this study

are from different data sets, and technical differences and biological
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heterogeneity between these data sets may affect the analysis results.

Thirdly, our single-cell analysis of schizophrenia patients and controls

was based on 3D brain organoids, and different sample-derived cells

could potentially influence the results.In addition, while our analysis

included blood and brain organoids, the expression of mitophagy

genes in other cell types, such as glial cells, endothelial cells, and

peripheral tissues, remains unexplored. These cells could potentially

contribute to the mitophagy signature observed in schizophrenia, and

future studies should investigate their roles. Finally, Finally,

experimental validation of our findings is necessary to confirm the

functional relevance of the identified mitophagy genes and their

interactions with immune cells in the context of schizophrenia.
5 Conclusion

In conclusion, our work has identified seven key mitophage

genes critically involved in SCZ progression.These genes provides

new insights into the pathological mechanisms and potential targets

for SCZ.
FIGURE 9

Single-cell profiles of SCZ versus CT donor-derived 3D brain organoids. (A) The single-cell clustering results of CT and SCZ identified UMAP maps of
19 cell clusters. (B) Bubble plot of expression profiles of significantly tagged genes in each subcluster. (C) Single cell principal component analysis
mainly focused on six components: astrocytes, neurons, proliferative cells, endothelial cells, oligodendrocytes and myeloid cells; (D) Two UMAP
plots of neuronal mitophagy scores; (E) Significant differences in the mitophagy scores of neuronal subsets between SCZ and CT groups, p< 0.0001;
(F) 12 neuronal cell subsets obtained by single cell dimension reduction annotation of neurons; (G) Violin plot of mitophagy scores for 12 neural cell
subsets; (H) Reverse chronological analysis of the neuronal subpopulation with a mitophagy score, the ninth group with a high mitophagy score was
mainly at the end of the developmental trajectory.
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FIGURE 10

Differential distributionof subcellular clusters of specific transcription factors. (A) The 9th cluster with the high Mitoscore and the 11th cluster with
the low Mitoscore. (B) Differences in distribution of seven specific transcription factors in subcellular clusters 9 and 11.
FIGURE 11

Cell communication results. (A)Statistical analysis of the number of interactions among cell populations. Cells expressing ligands are indicated by
outgoing arrows, while cells expressing receptors are indicated by arrows pointing towards them; (B) Probability/strength values of interactions
(strength is the sum of probability values); (C) Visualization of interactions between multiple ligand-receptor mediated cell relationships in a bubble
chart; (D) Cell signaling flow patterns, with cell types on the horizontal axis and pathways on the vertical axis. (E) Heat map of interactions between
cells mediated by ligand-receptor signaling pathways CALCR, VISFATIN, and SPP1; (F) Heat map of significant differential transcription factor Area
Under the Curve (AUC) values in cell subgroups; (G) Average regulatory activity of significant differential transcription factors in two cell subclusters;
(H) Scatter plot of specific transcription factor scoring indices for two cell subgroups.
Frontiers in Psychiatry frontiersin.org13

https://doi.org/10.3389/fpsyt.2024.1429437
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Yang et al. 10.3389/fpsyt.2024.1429437
Data availability statement

The raw data supporting the findings of this article were retrieved

from the NCBI Gene Expression Omnibus (GEO) database, accession

numbers GSE38484, GSE38481 and GSE184878.
Ethics statement

The studies involving humans were approved by the patients

involved in the GEO database have obtained ethical approval. The

studies were conducted in accordance with the local legislation and

institutional requirements. Written informed consent for

participation in this study was provided by the participants’ legal

guardians/next of kin.
Author contributions

WY: Data curation, Methodology, Writing – original draft. KL:

Writing – original draft. JY: Formal Analysis, Writing – original

draft. YC: Conceptualization, Funding acquisition, Writing – review

& editing. XX: Funding acquisition, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was funded by the National Natural Science Foundation of China
Frontiers in Psychiatry 14
(81660237) and Yunnan Clinical Research Center for Mental

Disorders (202102AA100058).
Acknowledgments

The authors would like to thank all subjects who participated in

this study. In particular, we thank Bioinfo_composer, the leading

bioinformatics team in China, for the selfless help.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpsyt.2024.

1429437/full#supplementary-material
FIGURE 12

Heat map of correlation between transcription factors and mitophagy genes. (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001).
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1429437/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1429437/full#supplementary-material
https://doi.org/10.3389/fpsyt.2024.1429437
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Yang et al. 10.3389/fpsyt.2024.1429437
References
1. Jauhar S, Johnstone M, McKenna PJ. Schizophrenia. Lancet. (2022) 399:473–86.
doi: 10.1016/S0140-6736(21)01730-X

2. Wainschtein P, Jain D, Zheng Z, TOPMed Anthropometry Working Group and
NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Cupples LA,
et al. Assessing the contribution of rare variants to complex trait heritability from
whole-genome sequence data. Nat Genet. (2022) 54:263–73. doi: 10.1038/s41588-021-
00997-7

3. Momozawa Y, Mizukami K. Unique roles of rare variants in the genetics of
complex diseases in humans. J Hum Genet. (2021) 66:11–23. doi: 10.1038/s10038-020-
00845-2

4. Owen MJ, Legge SE, Rees, Walters JTR, O'Donovan MC. Genomic findings in
schizophrenia and their implications. Mol Psychiatry. (2023) 28:3638–47. doi: 10.1038/
s41380-023-02293-8

5. Roberts RC. Mitochondrial dysfunction in schizophrenia: With a focus on
postmortem studies.Mitochondrion. (2021) 56:91–101. doi: 10.1016/j.mito.2020.11.009

6. Ni P, Chung S. Mitochondrial dysfunction in schizophrenia. Bioessays. (2020) 42:
e1900202. doi: 10.1002/bies.201900202

7. Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease:
mechanisms and potential targets. Sig Transduct Target Ther. (2023) 8:333.
doi: 10.1038/s41392-023-01547-9

8. Brand MD, Orr AL, Perevoshchikova IV, Quinlan CL. The role of mitochondrial
function and cellular bioenergetics in ageing and disease. Br J Dermatol. (2013) 169
Suppl 2:1–8. doi: 10.1111/bjd.12208

9. Andreazza AC, Nierenberg AA. Mitochondrial dysfunction: at the core of
psychiatric disorders? Biol Psychiatry . (2018) 83:718–9. doi: 10.1016/
j.biopsych.2018.03.004

10. Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, et al. Impaired
mitochondrial function in psychiatric disorders. Nat Rev Neurosci. (2012) 13:293–307.
doi: 10.1038/nrn3229
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schizophrenia: the convergence of genetic and environmental risk factors that lead to
uncontrolled neuroinflammation. Front Cell Neurosci. (2020) 14:274. doi: 10.3389/
fncel.2020.00274

37. Murphy CE, Walker AK, Weickert CS. Neuroinflammation in schizophrenia: the
role of nuclear factor kappa B. Transl Psychiatry. (2021) 11:528. doi: 10.1038/s41398-
021-01607-0
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