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Background: Alzheimer’s disease (AD) encompasses a spectrum that may

progress from mild cognitive impairment (MCI) to full dementia, characterized

by amyloid-beta and tau accumulation. Transcranial direct current stimulation

(tDCS) is being investigated as a therapeutic option, but its efficacy in relation to

individual genetic and biological risk factors remains underexplored.

Objective: To evaluate the effects of a two-week anodal tDCS regimen on the

left dorsolateral prefrontal cortex, focusing on functional connectivity changes in

neural networks in MCI patients resulting from various possible underlying

disorders, considering individual factors associated to AD such as amyloid-beta

deposition, APOE e4 allele, BDNF Val66Met polymorphism, and sex.

Methods: In a single-arm prospective study, 63 patients with MCI, including both

amyloid-PET positive and negative cases, received 10 sessions of tDCS. We

assessed intra- and inter-network functional connectivity (FC) using fMRI and

analyzed interactions between tDCS effects and individual factors associated

to AD.

Results: tDCS significantly enhanced intra-network FC within the Salience

Network (SN) and inter-network FC between the Central Executive Network

and SN, predominantly in APOE e4 carriers. We also observed significant

sex*tDCS interactions that benefited inter-network FC among females.

Furthermore, the effects of multiple modifiers, particularly the interaction of

the BDNF Val66Met polymorphism and sex, were evident, as demonstrated by

increased intra-network FC of the SN in female Met non-carriers. Lastly, the

effects of tDCS on FC did not differ between the group of 26 MCI patients with

cerebral amyloid-beta deposition detected by flutemetamol PET and the group

of 37 MCI patients without cerebral amyloid-beta deposition.
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Conclusions: The study highlights the importance of precision medicine in tDCS

applications for MCI, suggesting that individual genetic and biological profiles

significantly influence therapeutic outcomes. Tailoring interventions based on

these profiles may optimize treatment efficacy in early stages of AD.
KEYWORDS

transcranial direct current stimulation, mild cognitive impairment, Alzheimer’s disease,
resting-state functional connectivity, individual factors
Introduction

Alzheimer’s disease (AD) involves the progressive accumulation

of amyloid-beta (Ab) peptide and phosphorylated tau proteins, which
are pivotal in the cognitive decline observed in AD and its clinical

precursor stages, including mild cognitive impairment (MCI) (1).

MCI may evolve into dementia, affecting 10-15% of individuals

annually (2). Despite some success in clinical trials of various drugs

in slowing dementia progression, results are modest and highlight the

need for more sustained and simpler interventions (3).

There is growing interest in monoclonal antibodies targeting Ab
for their potential to slow cognitive decline by 25-30% (4, 5),

although their effects are less pronounced in MCI than in mild

AD (6). This discrepancy highlights the need for comprehensive

intervention strategies beyond pharmacological approaches, such as

non-drug interventions that include cognitive activities, exercise,

and dietary changes, which, despite their potential, present

challenges in consistent application due to their complexity (7–9).

Among emerging therapeutic alternatives, non-invasive brain

stimulation methods such as transcranial direct current stimulation

(tDCS) show promise (10). Affordable and portable, tDCS can alter

the excitability of cortical neurons (11), facilitate neuroplasticity

(12), and potentially aid in the clearance of Ab by affecting the

blood-brain barrier (13). In the context of AD, changes in

functional connectivity (FC), a critical indicator of the efficiency

and integration of brain networks, reflect disease progression

(14, 15). Therefore, maintaining or restoring FC is critical to

mitigating the effects of AD (16). tDCS has shown potential in

modulating functional brain network connectivity in patients with

MCI, including those not pathologically confirmed to have AD but

encompassing various potential underlying causes (17, 18).

Specifically, high-resolution tDCS targeting the right parietal

cortex significantly enhances segregation within the Default Mode

Network (DMN) and the Dorsal Attention Network during spatial

navigation tasks, suggesting a partial normalization of FC similar to

patterns seen in cognitively intact individuals (19). While specific

effects on the Central Executive Network (CEN) and Salience

Network (SN) were less detailed, overall improvements in

network segregation were observed, particularly during active task

performance. This suggests that tDCS may be a promising
02
therapeutic tool for restoring brain network functionality in early-

stage neurodegenerative diseases.

In healthy older adults, tDCS has also been demonstrated to

modulate both task-based and resting-state FC, leading to cognitive

improvements. In the previous research, applying tDCS during

working memory tasks has shown enhanced FC within the

prefrontal cortex (20). Studies combining cognitive training with

tDCS have reported increased FC between left and right brain regions

within the CEN during tasks stimulating attention and processing

speed (21, 22). Additionally, another study involving combined tDCS

and cognitive training in older adults revealed increased resting-state

FC within the CEN (23). These changes in both task-based and

resting-state FC in healthy older adults have been associated with

improvements in working memory. This context could provide a

foundation for understanding the changes induced by a tDCS in MCI

patients compared to healthy older adults.

Given the reported abnormalities in resting-state intra- and

inter-network FC that correlate with MCI progression (15),

examining changes after tDCS application may be clinically

relevant. Despite the potential benefits, research in this area

remains limited.

Precision medicine, which tailors therapeutic interventions based

on individual genetics, biomarkers, and clinical profiles (24), could

significantly improve the efficacy of tDCS. Factors such as Ab
deposition (25), presence of the APOE e4 allele (26), brain-derived

neurotrophic factor (BDNF) levels (27), and sex differences not only

critically influence the progression of AD (28), but also influence

treatment response. This necessitates the adaptation of tDCS

protocols to individual factors associated to AD, potentially

optimizing therapeutic outcomes in the clinical management of AD.

Our preliminary study in patients with MCI has provided

important insights, showing that application of tDCS to the

dorsolateral prefrontal cortex (DLPFC) results in variable effects

on brain functionality (29). These differences are related to

individual factors such as Ab deposition and the presence of the

APOE e4 allele. Furthermore, studies suggest that the BDNF

Val66Met polymorphism and sex differences may also

significantly influence neuroplasticity and neurodegeneration after

tDCS application, underscoring the heterogeneity of responses in

MCI patients and the need for individualized treatment protocols.
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In our ongoing study, we aimed to evaluate intra- and inter-

network FC changes at rest in patients with MCI, including both

positive and negative Ab deposition groups, after 10 sessions of

sequential anodal tDCS application to the left DLPFC, according to

individual factors associated to AD such as Ab deposition, APOE e4
carrier status, BDNF polymorphism, and sex.
Materials and methods

Participants

The study enrolled subjects from the Brain Health Center at

Yeoui-do St. Mary’s Hospital, which is affiliated with the College of

Medicine of the Catholic University of Korea. Inclusion criteria

included: 1) meeting Petersen’s MCI criteria (30), with inclusion of

both amyloid-PET positive and negative cases, indicating a range of

underlying conditions not exclusively due to AD and 2) having a

Clinical Dementia Rating (CDR) of 0.5. Participants were excluded

on the basis of: 1) a history of substance abuse, traumatic brain injury,

or psychiatric illness; 2) current use of medications such as

cholinesterase inhibitors, antidepressants, benzodiazepines, or

antipsychotics; 3) contraindications to tDCS or MRI, such as

having ferromagnetic or coiled metal implants; and 4) any

dermatologic conditions affecting scalp skin integrity. The

procedure was monitored by two experts in geriatric psychiatry.

Participants consented to the use of their medical records for research

purposes. All assessments took place at the same Brain Health Center.

The study was conducted in accordance with the Declaration of

Helsinki and was approved by the Institutional Review Board of the

Catholic University of Korea (SC19DEST0012). Informed consent

forms were signed by all study participants. The study was registered

with the Clinical Research Information Service of the Korea Disease

Control and Prevention Agency (KCT0006020) and was conducted

fromMay 2020 to February 2022. There were no reported conflicts of

interest related to the device manufacturers used in this study.
Study protocol

In this single-arm, prospective study, we implemented a design

that did not involve a sham condition. Participants received ten
Frontiers in Psychiatry 03
tDCS sessions in their homes, five times per week for two weeks.

This regimen was selected based on previous clinical studies

indicating that ten tDCS sessions were effective in treating

symptoms of AD and MCI (31–34), while also taking into

account compliance issues in the elderly. The decision to exclude

a sham group was influenced by practical constraints, which

precluded the possibility of administering sham-tDCS followed by

real tDCS. Additionally, providing only sham-tDCS often led to low

study enrollment among MCI patients, making it challenging to

complete the project within the allocated timeframe.

The study did not utilize an “online” tDCS paradigm, where

stimulation is applied during cognitive tasks, due to logistical

challenges. Ensuring that all participants performed the tasks

accurately and consistently during home sessions required

additional staff and training resources, which were not feasible

within our study design. Furthermore, the complexity of managing

task performance concurrently with tDCS in a home setting

presented significant difficulties in maintaining quality control

and standardization.

Neuropsychological assessments and MRI scans were

performed at the Brain Health Center of Yeouido St. Mary’s

Hospital, both within two weeks before the first tDCS session and

after the tenth and final session. In addition, participants underwent

[18F] flutemetamol (FMM) PET-CT scans and were tested for

APOE and BDNF genes, all within four weeks before starting

tDCS treatment. The results of the FMM-PET, APOE, and BDNF

tests were not disclosed to the neuropsychological examiners or the

participants. Figure 1 shows a schematic diagram of the

experimental protocols of the study.
Transcranial direct current
stimulation application

In this treatment protocol, a continuous direct current of 2 mA

was delivered for 20 minutes using an MRI-compatible stimulator

(YDS-301N, YBrain, Seoul, Republic of Korea). No in-scanner

administration of tDCS was performed in this study. The anode

was placed over the left dorsolateral prefrontal cortex (DLPFC),

corresponding to the F3 location on the International 10/20 EEG

system, and the cathode was placed over the right supraorbital area.

The electrodes, which were disk-shaped with a radius of 3 cm, were
FIGURE 1

The flowchart of the study.
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applied to the scalp using saline-soaked sponge pads. Each session

was conducted by trained personnel who visited the participants’

homes to ensure proper device operation. To ensure consistent

electrode placement across all 10 sessions for each participant, staff

used the anatomical landmarks of the International 10/20 EEG

system, such as the nasion, inion, bilateral preauricular points, and

vertex. The vertex is where the line from the nasion to the inion

intersects the line connecting the preauricular points. The staff

measured from a preauricular point to the center of the electrode,

ensuring that it intersected with a line from the vertex to the nasion.

They recorded the distance from both preauricular points to the

center of the electrode and confirmed its relative position to these

landmarks before each session. In addition, the accuracy of the

electrode placement was checked 15 minutes after each session. The

same staff member remained responsible for a given participant

throughout all sessions.
Neuropsychological assessment

All participants underwent cognitive assessments using the

Korean adaptation of the Consortium to Establish a Registry for

Alzheimer’s Disease (CERAD-K) (35). This included Korean

versions of several tests: Verbal Fluency, the 15-item Boston

Naming Test, and the Korean version of MMSE (MMSE-K) (36),

as well as tests for word list memory, recall, recognition,

constructional praxis, and recall. We also summed the scores of

word-list memory, recall, and recognition to derive the total

memory score. The total CERAD-K score was the aggregate of all

scores, excluding the MMSE-K and CR. Cognitive function was

evaluated using the Korean Montreal Cognitive Assessment

(MoCA-K). For executive function, we utilized the Korean Stroop

Word-Color Test (K-SWCT), which measures reaction control in

letter and color reading scenarios (37), and Trail Making Test B,

which measures the time taken to alternate letters and numbers in a

sequence by drawing lines. Detailed descriptions of the assessments

are provided in the Supplementary Material.
APOE genotyping

The methodology for APOE genotyping is described in the

Supplementary Material. Because of the protective effect associated

with the APOE e2 allele (38), subjects carrying this allele were

excluded from the study. Participants were categorized according to

the presence of the APOE e4 allele; individuals with one or more e4
alleles were classified as APOE e4 carriers, whereas those without

the e4 allele were identified as non-carriers.
BDNF genotyping

The procedure for BDNF genotyping is described in the

Supplementary Material. With respect to the BDNF Val66Met

polymorphism (rs6265), participants were classified into two

groups based on recent genetic studies (39, 40): those with at least
Frontiers in Psychiatry 04
one Met66 allele were designated as Met carriers, and those without

any Met66 alleles were designated as Met non-carriers.
Magnetic resonance imaging acquisition

Imaging data were collected by the Department of Radiology of

Yeouido Saint Mary’s Hospital at the Catholic University of Korea

using a 3-T Siemens Skyra MRI machine and a 32-channel Siemens

head coil (Siemens Medical Solutions, Erlangen, Germany). The

scanning parameters of the T1-weighted three-dimensional

magnetization-prepared rapid gradient echo sequences were as

follows; echo time (TE)=2.6 ms, repetition time (TR)=1,940 ms,

inversion time (TI)=979 ms, flip angle (FA)=9o, field of

view=250×250 mm, matrix=256×256, and voxel size=1.0×1.0×1.0

mm3. Fluid attenuated inversion recovery (FLAIR) MRI sequences

were as follows: TE= 135 ms; TR= 9000 ms; TI= 2,200 ms; FA=90o;

FOV= 220x220 mm; matrix=356x231; and voxel size=1.0x 1.0x1.0

mm3. In addition, the scanning parameters of the DTI sequences

were as follows; echo planar imaging, TR=3,100 ms, TE=86 ms, field

of view=224 mm, voxel dimension=2 mm isotropic, B-value=1,000,

gradients applied=64 isotropically, and distributed and acquisition

time=5 min 44sec.
Functional MRI data processing

Detailed methods for the acquisition of structural and functional

MRI data are provided in the Supplementary Material. For the

preprocessing of fMRI images, we used the Data Processing Assistant

for rfMRI (DPARSF, GNU GENERAL PUBLIC LICENSE, Beijing,

China), which operates within the framework of statistical parametric

mapping (SPM 12, available at http://www.fil.ion.ucl.ac.uk/spm,

Wellcome Centre for Human Neuroimaging, London, England).

The preprocessing steps included slice timing adjustment, motion

correction realignment, spatial registration, normalization, and

smoothing. These procedures are thoroughly documented in our

previous study and are also detailed in the Supplementary Material.
Remote functional connectivity analysis:
intra- and inter-network connectivity

We used three specific neural networks in our study - the DMN

(41, 42), the CEN (43), and the SN (44)- that are known to be

selectively impaired in AD. The 21 regions of interest (ROIs) for

these networks were defined as 6 mm radius spheres centered on

specific coordinates previously described in the literature (45). The

coordinates for these ROIs, in Montreal Neurological Institute

format, are listed in Table 1. For each of these resting-state

networks, the within-network FC strength was determined by

averaging the FC strength across ROIs within the same network

(ZX =   1
nX (nX−1)

2
oij=1 : nX

zi,j
�
�

�
�, where nX is the number of ROIs within

a specific network X) (15). Similarly, the inter-network FC strength

was calculated as the average of all possible connections between the
frontiersin.org

http://www.fil.ion.ucl.ac.uk/spm
https://doi.org/10.3389/fpsyt.2024.1428535
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Kang et al. 10.3389/fpsyt.2024.1428535
ROIs in the different networks (ZX,Y =   1
nXnY oi∈X, j∈Y zi,j

�
�

�
�, where X

and Y denotes the network of the three resting state networks) (15).
[18F] flutemetamol PET image acquisition
and processing

[18F] FMM was manufactured, and [18F] FMM-PET data were

collected and analyzed as described previously (46). Static PET

scans were acquired from 90 to 110 min after 185 MBq of FMM

injection. MRI for each participant was used to co-register and

define the ROIs and correct partial volume effects that arose from

expansion of the cerebrospinal spaces accompanying cerebral

atrophy using a geometric transfer matrix.
SUVR calculation

The protocols for [18F] FMM PET imaging and the operation of

the PET scanners are described in detail in the Supplementary

Material. We quantified [18F] FMM uptake in PET/CT scans using

standardized uptake value ratios (SUVRs), specifically targeting gray

matter regions susceptible to Ab plaques in early AD (46, 47). The
Frontiers in Psychiatry 05
pons, which is typically unaffected by Ab deposition, was used as the

reference region for calculating SUVRs. Regional SUVRs were

calculated from the uptake ratios in cortical areas relative to the

pons, and a composite SUVR was determined by averaging these

values, taking into account the size of the regions involved. A

threshold SUVR of 0.62 was used to discriminate between Ab-
positive and -negative accumulations, consistent with established

benchmarks (46). In addition, PET scans were visually reviewed to

ensure the accuracy of Ab accumulation assessments.
Statistical analysis

Statistical analyses were performed using R software (version

4.3.2) and jamovi (version 2.3.28) (https://www.jamovi.org).

Normality assumptions were tested for continuous variables

using the Kolmogorov-Smirnov test in the R software. All data

had a normal distribution and were standardized for analysis using

z-score transformation.

Repeated-measures ANOVA was used to predict the effect of

the effect modifier by tDCS interaction (effect modifier × tDCS) on the

z-transformed correlation values within and between the DEN, CEN,

and SN neural networks, with tDCS (pre- and post-tDCS) as a

repeated-measures factor and Ab deposition, APOE e4 carrier

status, BDNF Val66Met polymorphism status, and sex as between-

subject factors (potential effect modifiers). In addition, age, years of

education, and other non-included effect modifiers were included as

covariates. For the analysis of within-subject effects, if more than one

effect modifier showed an interaction with tDCS application, we

included the multiple effect modifier × tDCS interaction term (effect

modifier 1 × effect modifier 2 × tDCS) in the analysis.

Significant interactions between effect modifiers and tDCS were

observed in the z-transformed correlation scores within and between

the DEN, CEN, and SN neural networks. For these neural networks of

interest, further analyses were conducted to examine the impact of

these interactions (differences in intra- and inter-network FC × effect

modifier) on differences in neuropsychological performance. This

subsequent analysis was performed using multiple regression,

adjusting for variables such as age, years of education, and other

non-included effect modifiers. All statistical analyses used a two-tailed

P value< 0.05 to define statistical significance.
Results

Baseline demographic and clinical data

In this study, from the initial pool of 70 eligible participants, seven

did not complete the study. Six participants voluntarily withdrew from

the study, while one participant reported a minor side effect related to

transcranial direct current stimulation (tDCS), experiencing a tingling

sensation under the electrode. As a result, 63 participants successfully

completed the study and were included in the final data analysis.

Figure 1 provides a comprehensive illustration of the participant flow

throughout the study. Baseline demographic information for

participants who completed the study is presented in Table 2.
TABLE 1 Location of Brain regions in resting-state brain networks.

ROI MNI coordinates

Posterior cingulate cortexa 0, -51, 29

Medial prefrontal cortexa 0, 61, 22

Left lateral parietala -48, -66, 34

Right lateral parietala 53, -61, 35

Left inferior temporala -65, -22, -9

Right inferior temporala 61, -21, -12

Medial thalamusa 0, -9, 7

Left posterior cerebelluma -28, -82, -32

Right posterior cerebelluma 26, -89, -34

Dorsal mPFCb 1, 30, 44

Left anterior PFCb -45, 50, -5

Right anterior PFCb 46, 51, -7

Left superior parietalb -51, -50, 49

Right superior Parietalb 53, -49, 47

Right anterior cingulate cortexc 12, 32, 30

Left anterior cingulate cortexc -13, 34, 16

Right ventral anterior cingulate cortexc 10, 34, -6

Left putamenc -19, 3, 9

Right putamenc 25, 18, 8

Left insulac -42, 6, 4

Right insulac 43, 7, 2
adefault mode network (DMN); bcentral executive network (CEN); csalience network (SN).
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Changes in neuronal functional
connectivity according to effect modifiers

We observed several important interactions in our study. First, a

significant interaction was found between APOE e4 carrier status and
tDCS, as manifested by increased intra-network SN FC and inter-

network CEN-SN FC of APOE e4 carriers (intra-network SN FC, P =

.025; inter-network CEN-SN, P = .034, Table 3A, Figure 2A). This

indicates that following tDCS, a significant increase of intra-network

SN FC and inter-network CEN-SN FC was observed in APOE e4
carriers compared toAPOE e4 non-carriers. Additionally, a sex*tDCS
interaction was identified, as evidenced by an increased inter-network

FC of DMN-SN in female participants (P = .015, Table 3B,

Figure 2B), suggesting that females demonstrated a significant

increase in inter-network DMN-SN FC compared to males.

Regarding multiple effect modifiers, our results showed a BDNF

polymorphism*sex*tDCS interaction, which was seen as an

increased intra-network FC of SN in female Met non-carriers

(P = .033, Table 3C, Figure 2C). This finding indicates that

female Met non-carriers experienced a significant increase in

intra-network SN FC following tDCS compared to other groups.

Despite these significant findings, the effects of tDCS on FC did

not differ between the group of 26 MCI patients with cerebral Ab
deposition detected by FMM PET and the group of 37 MCI patients

without cerebral Ab deposition. A table with all statistical comparisons

shown in Figure 2 is provided in the Supplementary Results.
Association between changes in neuronal
functional connectivity and
neuropsychological performance scores:
the role of effect modifiers

We identified significant interactions between tDCS and several

effect modifiers, including APOE e4 carrier status, sex, and BDNF

polymorphism, in relation to changes in intra-network SN FC,

inter-network CEN-SN FC, and inter-network DMN-SN FC. To

determine whether these interactions also influenced

neuropsychological performance scores, we analyzed the
TABLE 2 Baseline demographic and clinical characteristics of the
study participants.

Demographic and clinical characteristics (N=63)

Age (years) 73.2 ± 7.9

Gender

- Male 21 (33.3%)

- Female 42 (66.7%)

Years of education 12.0 ± 5.0

[18F] Flutemetamol deposition (positivity, %) 26 (41.3%)

Global [18F] Flutemetamol SUVRPONS 0.62 ± 0.15

APOE e4 carrier status (carrier. %) 30 (47.6%)

BDNF polymorphism (Val/Met or Met/Met, %) 52 (82.5%)

CERAD-K

VF 12.1 ± 5.1

BNT 10.7 ± 3.1

MMSE 23.2 ± 5.0

WLM 14.6 ± 4.6

CP 10.1 ± 1.5

WLR 3.7 ± 2.6

WLRc 6.8 ± 2.8

CR 4.5 ± 3.4

TMT B (seconds) 224.1 ± 77.7

Stroop word-color 26.0 ± 14.2

Total memory 25.2 ± 8.8

Total CERAD-K 58.1 ± 15.2
Data are presented as mean ± SD unless indicated otherwise. SUVRPONS, standardized uptake
value ratio of [18F] flutemetamol, using the pons as a reference region; CERAD-K, Korean
version of the Consortium to Establish a Registry for Alzheimer’s Disease; VF, verbal fluency;
BNT, Boston Naming Test; MMSE, Korean version of the Mini-Mental Status Examination;
WLM, Word List Memory; CP, Constructional Praxis; WLR, Word List Recall; WLRc, Word
List Recognition; CR, constructional recall; TMT B, Trail Making Test B; Total memory,
composite score summing scores of the WLM, WLR, and WLRc tests; Total CERAD-K,
composite score summing scores of the CERAD-K VF, BNT, WLM, CP, WLR, and
WLRc domains.
TABLE 3 Differential impact of tDCS on changes in neuronal functional connectivity according to effect modifiers: (A) APOE e4 carrier status, (B) Sex,
and (C) Multiple effect modifiers.

(A, C) Dependent variable: intra-network FC of SN.

Sum of Squares df Mean Square F p

tDCS 0.35224 1 0.35224 0.6441 0.426

tDCS ∗ age 0.10457 1 0.10457 0.1912 0.664

tDCS ∗ education years 0.07565 1 0.07565 0.1383 0.711

tDCS ∗ Ab deposition 0.00703 1 0.00703 0.0129 0.910

tDCS ∗ sex 1.15928 1 1.15928 2.1197 0.151

tDCS ∗ APOE e4 carrier status 2.91550 1 2.91550 5.3308 0.025

tDCS ∗ BDNF polymorphism 0.10530 1 0.10530 0.1925 0.663

(Continued)
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associations between changes in FC and performance scores with

the same effect modifiers.

None of these interactions reached statistical significance for

neuropsychological performance scores. However, some results

indicated statistical trends (P values ranging from 0.05 to 0.1).

Specifically, the interactions between changes in intra-network SN
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FC and inter-network CEN-SN FC with APOE e4 carrier status

showed trends toward significance in relation to CERAD-K total

memory score (intra-network SN FC, P = .053; inter-network

CEN-SN, P = .089, Figure 3). These trends suggest that APOE e4
carriers exhibited a trend toward increased intra-network SN FC

and inter-network CEN-SN FC, which was associated with
TABLE 3 Continued

Sum of Squares df Mean Square F p

tDCS ∗ sex ∗ APOE e4 carrier status 0.96004 1 0.96004 1.7554 0.191

tDCS ∗ sex ∗ BDNF polymorphism 2.60993 1 2.60993 4.7721 0.033

tDCS ∗ APOE e4 carrier status ∗ BDNF polymorphism 0.87512 1 0.87512 1.6001 0.212
Type 3 Sums of Squares. Values in bold indicate statistical significance.
(A) Dependent variable: inter-network FC between CEN and SN.

Sum of Squares df Mean Square F p

tDCS 0.0598 1 0.0598 0.1053 0.747

tDCS ∗ age 0.9914 1 0.9914 1.7447 0.192

tDCS ∗ education years 0.2775 1 0.2775 0.4884 0.488

tDCS ∗ Ab deposition 0.2598 1 0.2598 0.4572 0.502

tDCS ∗ sex 1.7437 1 1.7437 3.0685 0.086

tDCS ∗ APOE e4 carrier status 2.6936 1 2.6936 4.7402 0.034

tDCS ∗ BDNF polymorphism 0.0331 1 0.0331 0.0582 0.810

tDCS ∗ sex ∗ APOE e4 carrier status 0.4833 1 0.4833 0.8505 0.361

tDCS ∗ sex ∗ BDNF polymorphism 1.1389 1 1.1389 2.0042 0.163

tDCS ∗ APOE e4 carrier status ∗ BDNF polymorphism 1.4830 1 1.4830 2.6098 0.112
Type 3 Sums of Squares. Values in bold indicate statistical significance.
(B) Dependent variable: inter-network FC between DMN and SN.

Sum of Squares df Mean Square F p

tDCS 0.45297 1 0.45297 1.07030 0.306

tDCS ∗ age 0.38077 1 0.38077 0.89970 0.347

tDCS ∗ education years 0.36850 1 0.36850 0.87070 0.355

tDCS ∗ Ab deposition 0.00291 1 0.00291 0.00687 0.934

tDCS ∗ sex 2.70389 1 2.70389 6.38881 0.015

tDCS ∗ APOE e4 carrier status 1.12444 1 1.12444 2.65687 0.109

tDCS ∗ BDNF polymorphism 1.17841 1 1.17841 2.78438 0.101

tDCS ∗ sex ∗ APOE e4 carrier status 0.80497 1 0.80497 1.90201 0.174

tDCS ∗ sex ∗ BDNF polymorphism 1.06382 1 1.06382 2.51362 0.119

tDCS ∗ APOE e4 carrier status ∗ BDNF polymorphism 1.04605 1 1.04605 2.47164 0.122
Type 3 Sums of Squares. Values in bold indicate statistical significance.
Repeated‐measures ANOVA was used to predict the impact of effect modifier-by-tDCS interaction (effect modifier*tDCS) for neural network functional connectivity (Between-subject factors:
Ab deposition, APOE e4 carrier status, BDNF polymorphism, and sex), adjusting for age, education years, and between-subject factors not showing interaction. DMN, default mode network;
CEN, central executive network; SN, salience network.
The tDCS* effect modifier variable is bolded if the p-value is less than 0.05.
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improvements in CERAD-K total memory scores after tDCS

compared with APOE e4 non-carriers.
Discussion

The aim of the current study was to evaluate whether a

2-week application of sequential tDCS alters intra- and inter-

network FC changes at rest in patients with MCI and whether

these changes depend on individual factors associated to AD.

Furthermore, for network FCs that showed significant

interactions with AD risk factors, we assessed whether the
Frontiers in Psychiatry 08
association with cognitive function scores was similarly

dependent on AD risk factors.

In this study, we identified significant interactions between

individual factors associated to AD and tDCS on resting-state FC

in networks vulnerable to AD. Specifically, these interactions were

observed as increased intra-network FC in the SN and inter-

network FC between the CEN and SN in APOE e4 carriers

following sequential tDCS sessions compared with APOE e4 non-

carriers. This finding suggests a potential modulatory effect of tDCS

on neural connectivity in APOE e4 carriers.

The DMN, CEN, and SN are known to be well organized in

cognitively normal status, but are reported to be disrupted as AD
B C

A

FIGURE 2

Differential impact of anodal tDCS on neural network functional connectivity according to effect modifiers: (A) APOE e4 carrier status, (B) sex, and
(C) multiple effect modifiers. Repeated‐measures ANOVA was used to predict the impact of effect modifier-by-tDCS interaction (effect
modifier*tDCS) for neural network functional connectivity (Between-subject factors: Ab deposition, APOE e4 carrier status, BDNF polymorphism,
and sex), adjusting for age, education years, and between-subject factors not showing interaction. DMN, default mode network; CEN, central
executive network; SN, salience network.
FIGURE 3

Association between changes in neuronal functional connectivity and neuropsychological performance scores according to APOE e4 carrier status.
Multiple regression analysis adjusting for age, years of education, and other nonincluded effect modifiers. SN, salience network; CEN, central
executive network.
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progresses (15). The SN, in particular, plays a central role in

detecting and responding to salient stimuli, which is critical for

efficiently directing cognitive resources (48). In the context of APOE

e4 carriers, increased SN connectivity may serve as an early marker

of reorganization of the neural system in response to the initial

pathological changes associated with AD (49). Such reorganization

may be critical for maintaining cognitive function despite ongoing

neurodegeneration (50). Therefore, the application of sequential

anodal tDCS may have enhanced these neural adaptations in APOE

e4 carriers. SN is also central to switching between CON and DMN,

facilitating cognitive control (48, 51). As AD progresses or as

individuals approach the clinical thresholds of MCI and AD,

significant disruptions in connectivity between key networks such

as the SN and CEN become increasingly apparent (15, 45). Our

results suggest that tDCS in MCI patients who are also APOE e4
carriers, and thus at increased risk for AD, may strengthen SN-CEN

inter-network FC, potentially aiding in the preservation of cognitive

function. Although this study did not reach statistical significance,

the observed positive correlation trends between total memory

scores and both SN intra-network FC and SN-CEN inter-network

FC in APOE e4 carriers support our hypothesis. Further research

with larger sample sizes and longer anodal tDCS durations may

provide more definitive findings and elucidate the potential benefits

of this intervention in APOE e4 carriers of MCI patients.

In the present study, females demonstrated a significant increase in

inter-network DMN-SN FC compared to males after sequential tDCS

application, which was attributed to the sex*tDCS interaction.

Connectivity between the DMN and SN is critical for cognitive

function, as it integrates key networks involved in internal mental

states and the detection of relevant external stimuli, thereby influencing

cognitive processes such as attention, memory retrieval, and decision

making (52–54). Enhanced DMN-SN connectivity is associated with

improved cognitive flexibility and attention, which are critical for

complex cognitive tasks and memory processes (55, 56). Previous

research on sex differences in DMN-SN connectivity suggests that men

often show more frequent switching between these networks and

higher inter-network FC than women (57, 58). However, studies

have shown that the SN, which is closely related to interoception, is

more pronounced in females (59). These findings are mainly derived

from studies conducted on younger adults and therefore need to be

interpreted with caution when applied to older populations. In this

context, the results of our study showing a significant increase in

DMN-SN inter-network FC in females after anodal tDCS may imply a

greater potential for improving DMN-SN inter-network FC in females

compared to males. In addition, older women receive a higher intensity

of tDCS current at the target site than men, possibly due to age-related

sex differences in tDCS current intensity resulting from cerebral

atrophy (60). This differential response may also contribute to the

more pronounced increase in DMN-SN internetwork FC observed in

women. Although this study found that DMN-SN inter-network FC

varies significantly by sex under the influence of tDCS, it did not

establish a direct link to differential cognitive function outcomes

dependent on sex. This opens the door for further research to

explore the potential cognitive effects of prolonged and intensified

tDCS application in larger samples, which may help to clarify these

initial findings.
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This study also found that tDCS interacts with multiple factors to

affect the intra-network FC of SN who were Val66 homozygotes and

female following sequential anodal tDCS. This result suggests that

female Met non-carriers showed a notable increase in intra-network

SN FC after tDCS compared to the other groups. Regarding the sex*

BDNF Val66Met polymorphism status, although some studies

suggest a sexually dimorphic effect of the BDNF Met66 allele on

AD susceptibility (61), others contradict this (62). Recent research

using event-related functional MRI in young adults has shown that

when presented with salient stimuli, male BDNF Met allele carriers

show increased activation in the amygdala area, leading to successful

encoding (63). The authors interpret these results as differences in

BDNF activity-dependent secretion influenced by the Val66Met

substitution, which may affect males and females differently due to

different neural mechanisms or hormonal interactions. Although this

functional MRI study shows a different pattern of interaction

compared to the current study, it is noteworthy for demonstrating

sex*BDNF Val66Met polymorphism status effects within regions

belonging to the SN (64). The current study, which included an

older cohort with MCI, may show different interaction characteristics

than previous studies due to pathological aging. Given the age-related

decline in BDNF levels, which is more pronounced in women (65),

the application of tDCS, known for its potential to increase BDNF

(66), may induce more pronounced neuroplastic changes in older

women who are BDNF Val66Met homozygotes. In addition, our

previous study analyzing changes in white matter microstructure

showed similar patterns of sex*BDNF Val66Met polymorphism

status in pathways critically involved in memory function and

susceptible to AD (67). This suggests that variations in resting-state

functional networks may align with microstructural changes in areas

prone to neurodegeneration.

In our investigation, we observed no significant interaction

between Ab deposition and the effects of tDCS on resting-state

intra- or inter-network FC. This intriguing result suggests that the

neuromodulatory impacts of tDCS might not be substantially

influenced by the presence of Ab deposits. Notably, the association

between Ab deposition and resting-state FC was less consistent in

MCI compared to dementia, with variations in FC also evident within

MCI (68). Specifically, during the early phases of MCI, the brain may

utilize compensatory mechanisms to maintain cognitive function,

potentially masking or modulating the detrimental effects typically

associated with Ab accumulations (69, 70). Additionally, the impact

of tauopathy, another core pathology of AD, on FC warrants

consideration. While results have been somewhat mixed, numerous

studies have reported that tau deposition contributes to increased FC

(68). Given that the intensity of tauopathy can vary during the MCI

phase, even in the presence of positive Ab deposition (71), these

factors may contribute to the observed lack of interaction between Ab
deposition and the application of tDCS. Therefore, evaluating the

therapeutic effects of tDCS in MCI patients with tau deposition is

essential to fully understand the influence of AD’s core pathologies on

the therapeutic efficacy of tDCS.

Lastly, although there are differences in study design, studies in

cognitively normal older adults have mainly reported changes in FC

related to the CEN, often associated with improvements in working

memory (20–23). However, in this study, the changes in FC varied
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depending on individual factors associated with AD. Increases in the

SN were observed in APOE e4 carriers, females, and BDNF Val66Met

Met non-carrier females following tDCS. Additionally, although it is

not directly related to changes in FC, lower baseline cognitive function

has been reported to be associated with improved cognition following

tDCS combined with a co-intervention. Therefore, the changes in FC in

MCI patients, who have lower baseline cognitive function compared to

cognitively normal older adults, may exhibit different patterns. To

address these discrepancies, future studies should include larger sample

sizes that encompass both cognitively normal older adults and MCI

patients to explore these differences further.

A limitation of this investigation is the short duration of the

anodal tDCS protocol. Our observations over a two-week tDCS

regimen are consistent with previous research suggesting that

duration influences the effect of memory enhancement (72, 73).

Longer tDCS durations may reveal greater differences in brain

functional changes associated with individual factors associated to

AD. Future research should extend the duration of tDCS exposure

and increase the number of participants to more fully explore these

effects. Additionally, our study did not include information on the

onset of cognitive decline, which is crucial for understanding the

baseline differences among participants and their progression.

Incorporating this information in future research would provide a

clearer context for interpreting the effects of tDCS on brain functional

changes associated with individual factors related to AD. In addition,

the lack of a sham stimulation group was a deliberate choice focused

on evaluating the moderating effects of individual factors associated

to AD on the brain functional outcomes of tDCS, rather than a

general oversight. Nevertheless, the inclusion of a sham control in

subsequent studies would strengthen the specificity of tDCS effects

over placebo effects, thus enriching the validity of the conclusions.

Taken together, the present study showed remarkable

interactions between tDCS and individual factors associated to

AD, mainly affecting intra- and inter-network FC, mainly related

to SNs. Considering the complex pathogenesis of AD and the

variable response to interventions in MCI patients, our findings

support precision-targeted treatment strategies adapted to genetic

profiles and gender-specific responses. Future investigations should

extend the study duration and include a control group to further

validate the therapeutic potential of tDCS in the early stages of AD,

where treatment options are currently limited.
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