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Introduction: Chronic schizophrenia has a course of 5 years or more and has a

widespread abnormalities in brain functional connectivity. This study aimed to

find characteristic functional and structural changes in a long illness duration

chronic schizophrenia (10 years or more).

Methods: Thirty-six patients with a long illness duration chronic schizophrenia

and 38 healthy controls were analyzed by independent component analysis of

brain network functional connectivity. Correlation analysis with clinical duration

was performed on six resting state networks: auditory network, default mode

network, dorsal attention network, fronto-parietal network, somatomotor

network, and visual network.

Results: The differences in the resting state network between the two groups

revealed that patients exhibited enhanced inter-network connections between

default mode network and multiple brain networks, while the inter-network

connections between somatomotor network, default mode network and visual

network were reduced. In patients, functional connectivity of Cuneus_L was

negatively correlated with illness duration. Furthermore, receiver operating

characteristic curve of functional connectivity showed that changes in

Thalamus_L, Rectus_L, Frontal_Mid_R, and Cerebelum_9_L may indicate a

longer illness duration chronic schizophrenia.

Discussion: In our study, we also confirmed that the course of disease is

significantly associated with specific brain regions, and the changes in specific

brain regions may indicate that chronic schizophrenia has a course of 10 years

or more.
KEYWORDS

functional magnetic resonance imaging, independent component analysis, brain
functional connectivity, schizophrenia, chronic schizophrenia
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1 Introduction

Schizophrenia, a chronic mental disorder that generally

emerges in young adulthood, is regarded as the extreme end of a

continuum of psychotic symptoms (1). Typical symptoms of

schizophrenia are grouped into three categories: distortion of

reality (delusions and hallucinations); confusion (formal thinking

disorder, chaotic behavior, inappropriate rare symptoms); and

negative symptoms or so-called clinical poverty syndrome. In

recent years, cognitive impairment has also been accepted as

another clinical feature of schizophrenia (2, 3). Patients with

chronic schizophrenia have a long course of disease, and in the

course of treatment, about half of the patients suffer varying degrees

of impact on themselves—which extends to their families

and society—because of recurring episodes or their unstable

mental state (1). Therefore, psychiatrists are urgently seeking

breakthroughs at the levels of genes, -omics, brain functional

structure, and behavior to identify biomarkers and targeted

therapies for schizophrenia, with the ultimate aim of improving

patients’ physical-mental-psychological state and facilitating their

return to society.

Functional magnetic resonance imaging (fMRI) enables

visualization and analysis of the pathophysiological changes that

occur in neuro-psychiatric diseases (4). fMRI can therefore be used

to observe the neural mechanisms involved in such diseases based

on the spontaneous activity indicators of brain regions (such as

local consistency, low-frequency amplitude fraction) as well as the

synergistic indicators between brain regions, such as functional

connectivity (FC) (5). The human brain involves a complex

network of functional connections (6). Previous brain imaging

studies have divided brain networks into two major categories:

the somatic sensory network:visual network (VIN), auditory

network (AUN), and somatomotor network (SMN),and high-level

cognitive network: default mode network (DMN), fronto-parietal

network (FPN), and dorsal attention network (DAN) based on FC

strength of the brain’s low-frequency signals combined with the

brain regions (7, 8). Functional brain networks identified from

fMRI data may serve as a source of potential biomarkers for

numerous mental disorders (9).

Independent component analysis (ICA) is one of the most widely

applied multivariate methods for analyzing brain functional networks

(10). ICA enables the simultaneous analysis of multiple brain

networks by considering the whole fMRI data, and can also

denoise the fMRI data by decomposing artifacts as independent

components (ICs), thereby extracting more meaningful

components (11, 12). The ICA method is used to study the

strength of functional connections within and between brain

networks, identify the various types of signals according to their

spatial and temporal characteristics—dependent on the blood oxygen

level of the brain, and extract the brain network signals in the resting

state of the brain, with high sensitivity and reproducibility. In recent

years, ICA technology has been widely used in the study of

neurodegeneration (13). Patients with chronic schizophrenia tend

to have a long disease course, experience significant degenerative

brain changes, and exhibit mental disorders (1).
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Meda et al. reported abnormal functional network connectivity

(FNC) in patients with schizophrenia and psychotic bipolar disorder

(14). Studies have found that patients with schizophrenia exhibit

activation disorders or FC abnormalities in multiple brain regions—

i.e., the “disconnection hypothesis”—that are associated with

cognitive deficits (2). Temporally coherent brain networks, such as

temporal lobe and DMN, have been shown to reliably discriminate

between subjects with bipolar disorder, patients with chronic

schizophrenia, and healthy individuals (15). Recent studies have

shown that in patients with schizophrenia, changes in the brain FC

occur; psychotherapy can alleviate these changes to a certain extent,

and the effect of treatment is directly reflected in the imaging results

(16). Gallos er al. reported differences in DMN and FPN for

schizophrenia and suggest functional networks as biomarkers for

the monitoring of the disease in the course of psychotherapy, they

also use ICA for identifying these networks (17).Changes in brain

function occur in different subregions of the frontal cortex and may

ultimately be understandable in terms of disturbed interactions

between brain networks; in this regard, multimodal studies based

on brain networks suggesting that abnormal basal ganglia-thalamic-

cortical circuits can serve as biomarkers for schizophrenia (1, 18).

Although ICA methods have identified potential biomarkers for

schizophrenia, to date, there are no studies that systematically

analyze the correlation of specific biomarkers in and between brain

networks with clinical data in patients with chronic schizophrenia.

With the development of medical level, in recent years, the

treatment environment of schizophrenia patients has been

significantly improved than in the past, and there are fewer and

fewer patients with long disease course and multiple attacks. Most

of the patients in our study had a disease course of more than 10

years, and all had multiple episodes, which was relatively rare in the

existing studies. Therefore, this study aimed to find characteristic

functional and structural changes and the indicators of brain

network connectivity in a long illness duration chronic

schizophrenia (10 years or more) using ICA technology.
2 Materials and methods

This study aimed to investigate the characteristics of functional

brain networks in patients with chronic schizophrenia and their

relationship with clinical symptoms using ICA (Figure 1)
2.1 Subjects

A cohort of 40 patients with chronic schizophrenia as Patient

group (PT) and 40 healthy peoples as Control group (HC) were

recruited from the Inner Mongolia Mental Health Center between

June 2019 and December 2022. All subjects were right-handed.

Patients met the following inclusion criteria (19): 1) All patients

met the diagnostic criteria of the Structured Clinical Interview for

Diagnostic and Statistical Manual (DSM)-IV-TR axis 1 disorders

(SCID-I-P); 2) patients were aged between 20 and 60 years;

3) patients’ duration of illness was at least five years; 4) patients
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had experienced at least two psychotic episodes; 5) patients had a

minimum score of 60 on PANSS (20). Exclusion criteria were as

follows: 1) history of major chronic medical or neurological

conditions; 2) past or current significant drug/alcohol abuse,

other than nicotine. HC were interviewed to confirm a lifetime

absence of psychiatric illnesses and to exclude a known history of

psychiatric illness in first-degree relatives.

All the subjects were of Chinese Han descent. There was no

biological relationship between PT and HC. Age, sex, and years of

education were approximately matched between PT and HC. All

subjects provided written informed consent for participation in the

research. The study was approved by the Ethics Committee of

Mental Health Center of Inner Mongolia Autonomous Region

(Ethical code: [2024] Ethics Review No. 27) in March 17, 2024.
2.2 Measures

Psychotic symptoms were assessed based on PANSS (20). The

primary outcomes were the total PANSS score (PANSS-T), positive
Frontiers in Psychiatry 03
score (PANSS-P), negative score (PANSS-N), and general

symptoms score (PANSS-G). Beside these scores, three factors

from the five-factor model of PANSS—namely, the cognitive

factor, excitement factor, and anxiety/depression factor—were

also evaluated and analyzed (21).

Cognitive function was evaluated based on the Wisconsin Card

Sorting Test (WCST) (22); in this study, a computer-based version by

RiRiXin software Inc (1.0 version) was used, with the 128 cards

varying according to color (red, yellow, blue, green), shape (triangle,

cross, circle, pentagon), and number (1, 2, 3, 4). Assessment indicators

include the number of categories achieved, total errors, perseverative

errors, non-perseverative errors, and conceptual level response.
2.3 fMRI data collection and preprocessing

2.3.1 fMRI data acquisition
All imaging was performed using a 3.0-Tesla Magnetic resonance

system (Achieva TX, Phillips, Netherlands). High-resolution T1-

weighted images were obtained using a volumetric 3D spoiled
FIGURE 1

Diagram of the processing flow. Step one: subjects collection. Step two: preprocessing of fMRI data. Step three: ICA analysis. Step four: FN selection.
Step five: Intranetwork FC, internetwork FC and clinical analysis.
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gradient recall sequence (TR=7.4 ms, TE=3.4 ms, flip angle=8, slice

thickness=4.0 mm, resolution=228 × 228 matrix, FOV=25 cm, 230

slices) and a 16-channel phased-array head coil. Total acquisition

time was 6 min 53 seconds. The resting-state echo-planar imaging

scan (TR=2200 ms, TE=35 ms, 50 axial slices, slice thickness=3 mm,

slice gap=1 mm, voxel size=3.4 × 3.4 × 3 mm3, flip angle=90°,

FOV=22 × 22 cm2, resolution=96 × 96 matrix) lasted 17 min 40

seconds. All subjects were asked to rest quietly with their eyes closed,

lie still, relax, and avoid falling asleep during the scanning period.
2.3.2 fMRI data preprocessing
The Matlab2018 platform was used to preprocess the MRI data

using the auxiliary tool software RESTplus 1.2 based on the SPM12

software system (23, 24). The specific preprocessing steps were

as follows:
Fron
1) Conversion of format, which involves conversion of the

original DICOM-format fMRI data file into a NIFTI format

that can be recognized by the software;

2) Removal of first time points: because the magnetic field is

unstable at the beginning of the MRI scan, it takes time for

the magnetic field to reach a steady state; furthermore, the

individual undergoing the scan is often nervous due to the

unfamiliar environment, which makes the scan data from

the beginning of the scan less reliable. Therefore, data for

the first 10 time points were excluded in the first step of the

MRI pre-data preprocessing;

3) Slice Timing: when scanning the brain, there are generally a

variety of different scanning methods, such as scanning

layers 1, 3, 5, 7, and 9 first, and then scanning layers 2, 4, 6,

8, and 10; therefore, the first and third layers are scanned

relatively early, while the second layer is scanned relatively

late. Therefore, the scanning time for the same brain region

may be quite different, and it is necessary to apply

mathematical methods to correct them to the same time

point to scan to eliminate the difference;

4) Head movement correction (Realign): The subjects will

inevitably move their heads during the scanning process,

and any slight movement of the head will cause the position

of the activated voxel to move, thereby changing the

real functional signal. Therefore, specific algorithms

are necessary for head motion correction, including

translation and rotation. In this trial, data from subjects

with a head movement range of more than 3 mm and a

rotation angle of more than 3° were excluded from analysis.

5) There are individual differences in spatial standard, head

circumference, and brain structure. To reduce the impact of

this difference on the research results, it is necessary to

standardize the average functional images of all subjects’

heads to the same space before they can be compared with

each other. Spatial standardization was performed to

segment the corrected images with a standard of 3 mm × 3

mm × 3 mm, which were then registered to the standard

spatial template of the Montreal Institute of Neurology (25).
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6) Smoothing: The advantage of smoothing is that it can reduce

the inaccuracy of registration and improve the signal-to-

noise ratio. The Gaussian kernel function of 6 mm full

width and half height is used to smooth the data in order to

enhance the normality of the data and facilitate

statistical analysis.

7) High pass filter: The data of the bold signal in the frequency

range of 0.01–0.08 Hz is filtered out.
2.4 Group-level ICA brain network analysis

We used the GIFT software toolkit (http://icatb.sourceforge.net/,

version 3.0b) to calculate the number of ICs at the group level (11):

1) the software estimates the number of ICs and calculates the spatial

correlation of the BOLD signal by the minimum description length

criterion (26); 2) the IC data of each participant was further reduced;

then, ICA was performed by using the Infomax algorithm to further

calculate the number of ICs (27); 3) reverse reconstruction of the ICs

of each participant was performed through group-level ICA; 4) among

the final ICs, the spatial correlation of specific resting state networks

(RSNs) (28) templates was selected for further analysis. We screened

the brain network components according to the following criteria

(29): (a) the spatial coordinate location of the brain network peak was

in the gray matter of the brain; (b) distribution of brain networks:

there are no obvious blood vessels in the brain area, and the suspected

artifacts overlap; (c) brain network signals are mainly low-frequency

signals (spectral range from 0.1 Hz to 0.15–0.25 Hz). After rigorous

screening, six RSNs were identified in this study: AUN, DMN, DAN,

FPN, left fronto-parietal network (LFPN) and right fronto-parietal

network (RFPN), SMN, and VIN. Finally, the screening results were

analyzed within and between groups. The differential values for the

brain regions were increased with the xjView 10.0 toolkit and

RESTplus 1.2 software, and visualized using MRIcorn_GL 1.2,

prism 9.0, and Origin 2023 software.
2.5 Group-level ICA was performed
between groups

Single-sample t-test was used to count the spatial distribution of

brain networks in the two groups (P<0.001, FDR corrected). The two-

sample t-test was used to compare the differences in FC within the brain

network between the two groups. Multiple comparison corrections were

performed. The Gaussian random field method (two-tailed, voxel level

P<0.01, cluster level P<0.05) was used to compare the differences

between the two groups of participants, and age and gender were

used as regression covariates. In addition, the marks generated by the

union of the single-sample t-test brain networks of the two groups were

applied to the two-sample t-statistical analysis.

FNC was used to analyze the FC between networks, and the one-

sample t-test was used to compare the temporal correlation of brain

networks between each group (P<0.05). The two-sample t-test was

used to compare the differences in brain network connectivity
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between the two groups. The FNC Toolkit was used (http://

trendscenter.org/software/, version 2.3).
2.6 Correlation analysis between FC within
the ICA network and clinical data

The differential brain region was regarded as the region of interest

(ROI), and the Extract ROI Signals function in REST plus software

was used to extract the intra-network FC value corresponding to the

ROI of each subject. Pearson correlation analysis was performed with

SPSS 27.0 statistical software to analyze the FC value corresponding

to the ROI. The clinical evaluation index, and age and gender, were

removed as covariates. P<0.05 was considered to indicate a

correlation; the r-value represented the degree of correlation and a

scatter plot was plotted using the Origin software. Receiver operating

characteristic (ROC) curve of the ROI between the two groups was

plotted, and the sensitivity, specificity, and area under the ROC curve

were calculated to explore the optimal cut-off value of the ROI in

patients with chronic schizophrenia.
3 Results

3.1 Socio-demographic data and analysis
of clinical symptom scores of PT and HC

Data from six subjects (four patients and two controls) were

excluded because of excessive head movement. The remaining 74
Frontiers in Psychiatry 05
subjects (PT=36, HC=38) were included in the analysis. Among the

36 patients, 21 patients were taking one atypical antipsychotic

(Olanzapine or Clozapine), 10 patients were taking two atypical

antipsychotics (Olanzapine and Clozapine), and five patients taking

one typical (Haloperidol) and one atypical antipsychotic

(Olanzapine). The mean medication dosage converted to

chlorpromazine equivalents was 322 ± 202 mg.

There were no significant differences between the groups in

terms of the socio-demographic variables of gender, age, and

education level (P>0.05). For the number of completed

categories, the percentage of conceptual level responses in the

WCST scores of PT was significantly lower than that of HC

(P<0.05). In terms of the total errors, perseverative errors, non-

perseverative errors, PT was significantly higher than HC

(P<0.05). The demographic data and clinical symptom scores of

the final sample are listed in Table 1.
3.2 Spatial distribution of brain networks
between the two groups

ICA screened out 41 brain network components, of which

components 16 and 40 belonged to AUN; components 2, 4, 26,

and 30 belonged to DMN; components 33 and 14 belonged to DAN;

component 18 belonged to LFPN; component 15 belonged to

RFPN; components 12 and 41 belonged to SMN; and

components 11 and 21 belonged to VIN. Based on the results for

the single-sample t-test group, six brain networks were marked in

the two groups (Figure 2):
TABLE 1 Socio-demographic and clinical characteristics of subjects.

Characteristics PTs(n=36) HCs(N=38) t/X2 p

Age,y 38.69 ± 11.24 41.62 ± 5.97 0.53 0.71

Gender (F/M) 27/9 30/8 2.46 0.93

Education,y 11.05 ± 4.53 9.72 ± 3.06 −0.71 0.52

Age of onset of illness 23.52 ± 6.91 NA NA NA

Illness Duration,y 18.06 ± 7.49 NA NA NA

PANSS

PANSS -T 74.96 ± 17.90 NA NA NA

PANSS-P 13.60 ± 5.37 NA NA NA

PANSS-N 23.90 ± 7.56 NA NA NA

WCST

Categories achieved numbers 3.24 ± 1.63 6.02 ± 1.65 3.71 <0.001

Total errors 39.24 ± 11.56 23.22 ± 6.98 3.72 <0.001

Perseverative errors 21.36 ± 9.06 11.23 ± 6.97 3.05 0.026

Non-perseverative errors 19.02 ± 6.92 10.98 ± 6.46 3.34 <0.001

Percentage of conceptual
level response

38.65 ± 18.01 48.92 ± 23.95 −3.96 <0.001
Data were presented as the range of minimum-maximum (mean ± SD). PANSS, the Positive and Negative Syndrome Scale; PANSS-T, the total PANSS score; PANSS-P, the positive score;
PANSS-N, the negative score; WCST, the Wisconsin Card Sorting Test; y, year; F, female; M, male. c 2, variance; P<0.05. NA represents missing values or unmeasured data.
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Fron
1) AUN: component 16 (Fusiform_L, Temporal_Sup_R,

Frontal_Inf_Orb_L, Frontal_Mid_Orb_L, Calcarine_L,

Temporal_Sup_L, Calcarine_R, Frontal_Mid_L,

Cauda t e_L , Pos t c en t r a l_L , C ingu lum_Mid_L ,

Fronta l_Sup_R and Thalamus) , component 40

(Cerebelum_9, Vermis_9, Temporal_Mid_L, Lingual_R,

Thalamus_L, and Temporal_Sup_R);

2) DMN: component 2 (Lingual_L, Vermis_4_5, and

Cuneus_L), component 4 (Cingulum_Mid_L), component

26 (Angular_R), component 30 (Rolandic_Oper_R

and Frontal_Inf_Tri_L);

3) DAN: component 14 (Cerebelum_9, Pallidum_L, and

Insula_R), component 33 (Vermis_6, ParaHippocampal_

L, Temporal_Pole_Sup_L, Cerebelum_4_5_L, Thalamus,

Temporal_Mid_R, and Cingulum_Mid_R);

4) LFPN: component 18 (Cerebelum_4_5_L, Thalamus,

Lingual, Insula, Temporal_Sup_R and Frontal_Mid_L);

5) RFPN: component 15 (Rectus_L Precuneus_R, Calcarine,

Cingulum_Post, Temporal_Mid, Frontal_Inf_Orb,

Fronta l_Med_Orb, Frontal_Inf_Tr i , Thalamus ,

Frontal_Sup_L, Occipital_Mid_L, and Frontal_Mid);

6) SMN: 12 (Cerebelum_6, Thalamus_L, Frontal_Mid_L,

Insula_R and Supp_Motor_Area), 41(Cerebelum_

4_5, Cerebelum_9);
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7) VIN: component11 (Cerebelum_9_L, Cerebelum_7b_L,

Frontal_Mid, Cerebelum_4_5_R, Temporal_Mid_L,

Frontal_Inf_Orb_L, Temporal_Sup_L, Precuneus_R,

Cingulum_Mid_R, and Parietal_Inf_L), component21

(C e r e b e l um_8 , C e r e b e l um_6 , F r o n t a l _M i d ,

ParaHippocampal_L, Temporal_Mid, Occipital_Mid_R

and SupraMarginal).
3.3 Differences between the brain
networks of the two groups

Comparison of the RSN of ICA at the group level revealed

significant differences in the FCs within the brain network between

the two groups (Table 2). Specifically, the significantly different clusters

between the two groups were: component 14 (Cerebelum_9_R),

component 2 (Lingual_L, Vermis_4_5 and Cuneus_L), component

15 (Rectus_L, Calcarine_L, Cingulum_Post_L, Frontal_Mid_R and

Frontal_Sup_L), component18 (Thalamus_L, Thalamus_R) and

component 41 (Cerebelum_9_L). The small cluster size of 14

(Cerebelum_9_R) yields low analytical significance; therefore, this

region was not included as an ROI.

Compared with HC group, PT group showed decreased FC in

the Lingual_L, Vermis_4_5, and Cuneus_L regions of the DMN
FIGURE 2

IC spatial divisions of different brain networks. AUN, Auditory Network, blue (16), red (40); DMN, Default Mode Network, blue (2), red (4), green (26),
pink (30);DAN, Dorsal Attention Network, blue (14), red (33); FPN, Fronto-parietal Network, blue (15), red (18); SMN, Somatomotor Network, blue (12),
red (41); VIN, Visual Network blue (11), red (21); x y z, spatial coordinates. P value < 0.05.
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(Figure 3A). A decrease in the two-sided thalamus FCs of the LFPN

is shown in Figure 3B. In the RFPN, the FC of Cingulum_Post_L,

Rectus_L, Calcarine_L, and Frontal_Sup_L decreased, while that of

Frontal_Mid_R did not change significantly (Figure 3C).

Cerebellum_9_L FC enhancements in SMNs were shown

in Figure 3D.
3.4 Intergroup differences in connectivity
between RSN between the two groups

Utilizing FNC technology, the differences in components

between the two groups were analyzed. Compared with HC, in

PT, component 16 showed enhanced connection with component

18; component 40 showed reduced connection with component

11; component 2 showed reduced connection with component 21;

component 4 showed enhanced connection with component 26;

component 26 showed enhanced connection with component 12

and decreased connection with component 11; component

30 showed reduced connection with component 12; component

14 showed reduced connection with component 41; and component

12 showed reduced connection with the component 41 (P<0.05)

(Figure 4A). Compared with that in HC, the connection between

DMN and VIN and between DAN and SMN was weakened in PT

(P<0.05) (Figure 4B).
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Compared with HC, PT exhibited enhanced inter-network

connectivity between AUN(16)–LFPN(18), DMN(26)–SMN(12),

and DMN(4)–DMN(26), while the inter-network connections

between DAN(14)–SMN(41), DMN(30)–SMN(12), DMN(2)–VIN

(21), DMN(26)–VIN(11), AUN(40)–VIN(11), and SMN(12)–SMN

(41) was reduced (P<0.05) (Figure 4C).
3.5 Correlation analysis between brain
network FC and clinical indicators

Correlation analysis of brain network changes in the ROIs

revealed a significant correlation between the FC of the midbrain

network and clinical data in PT. In PT, after correcting for

confounders, the FC of Cuneus_L was negatively correlated with

process (r=−0.608, P=0.007) (Figure 5A) and the FC of

Frontal_Sup_L was positively correlated with PANSS(N) (r=0.608,

P=0.01) (Figure 5B).
3.6 ROC curve analysis of FC of brain
networks in the two groups

ROC curve analysis of the brain network connectivity values

based on the ROIs and clinical data of the two groups: when the

value of Thalamus_L was −0.196, the sensitivity was 58.8%, the

specificity was 88.23%, and the AUC was 0.744 (95% CI: 0.569–

0.919); when the value of Rectus_L was −1.106, the sensitivity was

88.2%, the specificity was 52.94%, and the AUC was 0.651 (95% CI:

0.460–0.841); when the value of Frontal_Mid_R was −0.720, the

sensitivity was 88.2%, the specificity was 41.17%, and the area under

the AUC was 0.599 (95% CI: 0.402–0.795); When the value of

Cerebelum_9_L was 0.728,the sensitivity was 58.82%, the specificity

was 76.47%, and the area under the AUC was 0.654 (95% CI: 0.465–

0.843) (Figure 5C).
4 Discussion

ICA—a reliable method for analysis of resting-state brain

function—enables separation of the mixed signals of intrinsic FCs

of whole-brain voxels in time and space, and can obtain

independent time series and spatial distribution maps to facilitate

analysis of the differences in FCs within and between RSNs (30). In

this study, ICA and FNC techniques were used to explore the

changes in brain network FC in patients with chronic

schizophrenia. Compared with that of HC, the FC of the left

lingual lobe, cuneiform lobe, and cerebellar vermis region in the

DMN was found to be lower in PT. Furthermore, we observed

decreased FC in the bilateral thalamic regions as well as in the left

cingulate gyrus and right frontal lobe. In the SMN, FC in the left

cerebellar region was observed to be reduced. Correlation analysis

of brain network changes in the ROIs further revealed a significant

correlation between the changes in brain network FC and

clinical data.
TABLE 2 Spatial distribution of brain network differential clumps
between groups.

Region Y X T
Cluster
size (mm2)

DAN (component 14)

Cerebelum_9_R 12 −45 −36 4.346 1

DMN (component 2)

Lingual_L −18 −75 −9 4.37 85

Vermis_4_5 6 −45 3 4.841 11

Cuneus_L −6 −90 30 4.269 10

LFPN (component 18)

Thalamus_L −3 −30 0 4.292 16

Thalamus_R 6 −30 0 4.228 17

RFPN (component 15)

Rectus_L −12 51 −12 4.913 12

Calcarine_L −6 −66 15 3.89 9

Cingulum_Post_L −6 −48 24 4.676 31

Frontal_Mid_R 27 36 33 5.361 30

Frontal_Sup_L −24 36 39 4.121 9

SMN (component 41)

Cerebelum_9_L −3 −51 −54 4.204 10
x y z, spatial coordinates; T, The statistical value of the T-test; F, The statistical value of the
F-test.
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4.1 Patients with chronic schizophrenia
have abnormal connections within the
brain network

Schizophrenia is a mental disorder caused by brain dysfunction,

and patients may exhibit abnormal function of multiple brain

regions (31). The DMN, an important endogenous network that

enhances activity when the brain is at rest, plays an important role

in self-referential thinking and reflection as well as in maintaining

the brain’s internal activity during the resting state. The DMN
Frontiers in Psychiatry 08
functional areas include the medial prefrontal cortex, the posterior

cingulate cortex, the inferior parietal cortex, and the anterior cuneus

(32). These brain regions are involved in a variety of higher-order

cognitive functions such as memory, anticipation, and self-

processing (33, 34). The results of our study show a decrease in

the FC of the Lingual_L, Vermis_4_5, and Cuneus_L regions of the

DMN, which is consistent with the clinical characteristics of

patients with chronic schizophrenia. In FPN and DAN, which are

both high-order networks, we find that a decrease in the two-sided

thalamus functional connections in the LFPN as well as in the
A

B

D

C

FIGURE 3

Inter group differences in the ROI of intranetwork FC. (A) Inter group differences in the ROI of component 2 of DMN. ROI included Lingual_L,
Vermis_4_5 and Cuneus_L; (B) Inter group differences in the ROI of component 18 of LFPN. ROI included Thalamus_R and Thalamus_L; (C) Inter
group differences in the ROI of component 15 of RFPN. ROI included Cingulum_Post_L, Frontal_Mid_R, Rectus_L,Calcarine_L and Frontal_Sup_L;
(D) Inter group differences in the ROI of component 41 of SMN. ROI included Cerebelum_9_L. DMN, Default Mode Network; LFPN, lift Fronto-
parietal Network; RFPN, right Fronto-parietal Network; SMN, Somatomotor Network; L, lift; R, right. P value < 0.05.
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Cingulum_Post_L, Rectus_L, Calcarine_L, and Frontal_Sup_L

functional connections in the RFPN. These brain networks play

an important role in cognitive function, and the decline in their FC

is consistent with the clinical manifestations of cognitive

impairment in patients with chronic schizophrenia. The study

find that the thalamus as the most prominent biomarkers out of

many towards the diagnosis of schizophrenia and HC.In our study,
Frontiers in Psychiatry 09
PT were schizophrenia patients with long disease course and

repeated episodes, which should theoretically have strong

biological characteristics. In comparison with HC, the functional

connection of the thalamus was abnormal, which should also prove

the above research (9).

Studies have shown that schizophrenia is not only associated

with impaired higher-order cognitive functions, but also deficits in
A

B

C

FIGURE 5

Correlation analysis between RSNs and clinical indicators. (A) Correlation analysis between illness duration and ROI; (B) correlation analysis between
PANSS(N) and ROI; (C) ROC curve analysis of the ROIs between the two groups. r, correlation coefficient; p, P value.
A

B

C

FIGURE 4

Inter group differences in connectivity between RSNs. (A) Inter group differences in connectivity between ICs; (B) inter group differences in
connectivity between brain networks; (C) the ICs connectivity picture of internetwork FC; P value < 0.05.
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multisensory integration and perceptual processing (35). The AUN

of the brain is located in the bilateral temporal cortex, and its main

role is to process and process auditory information. A functional

magnetic resonance meta-analysis of auditory hallucinations

demonstrated that these hallucinations were associated with the

medial temporal lobe, which is involved in auditory verbal memory

(36). In our study, no significant decline in FC of the AUN was

found, which may be related to the long duration of the disease,

mostly hypofunctional manifestations, and the lack of obvious

positive symptoms. The human brain has a cortical stratification

mechanism that extends from the primary sensory system to the

higher cognitive function system, which helps the human brain

process different domains of functions (such as sensory and

cognitive processes) separately. In addition, the brain network can

be dynamically configured and interacted to achieve more complex

mental activities (37).

Patients with schizophrenia exhibit disorders in sensory

processing and integration of higher-order cognitive functions

(38). Disordered interaction between higher-order cognitive

functions and perceptual processing deficits play an important

role in the pathogenesis of schizophrenia (39). Abnormalities in

the FC between the sensorimotor system and the higher-order

cognitive system may also be associated with mutual inhibition,

disruption of the patient’s neurobiological circuitry, and

disturbance of the balance between excitation and inhibition (40,

41). In our study, we found that patients with chronic schizophrenia

had weakened connectivity between the DMN and the VIN, and the

DAN exhibited weakened connectivity with the SMN. These

findings verify the core defects of schizophrenia as supported by

the “disconnection hypothesis” (42).
4.2 Correlation between brain network FC
and clinical manifestations in patients with
chronic schizophrenia

Correlation analysis of brain network changes in the ROIs

revealed that there was a significant correlation between the

changes in brain network FC and clinical data in PT. The FC of

the left cuneiform lobe in the default network of PT was negatively

correlated with the course Cuneus_L of the disease—i.e., the longer

the course of the disease, the weaker the connectivity, indicating

that the longer disease course resulted in disruption of the DMN

connection of brain function. In our previous studies, we found that

patients with chronic schizophrenia had more prominent cognitive

impairment (19). In this study, we found that Frontal_Sup_L FC

was positively correlated with PANSS(N) (r=0.608, P=0.01)

(Figure 4B); furthermore, we discovered that PT had more

prominent negative symptoms and a greater difference in

Frontal_Sup_L FC compared with HC. This result is consistent

with those of previous studies. In our study, the AUC for the

differences in the cuneiform lobe, thalamus, and Wisconsin

classification test scores were higher, showing that these

indicators have higher sensitivity for the diagnosis of chronic

schizophrenia and provide a potential direction for future research.
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5 Limitations and challenges

There are some limitations in this study, firstly, this study is a

single-center study, with certain regional and selective bias, and

the sample size is relatively small, which may reduce the value of

the study results. Secondly, This results in reduced levels of test–

retest reliability of rs-fMRI measures in studies utilizing

repeated-measures designs in which the participants are

scanned multiple times over a specific timeframe. Variabilities

in the resting-state signal within individuals are also region-

specific, with brain regions involved in working memory,

inhibition, attention, and language showing higher levels of

intra-individual variabilities than that of the somatomotor or

auditory network (4). Another point of concern is the high

dimensionality of rs-fMRI data, in which methods such as ICA

or principal component analysis are used to reduce the

dimensionality by parcellating the whole brain into smaller

areas, but the optimal number of brain units to be used is still

not clear (43).
6 Conclusion

The changes of Structural and functional connectivity of

specific brain regions in patients with chronic schizophrenia

may be related to a long illness duration chronic schizophrenia

(10 years or more). This provides a theoretical basis for the early

diagnosis and clinical prognosis evaluation of a long illness

duration chronic schizophrenia.
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