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Introduction: University students are particularly susceptible to developing high

levels of stress, which occur when environmental demands outweigh an

individual’s ability to cope. The growing advent of mental health smartphone

apps has led to a surge in use by university students seeking ways to help them

cope with stress. Use of these apps has afforded researchers the unique ability to

collect extensive amounts of passive sensing data including GPS and step

detection. Despite this, little is known about the relationship between passive

sensing data and stress. Further, there are no established methodologies or tools

to predict stress from passive sensing data in this group.

Methods: In this study, we establish a clear machine learning-based

methodological pipeline for processing passive sensing data and extracting

features that may be relevant in the context of mental health.

Results: We then use this methodology to determine the relationship between

passive sensing data and stress in university students.

Discussion: In doing so, we offer the first proof-of-principle data for the utility of

our methodological pipeline and highlight that passive sensing data can indeed

digitally phenotype stress in university students.

Clinical trial registration: Australia New Zealand Clinical Trials Registry

(ANZCTR), identifier ACTRN12621001223820.
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1 Introduction

Stress is the physiological and psychological response when

environmental demands outweigh an individual’s ability to cope (1).

Although brief exposures to low levels of stress are normal and even

possibly beneficial for performance (2), chronic stress can lead to

serious consequences including depression, burnout, and disease (1, 3–

5). Early adulthood is characterized by rapid changes, both

physiological and psychological. Further, there are many new

challenges during this time including changing environments (e.g.

moving to a new city), deadline pressures, increased social interaction

and balancing school and work demands. Combined, these changes

and pressures make university students particularly vulnerable to stress

(6–8). They are well-documented to develop signs of stress-induced

psychological distress, which can lead to low academic achievement,

interpersonal problems, depression, burnout, self-harm, and suicide

(9, 10).

Numerous mental health self-help mobile applications have been

developed to combat university students’ poor mental health (11).

Here, students who are feeling distressed can rapidly access

affordable, or free, applications that aim to provide them with

coping skills and strategies for self-help without the need for

traditional face-to-face psychological sessions with a therapist.

Further, mobile phones are increasingly accessible and popular for

younger people and therefore present an easy tool by which to deliver

digital health services (12). In line with this, younger adults show

substantial interest in trying smartphone mental health apps, a

phenomenon that was further increased by the recent COVID-19

pandemic (13–15). Students, in particular, are attracted to these types

of apps due to immediate availability, convenience, confidentiality,

and an ability to avoid the stigma associated with seeking face-to-face

appointments with mental health specialists (12, 16). Additionally,

students experiencing academic stress and burdens associated with

transitioning to post-secondary institutions are known to seek out

smartphone apps to help them cope (17).

Mental health smartphone apps have the benefit of being able to

collect copious amounts of data from single users. Importantly,

smartphones have multiple passive sensors that enable tracking of

various aspects of users’ day to day lives. This passive sensing data

includes GPS, which determines the location of the phone, an

accelerometer and gyroscope to measure the acceleration in space

and patterns of physical movement, and a step detector to estimate

the number of steps. There has been a growing interest in using this

passive sensing data to identify variables that can predict mental

health status and outcomes. Variables that have been extracted from

passive sensing data have been shown to be associated with mental

health and psychiatric disorders including depression (18–21),

stress (22, 23), anxiety (21), sleep quality (23), dementia (24),

bipolar disease (25) and schizophrenia (26).

Despite the growing interest in the relationship between passive

sensing data and mental health, little is known about its relationship

with stress in university students. Stress in and of itself is an

important adaptive mechanism of survival that helps the body to

mobilize resources to respond to threat. However, the chronic

activation of the stress response system can lead to catastrophic

physical and mental health outcomes. More specifically, chronic
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stress has been shown to lead to depression (27), and problems with

cardiovascular (28) and immune (29) systems. Smartphone-based

interventions and tools that efficiently diagnose stress early are

urgently needed to prevent these substantial health burdens.

Although previous research has shown a relationship between

passive sensing data and mental health outcomes, there are

limitations. First, there has been limited description of the

methodologies used to both extract and process this type of data.

For example, GPS data often has differences in the accuracy of

determining coordinates due to a high dependency on factors

including unobstructed receivers and good reception. Another

example is that irregular smartphone internet connections can

result in a data loss. In fact, a recent review highlighted that passive

sensing papers were characterized by a high level of variability in the

quality of reporting, including methodologies, that limited

interpretability and reproducibility (30). It is imperative, therefore,

to begin to work toward establishing clear methodologies that can

translate into reproducible research using passive sensing data.

Second, although some studies report a clear relationship between

the two, others have not. For example, some studies show only a low

to modest relationship between passive sensing data and mental

health, depression, and anxiety (21, 31). Another required the use of

synthetic data to improve passive sensing model performance in

predicting sleep quality and stress in university students (23).

In this study, we had two central aims: (1) to establish a clear

methodological pipeline for processing passive sensing data and

extracting features that may be relevant in the context of mental

health and (2) to use this methodology to determine the relationship

between patterns of university students’ mobility, as indicated by

passive sensing data, and their stress levels. In doing so, we offer the

first proof-of-principle data for our methodological pipeline and,

using supervised machine learning models, demonstrate that passive

sensing data can indeed digitally phenotype stress in

university students.
2 Method

2.1 Study design and participants

Mental health app user data was collected from the Vibe Up

study (32). Vibe Up is a data collection application built for

Android and iOS that uses an artificial intelligence algorithm to

deliver the most effective mental health interventions to university

student users in Australia. Participants of this study also completed

survey-based mental health and wellbeing assessments throughout.

Passive data, including accelerometer, gyroscope, activity

monitoring, distance, and step count was collected across all 30

days of the study. Prospective users of the application were able to

opt out from the passive sensing collection aspect of the study,

therefore limiting the likelihood that users included in the present

study were influenced by concerns with app tracking. Eligibility for

participation was defined by the following: ≥ 18 years of age,

currently attending a tertiary institution in Australia, remaining

in Australia throughout the study period, and completed screening

surveys. Users also had to have a Kessler Psychological Distress
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Scale (K10) score of ≥20 (33) and Suicidal Ideation Attributes Scale

(SIDAS) (34) <21, to ensure that although users weren’t likely to be

“well” they didn’t have a high level of suicidal ideation. A total of

409 participants were included in the present study. Using 10-fold

cross-validation, we confirmed that this sample size was sufficient

for the analyses in our study. The deviation between folds were

1.7%, indicating robust performance of the models. The study was

approved by the University of New South Wales Human Research

Ethics Committee, approval no. HC200466.
2.2 Questionnaires

At screening, users were asked questions about their demographic

information including age, sex at birth, sexual orientation, language

spoken at home, international or domestic student status, previous

mental health diagnosis, and whether they used online mental health

services in the past 12 weeks. Once users started the Vibe Up app, they

completed the Depression and Stress Scale (DASS) three times across

the study (35). Here, responses are encoded using 4-item rating scale

ranging from ‘Did not apply to me at all’ (0) to ‘Applied to me very

much, or most of the time’ (3). As stress was our primary outcome of

interest (or output variable), we only used responses to the stress

subscale. The level of stress was determined by summing the item

scores, multiplying it by two, and converting it to a z-score using

reference values for the mean (11.19) and standard deviation (8.25) of

the general population of young adults aged 20-29. Further,
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participants were discretized based on the z-score into no stress

group (z-score < 0.5), mild to moderate (z-score 0.5 to 2.0) and

severe to extremely severe (z-score > 2.0) as has been done

previously (36).
2.3 Passive sensing data collection

Passive data collection is managed by the Conductor Software

Development Kit (SDK), which collects data based on predefined

schedules. For Vibe Up, this collection period was all day for 30 days

(the duration of each trial). The sample rates of each stream are unique

based on the data being collected. GPS location is only recorded

whenever a user has significantly moved. Similarly, activity

monitoring, distance, and step count are only recorded if a user is

actively moving. Accelerometer data is continuously recorded at 50 Hz

on iOS and 60 Hz on Android. Gyroscope is recorded at 50 Hz, but on

iOS this can only be collected while the app is in the foreground.
2.4 Passive sensing data feature selection

The use of passive sensing data is becoming more widespread

in the literature on mobile app use. Despite this, there remains

little consensus and few, if any, descriptions of the methods by

which passive sensing data is processed and features are extracted

for downstream statistical and predictive models. Here, we suggest
FIGURE 1

Schematic of the steps used to process raw passive sensing data collected from users’ mobile phones and identify usable features for subsequent
statistical analyses and predictive modelling.
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an approach that focuses on building directed, edge-weighted

graphs that capture the main features of user mobility

patterns (Figure 1).

2.4.1 Stage 1: processing raw passive
sensing data

The first consideration is that GPS coordinates collected from

mobile phone apps can have technical inaccuracies that cause a specific

location to look different every time an estimation occurs (i.e. has

slightly different GPS coordinates). Therefore, we present each location

as a multigraph with area of 5000m2, considerably larger than the

average property size in Australia, to reduce noise that may be caused

by these inaccurate coordinates and randomly captured activities while

someone is moving around their property. All coordinates that fall into

this area are considered as one location. From this data, it is then

possible to: (1) estimate the number of places a user visits, (2) calculate

the distance between these places, (3) identify which location is likely to

be home (highest number of occurrences/visits), and (4) identify which

locations are likely to be irrelevant (lowest number of occurrences/

visits). This data processed at this first stage can then be translated into

usable features for statistical analyses and/or predictive models,

including: number of places visited, frequency of visits, average

distance, and maximum and minimum distances.
2.4.2 Stage 2: characterize the routes and paths
between places using mobility matrices

After identifying the number of unique places visited, we can then

use the corresponding GPS timestamps to compute a mobility matrix

for each user. The mobility matrix, therefore, contains information

regarding date of visit, time of day (from 00:00 to 23:59), and the

order of visited places at specific time intervals daily across the study.

From here, we can then calculate routes and paths that a user has

taken between places. Further, by using the number of passes between

visited places (used to determine how often the route is used),

computed in Stage 1, we can estimate the relevance of the routes

between different places as well as the direction of travel. Importantly,

unlike in Stage 1, Stage 2 data processing covers most aspects of

human mobility: how many places a user visits, how many routes a

user uses to arrive at those places and how often, the typical order of

places visit, the time the working day starts and ends, average time a

person spent at a particular place, what the night time lifestyle looks

like (e.g. frequent night activities suggesting socialization), and so

forth. Additionally, it is worth noting that some apps collect data

about the types of movement, number of steps, and distance travelled.

Once overlapped with the GPS dataset, it is possible to add this data

to the geometric maps to determine the preferred way of travelling

between places. Although we did attempt to collect this type of data in

the present study, there was a lack of overlap between steps and GPS

timestamps. Therefore, instead of merging these data together, we

treated steps as a separate variable and summed up the number of

steps per day.We then used quantiles (25%, 50%, and 75%), as well as

maximum and minimum values as features. Overall, the data from

Stage 2 can be extracted as several features including number of

relevant places, number of paths, average path weight, and minimum

and maximum path weights.
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2.5 Analytical approach

To determine if the extracted passive sensing data features

could predict stress, we deployed several machine learning

algorithms including general linear algorithms [lasso and ridge

regression, shrinkage discriminant analysis (SDA)], geometric

distance-based algorithms [k-nearest neighbor (KNN)], tree-

based algorithms (classification and regression trees (CART),

random forest), and artificial neural networks (ANN). The

dataset was split into a training dataset and testing, held-out

dataset (70% and 30% respectively). Machine learning models

were built, fine-tuned and validated on the training dataset by

using three-fold cross-validation repeated five times. For the final

assessment of machine learning models’ performance a held-out

dataset was used. Where there were class imbalances of the output

variable, an oversampling technique was used whereby the

underrepresented class is randomly resampled to ensure that the

algorithms receive approximately the same number of classes. For

all algorithms, a fine-tuning grid method was used where all

possible combinations of parameters within the predetermined

ranges were estimated (Table 1).

To estimate the performance of the binary classification

models, we used area under the curve (AUC). This measure

reflects the level of sensitivity and specificity of the model and

thus general distinguishing capacity of the model. We also used

precision, indicating the proportion of positive predictions is

correct, recall, to indicate the proportion of positive cases that

were predicted correctly and F1, which is a harmonic mean of

precision and recall.

All inferential statistics were performed using Kruskal-Wallis

followed by a post-hoc Dunn test for three samples comparisons.

A Benjamini-Hochberg multiple correction was applied to adjust
TABLE 1 Parameters of the supervised machine learning algorithms
used to predict stress based on passive sensing data features.

Model Parameters

Linear regression a: 0, 1
l: 0.001-1

Shrinkage discriminant
analysis (SDA)

Diagonal: true, false
l: 0.001-1

K-nearest neighbor (KNN) Number of the nearest neighbors: 1-15

Classification and regression
trees (CART)

Complexity parameter: 0.001-0.1

Random forest Number of variables randomly sampled: 1-# of
features in dataset

Artificial neural
networks (ANN)

Number of hidden layers: 0 and 1
Number of neurons in hidden layers: 3-50
Activation function: tanh, relu, leaky relu
Optimization algorithm: Adam, RMSprop, SGD
Learning rate: 0.01-0.00001
Batch size: 16-32
Epochs: 10-100
Regularization dropout layer with
probability: 0.1-0.8
Kernel regularizer: L1, L2
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the p values and reduce the risk of a false positive. To determine the

correlation between features and the output variable, a Pearson

correlation coefficient was used. Analyses were performed in

RStudio with R 3.6.3. Supervised machine learning was done

using the caret package and neural networks were built using

keras library.
3 Results

3.1 Participant characteristics

The demographic characteristics of the Australian university

student users of the Vibe Up app are shown in Table 2. The

average age of user was 23.6 (range 18 to 34). The majority of

users identified as female (76%), spoke English at home (94%), and

were domestic students (95%). Approximately half of the user group

had a previous mental health diagnosis (54%) although

comparatively fewer (25% of users) had used online mental health

services in the past 12 weeks. A substantial number of users (39%)

identified as being LGBTQIA+ (Table 2).
Frontiers in Psychiatry 05
3.2 Features show weak relationship with
stress z-scores

We first performed inferential statistics determine which features,

if any, show significant relationship with the output (Figure 2).

Although twenty features significantly correlated with stress z-

score, the correlation coefficients (-0.15-0.17) indicated a weak

relationship between the features and output. To further confirm

our initial finding, we used linear regression with number of unique

nodes as a predictor and the stress z-score as the value. Similarly,

although the overall fit was statistically significant (p < 0.0001) it

demonstrated a very low R2 value (R2 = 0.04, F=7.56) and the data

points were scattered, indicating that the model is unable to explain

the variance in stress z-score. We then tried to perform feature

engineering, including weights of graphs, whereby we combined

existing features together to examine the correlation with output.

Although this slightly improved the correlations, they were still weak

(-0.19-0.21). We further confirmed this by developing and training a

ridge linear model on a training dataset and testing the model on a

held-out dataset. This resulted in an RMSE of 0.87, suggesting that

the model was misclassifying by an entire category of users.

Our initialfindingshighlighted thatweak correlationsdon’t result in

predictive power.Oneway to improve theperformance of ourpredictive

models is to discretize the output variable into a few groups. This would

shift away from a regression-type problem towards classification.
3.3 Multi-class classification is similarly
unable to predict stress

We binned the stress z-scores into three categories: no stress (<0.5),

mild to moderate (0.5 to 2), and severe to extremely severe (>2). To

determine if the use of stress as a continuous, rather than categorical,

variable was affecting the ability to develop predictive models, we next

binned the stress z-scores into three categories: no stress (<0.5), mild to

moderate (0.5 to 2), and severe to extremely severe (>2). A Kruskal-
TABLE 2 Demographic characteristics of the university student users of
the Vibe Up app.

Sample numbers 409

Age (average, ± SEM, and range) 23.6 ± 5.2 (18-34)

Sex at birth 76% female

Identify as LGBTQIA+ 39%

Speak English at home 94%

Domestic student 95%

Previous mental health diagnosis 54%

Used online mental health service in
the past 12 weeks

25%
FIGURE 2

Examples of the linear nature of the relationship between passive sensing features and output (stress) for the best performing features. (A)
Individual feature of number of unique nodes (r = 0.17). (B) Engineered feature of combined average node visits per day with 75th quantile of
graph weight (r = 0.21).
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Wallis (c2 = 11.03, df = 2, p = 0.004) with post-hocDunn test confirmed

that there was a statistically significant differences in the number of

unique nodes between these groups (Figure 3).

After successfully binning the stress z-scores into three distinct

groups, we next developed a multi-class classification model, CART, to

identify if any of the features were now able to predict stress. The

model, however, demonstrated very low predictive power (AUC <0.5).
3.4 The mild-moderate stress group
impacts predictive power in a
binary classification

We next sought to identify the potential source of our models’

low predictive power. One possibility was the inclusion of the mild

to moderate stress group. The rationale for this was twofold. First,

there is evidence that mild to moderate stress can be beneficial,

including improving performance and efficiency on dual tasks (37)

and concentration (38). It may be the case, therefore, that while

some university students may find stress overwhelming others may

benefit from mild to moderate stress. This possibility, therefore,

suggests that the mild to moderate group is likely heterogenous and

highly variable. Evidence for this can also be seen in Figure 2

whereby the variability in number of nodes and node visits per

weight is higher in the mild to moderate users (z-score 0.5 to 2).

There is also substantial overlap between the mild to moderate

group with the no stress and severe to extremely severe groups on

these two passive sensing measures (Figures 3A, B). An additional

consideration was more severe cases of stress in university students

are likely to co-occur with clinical mental health diagnoses,
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including major depression (39). Therefore, we wanted to assess

whether we could improve the clinical translatability by identifying

whether digital phenotyping via passive sensing data could

differentiate the not stressed from the severely stressed.

After removing the mild to moderate group, we re-performed a

binary classification to see if our passive sensing features could

predict whether a user had no or severe to extremely severe stress.

Using inferential statistics, we first demonstrated that removal of the

mild tomoderate group improved both the correlation coefficient and

significance of the relationship between features and stress (Table 3).

Given that we were able to substantially improve the correlation

coefficient, we then deployed several predictive machine learning

models to determine if these correlations were sufficiently strong

enough to be good classifiers. Using the AUC metric, our models

showed satisfactory performance (Table 4). Despite this, however, the

precision and/or recall for all but one models was low, indicating that

the models struggled to predict at least one of the two groups.We then

developed and deployed a neural network to help overcome this and

were indeed able to improve the performance metrics, suggesting that

it was able to successfully distinguish between users who were not

stressed and those who were severely to extremely severely stressed.
3.5 Further polarizing the no stress and
severe to extremely severe stress groups
continues to improve predictive power of
binary classification models

Although it was clear that the mild to moderate group was indeed

affecting the predictive power of our models, only our neural network
FIGURE 3

Stress z-scores binned into three categories: no stress (<0.5), mild to moderate (0.5-2), and severe to extremely severe (>2). (a) Per individual feature
of number of unique nodes. (b) Per engineered feature of combined average node visits per day with 75th quantile of graph weight.
TABLE 3 Examples of features correlated with the stress z score in original dataset and trimmed dataset with no mild to moderate stress group.

Features Original Dataset with Three Groups No Mild to Moderate Group

Correlation
Coefficient

p value Correlation
Coefficient

p value

Number of unique nodes 0.17 0.002 0.37 0.0001

Number of nodes visited per day (75th quantile) 0.14 0.003 0.36 0.0002

Average number of steps per day -0.14 0.003 -0.25 0.002
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(out of 6 different supervised machine learning models) performed to

a sufficiently high level. This suggested that our findings may be

limited with respect to generalizability. To address this, we further

increased the minimum z-score of the severe to extremely severe

stress group (increased z-score of >2 to z-score of >2.2 to remove

those sitting on the “cusp” of severe at 2.1). Again, the rationale for

this was that we wanted to determine if there was a potential for

clinical translatability of our model to digitally phenotype those who

are not stressed relative to those who are experiencing such severe

stress that they are high risk of comorbid clinical mental health

diagnoses like major depression.

We first confirmed that increasing the minimum z-score of the

severe to extremely severe group to 2.2 had a positive effect on the

correlation coefficient and statistical significance between our

features and groups (Table 5).

We then examined how redefining the severe to extremely severe

stress group affected predictive performance in our machine learning

models. This improved the models’ performance across all models used

and performance metrics. Importantly, redefining the severe to

extremely severe stress group improved both the precision and recall,

suggesting that our models were indeed able to differentiate between

users with no stress and those who were severely to extremely severely

stressed (Table 6).

To further visualize the differences that were predictive of stress

status, we built multigraphs of passive sensing features for

representative single users from both the no stress and severe to

extremely severe stress groups. For the user with no stress, they

visited only seven places an average time of once per day across the
Frontiers in Psychiatry 07
duration of the study. They also had a 75th quantile path weight of 8.25

(Figure 4). The severe to extremely severe user, however, visited 25

places an average of three times per day throughout the study and a

75th quantile path weight of 4 (Figure 4).
4 Discussion

Using a novel methodological pipeline, we showed that key

features from passive sensing data served as a predictor of severe to

extremely severe stress across several supervised machine learning

models. Key features included number of unique nodes (locations),

number of nodes visited per day (75th quantile), and average

number of steps per day. These passive sensing features alone

were able to differentiate someone who was not stressed versus

someone who was severely to extremely severely stressed.

Although two previous studies demonstrated that there was a

correlation between GPS features and stress levels in university

students, they focused on other features including longer distance

between locations (40), evenly distributed time spent at different

locations (40), and total distance travelled daily (22). To our

knowledge, this is the first paper that shows that a high number

of locations, number of locations visited per day, number of steps

could predict university students who were severely to extremely

severely stressed. Further, this is the first study that has used

supervised machine learning to demonstrate that these features

can indeed predict the level of stress in university students. This is

an important finding in the context of both diagnosis and

treatment. First, it suggests that apps that collect passive sensing

data may be used to diagnose or predict the level of stress someone

is experiencing, allowing us to move away from cumbersome, and at

times biased, self-report questionnaires to assess stress (41). Second,

our finding suggests that we can use passive sensing data to

determine a mental health intervention that may be best suited to

a particular user. Personalized mental health interventions have

gained popularity with the recent advent of just-in-time adaptive

intervention (JITAI) apps. These apps are designed to tailor

interventions to the particular needs of the user based on their

response to screening questionnaires (e.g. psychological self-

reports) (42). Importantly, passive sensing data analyses do not

require any additional efforts on the part of the user, highlighting

that apps can rapidly tailor or adjust interventions on both
TABLE 4 Machine learning algorithm performance metrics for
predicting users with no stress vs. severe to extremely severe stress.

Machine Learning
Algorithm

Precision Recall F1 AUC

Classification and
regression trees (CART)

0.17 0.50 0.26 0.68

Random Forest 0.24 1 0.38 0.67

Shrinkage discriminant
analysis (SDA)

0.47 0.67 0.55 0.69

General linear model 0.24 0.80 0.36 0.67

K nearest neighbor 0.41 0.70 0.52 0.70

Neural network 0.82 0.78 0.80 0.79
TABLE 5 Examples of features correlated with the stress z score in original dataset, trimmed dataset with no mild to moderate stress group, and a
dataset where severe to extremely severe stress >2.2.

Features Original Dataset with
Three Groups

No Mild to Moderate Group No Mild to Moderate Group,
Severe to Extremely Severe

Stress >2.2

Correlation
Coefficient

p value Correlation
Coefficient

p value Correlation
Coefficient

p value

Number of unique nodes 0.17 0.002 0.37 0.0001 0.41 0.0001

Number of nodes visited per day
(75th quantile)

0.14 0.003 0.36 0.0002 0.42 0.0001

Average number of steps per day -0.14 0.003 -0.25 0.02 -0.27 0.01
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immediate and ongoing bases. Future research would benefit from

examining whether the inclusion of the passive sensing data features

can help to better tailor mental health intervention programs to the

individual user.

As discussed, although there are several examples of previous

work examining the relationship between GPS data and stress,

these works have been limited to correlational analyses and have

not fully described the data-specific methodologies. Critically, our

study is the first to describe a clear methodological pipeline for

extracting features from real-world passive sensing data and, using

supervised machine learning, confirm that they can be used for

digital phenotyping. With the growing accessibility of passive

sensing data sourced from healthcare smartphone apps, there is

an urgent need to establish clear methodologies that can be used

and replicated by other research groups. First, this marks an

important step away from black box style analyses, toward those

that are both robust and reproducible. Second, clear

methodological pipelines for rapid digital phenotyping from

passive sensing data are essential for the success of personalized

healthcare apps like JITAIs. Given that we’ve established that

digital phenotyping severe to extremely severe stress is possible,

there are two next steps for future research. First, our approach
Frontiers in Psychiatry 08
should be validated in a cohort of patients with severe stress-

related clinical diagnoses such as major depression to establish

its clinical translatability and validity. Second, future research

should incorporate our methodological pipeline into a JITAI app

to establish if it can improve its potential for targeted,

personalized interventions.

While this is a promising first step toward using passive

sensing data for digital phenotyping, there are some limitations.

First, our passive sensing data was unable to digitally phenotype

users with mild to moderate stress, as demonstrated by the need to

further polarize the Z-scores to the upper limit of 2.2. As

discussed, our goal was to test the potential for clinical

translatability despite the lack of a clinically diagnosed cohort.

More specifically, users with extremely severe levels of stress are at

a higher risk of comorbid mental health diagnoses (9, 10). On the

other hand, the need to further polarize participants’ stress may be

indicative of a high level of heterogeneity in the moderate stress

group. Future research, therefore, should focus on two important

aspects. First, what is driving the potential heterogeneity of

moderate stress. For example, perhaps these people are better

able to cope with stress relative to their extremely stressed

counterparts. Another consideration is whether some users

benefit from their stress levels. Future research, therefore, would

benefit from focusing on if there are ways to differentiate between

these types of “stressed” users. This could be done, for example, by

the inclusion of additional questionnaires to assess users’

subjective experience of their current performance on tasks and

ability to handle stress. From an early intervention approach, it is

essential to elucidate whether digital phenotyping may be able to

predict those at risk of transitioning from mild to moderate stress

to more severe stress. This remains an important line of enquiry

for future research. Another consideration of the present work is

that the users of the Vibe Up app were more likely to be female

than male, resulting in a 3:1 ratio of females to males. Although

this is in line with previous research of university student mental

health app users (43), it suggests that future work needs to

establish whether this digital phenotyping extends to male
TABLE 6 Machine learning algorithm performance metrics for predicting
users with no stress vs. severe to extremely severe stress.

Machine Learning
Algorithm

Precision Recall F1 AUC

Classification and
regression trees (CART)

0.5 0.67 0.55 0.55

Random Forest 0.67 0.67 0.67 0.62

Shrinkage discriminant
analysis (SDA)

0.67 0.67 0.67 0.74

General linear model 0.75 0.69 0.72 0.68

K nearest neighbor 0.67 0.62 0.64 0.64

Neural network 0.93 0.87 0.83 0.90
FIGURE 4

Multigraphs of representative user from the (A) no stress and (B) severe to extremely severe stress groups.
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students as well. A final limitation is that we lacked clinical

diagnostic data for these users and therefore relied on self-

report of symptoms. Considering this, future work should

replicate our study and pipeline in a clinical cohort to identify

its generalizability to clinical populations.
5 Conclusion

In conclusion, we have shown in the present study that passive

sensing data from a smartphone application, including number of

locations, number of locations visited per day, and average

number of steps per day were able to be used to differentiate

between a university student who was not stressed versus severely

to extremely severely stressed. This work has important

implications for further tailoring personalized mental health

interventions, including JITAIs, based on data that does not

require additional efforts on the part of the user. Despite this,

we did find that moderately stressed participants were unable to be

digitally phenotyped from the same passive sensing data variables.

The reason(s) for this remain unclear but may be due to

heterogeneity in this group stemming from variables including,

for example, ability to cope with stress and perceiving stress as

positive rather than negative. Future work should focus on

identifying the sources of this heterogeneity and examining

whether our pipeline is generalizable to a cohort with confirmed

clinical diagnoses.
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