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The theoretical foundations of understanding psychiatric disorders are

undergoing changes. Explaining behaviour and neuroendocrine cell

communication leaning towards immunology represents a different approach

compared to previous models for understanding complex central nervous

system processes. One such approach is the study of immunoglobulins or

autoantibodies, and their effect on peptide hormones in the neuro-endocrine

system. In the present review, we provide an overview of the literature on

neuropeptide/transmitter and autoantibody modulation in psychiatric disorders

featuring emotional problems and aggression, including associated illness

behaviour. Finally, we discuss the role of psycho-immunology as a growing

field in the understanding of psychiatric disorders, and that modulation and

regulation by IgG autoAbs represent a relatively new subcategory in psycho-

immunology, where studies are currently being conducted.
KEYWORDS
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Introduction

A field in which psychiatric disorders have an association with the immune system has

gradually emerged over the years. Explaining behaviour and neuroendocrine cell

communication leaning towards immunology represents a different approach compared

to previous models for understanding complex central nervous system (CNS) processes.

One such approach is the study of immunoglobulins (Ig) or autoantibodies (autoAbs), and

their effect on peptide hormones in the neuro-endocrine system. Research has shown that

gut microbes have an impact on the neuroendocrine system (1), and that bacteria are able

to respond to stressor-induced neuroendocrine factors of the sympathetic nervous system
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1419574/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1419574/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1419574/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1419574/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2024.1419574&domain=pdf&date_stamp=2024-09-24
mailto:Henning.Vaeroy@ahus.no
mailto:Serguei.Fetissov@univ-rouen.fr
https://doi.org/10.3389/fpsyt.2024.1419574
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2024.1419574
https://www.frontiersin.org/journals/psychiatry


Værøy et al. 10.3389/fpsyt.2024.1419574
(SNS) and the HPA-axis, and glucocorticoids can affect bacterial

metabolism (2, 3). Further studies have favoured the hypothesis that

molecular mimicry is a mechanism by which specific neuropeptides

are connected to gut proteins synthesised by (e.g., the

Enterobacteriaceae via the immune system; 4). Hence, among the

most recent advances in research on behaviour, is the expanded

impact of the human microbiota and the modulation by

autoantibodies (autoAbs). Microbes in the gut microbiota

produce proteins, which enter the bloodstream and by molecular

mimicry with the host’s naturally existing neuropeptides stimulate

production of autoAbs cross-reactive with these neuropeptides (5–

9). These autoAbs, as any circulating IgG, have limited access to the

CNS. However, if they pass the blood-brain barrier, they seem to

modulate the neuronal activity in the brain regions normally

regulating human behaviour (10). Studies have confirmed that

immunoglobulin G (IgG) autoAbs have the potential to influence

the regulation of at least some parts of human behaviour mediated

by adreno-corticotropic hormone (ACTH) (11). In addition,

autoAbs may act as carrier proteins of active neurohormones to

distant sites, followed by receptor activation (12). The types of

activated receptors and different kinetic properties contribute to the

explanation of e.g., why some cellular responses are more rapid,

whereas others are stronger and longer lasting. However, much

work remains to be done before conclusions can be drawn. The first

section in this review presents an introduction to the definition of

human behaviour, while the following sections cover an update of

immunological findings and neuropeptide/transmitter and

autoantibody modulation in psychiatric disorders featuring

emotional problems and aggressive behaviour.
Human behaviour

Several attempts have been made to define human behaviour, and

in-depth studies have resulted in explanations similar to those

provided by Hutchison (13). In brief, human behaviour is the way

individuals express themselves mentally, physically, and socially,

alone or in groups, as a response to triggers (13). Behind behaviour

lie genetic and environmental properties, as well as emotions and

mindset. The behaviour displayed by other people when we observe

them, results from values and attitudes reflecting individual inherent

thoughts and feelings. This makes it possible, to some degree, to

decipher and understand someone’s individual psychological traits

and personality. However, there are biases linked to the observer’s

interpretations of what is seen, causing uncertainty.

In the context of emotional and aggressive disorders, there is

associated illness behaviour (IB), a concept often referred to. The

difference between symptoms and IB can be difficult to explain, but

for the latter it depends on how a symptom is perceived, elaborated

and finally acted upon by the patient.

One description of IB states that “The concept of illness

behaviour, describes the ways persons respond to bodily indications

and the conditions under which they come to view them as abnormal.

Illness behaviour thus involves the way persons monitor their bodies,

define and interpret their symptoms, take remedial action, and utilise
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It also is concerned with how people monitor and respond to

symptoms and symptom change over the course of an illness and

how this affects behaviour, remedial actions taken, and response to

treatment” (14). A more recent suggestion states that: “Illness

behaviour refers to peoples’ experiences and interpretations of the

symptoms and illness/disease/injury etc., and their interactions with

various social networks as they try to cope with or accommodate

these symptoms”, (15).

In brief, suffering from a medical condition will influence your

behaviour. Thus, the complexity of human behaviour is immense,

and the number of various levels of biological substrates involved is

at present beyond the reach of our full understanding. An example

of how an illness may have a great impact is COVID-19, which

through immune response has caused both morbidity and mortality

during and long after the infection (16–18).
Psychiatric disorders featuring
emotional problems

We have learned that anxiety and depression occur quite

frequently in our population, and traditionally, many readers

associate the term emotional disorders with exactly those two

conditions. Extensive research has established that emotional

disorders are the most common psychological disturbances, and

during our lifespan, these conditions may cause notable impairment

(19–21). In addition to their frequent occurrence, many patients

wait to seek immediate treatment for the conditions, a factor that

potentially exacerbates both personal and economic costs (22).

It has been suggested that the frequent use of the term

emotional disorders may lead to an increased risk for confusion

since it may reflect different meanings (23). Considering emotional

disorders as something beyond anxiety and depression, it has been

proposed to incorporate borderline personality disorder (BPD),

eating disorders (ED) and insomnia (23). In this paper, we chose

to apply this recent definition and expand the topic to psychiatric

disorders featuring emotional problems.
Eating disorders

Disorders such as anorexia and bulimia are the two main eating

disorders (ED), both of which are classified as neuropsychiatric

disorders due to altered behaviour resulting from brain dysfunction

(5, 24). There is increasing support that the underlying etiology of

ED seems to be a latent infection with Enterobacteriaceae, causing

the production of IgG autoAbs cross-reactive with alpha(a)-
melanocyte-stimulating hormone (a-MSH), (5). The paper also

provide a more detailed discussion about the postulated role of

aMSH-reactive IgG in ED including their antigenic origin in gut

microbiota. a-MSH is a neuropeptide of the melanocortin (MC)

system inducing satiety via the MC type 4 receptor (MC4R) (25, 26).

An Escherichia coli-derived protein, caseinolytic protease B (ClpB),

was found to play a role of a-MSH-antigen mimetic (9). In bacteria
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ClpB functions as a chaperone protein assisting in the unfolding of

proteins in the cell following heat shock and other stress (27, 28),

thereby preventing random aggregation. There is activation of

MC4R receptors by ClpB induced a-MSH cross-reactive IgG

autoAbs forming immune complexes (IC) with a-MSH (6, 29).

Still, autoAbs, reactive with other regulatory peptides like ghrelin

and corticotrophin, could also play a part in the pathophysiology of

ED, influencing the regulation of appetite (30) and stress response

(11, 25, 26). Moreover, the role of a-MSH-binding IgG as a natural

a-MSH-carrier protein in the blood was demonstrated in a recent

publication which also revealed the significant correlation of a-
MSH-reactive IgG and BMI in both healthy adolescents and

patients with anorexia nervosa (31).
Borderline personality disorder

Borderline personality disorder affects up to 2.7% of the

population and is linked to functional impairment and suicide

(32). A case linking classic BPD with fluctuating mood and

antithyroglobulin antibody titres measured over a period of ¾ of

a year suggested a clinically significant, longitudinal correlation

between fluctuating antithyroid antibody titres and symptoms of

borderline (33). As part of a multi-factorial influence on the

development of BPD (34–36), inflammation has been suggested

as a possible risk factor (37).

One study, looking at the link between autoimmunity and

psychotic symptoms, described an association between DNA

hydrolysing IgG catalytic antibodies (DNase activity) and the

Positive and Negative Symptoms Scale (PANSS) and Montgomery

Aasberg Depression Rating Scale (MADRS) in two subgroups of

patients: one with BPD and one with schizophrenia (SCZ). In the two

groups of patients studied, the levels of interleukin-6 (IL-6) and total

IgG in BPD patients were higher than in SCZ and healthy controls,

indicating a relative inflammatory nature of BPD, while autoimmune

comorbidity was mainly observed in SCZ patients (38).

Studies have also described decreased levels of brain-derived

neurotropic factor (BDNF) in platelets from patients with BPD (39),

but this has not been confirmed (40). Other studies have reported a

lower level of BDNF and a higher level of tumor necrosis factor

(TNF)-a (41) and interleukin (IL)-6 in peripheral blood (42), and

there are also reports of increased plasma levels of oxidative stress

markers, such as malondialdehyde (MDA) and 8-hydroxy-2-

deoxyguanosine (8-OHdG) (43).

A study on inflammatory and oxidative biomarker alterations in

borderline personality disorder (BPD) described two clusters of BPD

patients. Inflammatory and nitrosative proteins (TBARS, nitrates,

catalase, GPx and SOD) were measured in 69 patients with BPD.

The results revealed that based on the results, the patients could be

clustered in 2 subgroups where in one there was increased anti-

inflammatory and increased antioxidant levels and longer disease

chronicity and less acute symptoms such as anxiety (44). An

exploratory study on the pathophysiology of BPD with focus on the

levels of inflammatory cytokines, brain-derived neurotrophic factor

(BDNF) and oxidative stress substances known to enhance neuronal

damage, showed that patients with BPD have a lower level of BDNF
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(IL)-6 in peripheral blood. This was associated with elevated plasma

levels of oxidative stress markers, e.g. malondialdehyde and 8-

hydroxy-2-deoxyguanosine (32). Another study proposed a possible

link between emotional dysregulation and psychopathological

similarities between BPD and ED. In addition, trauma exposure was

found to be of importance in both disorders. There were no shared

inflammatory findings, however it was concluded that several risk

factors were present, e.g. eating disorders, trauma and impulsivity as a

personality feature, all associated with inflammatory features (45).
Narcolepsy

Narcolepsy type 1 (NT1) is a chronic sleep disorder where

inflammation is proposed as the underlying neurodegenerative

mechanism (46–49). NT1 shows a specific adaptive immune

response directed towards hypocretin/orexin neurons, thus

supporting an autoimmune hypothesis (48, 50). Main features in

narcolepsy are sleepiness during daytime and cataplexy due to loss

of immunoreactive hypocretin or orexin (ORX) neurons in the

hypothalamus (51). Narcolepsy displays emotionally triggered

episodes with loss of muscle tone (cataplexy), nocturnal sleep

disturbances, sleep paralysis and hypnagogic and hypnopompic

hallucinations (46). NT1 is associated with changes in cytokine

levels and recently the gut microbiota seems to be involved in the

inflammatory development (46, 52), and possible impact from the

COVID-19 pandemic (53). Studies have also shown microbial

translocation through the gut barrier in narcolepsy patients (54).

Production of T helper 1 lymphocytes (TH1) cytokines regulate a

major part of the immune based physiological activity (47), whereas

the T-helper 2 cells (TH2) produce anti-inflammatory cytokines

which counteract the TH1 response (55). Autoantibodies have been

detected in plasma from patients (48), and influenza A and beta

infections can cause the onset of narcolepsy (49). Through molecular

mimicry, foreign antigens may activate autoreactive T cells or B cells

due to similar structure between foreign and self-antigens resulting in

autoimmunity (56), supporting that in NT1 patients a T-cell

mediated autoimmune origin of NT1 (56, 57). In particular

narcolepsy-cataplexy shows higher serum levels of autoantibodies

against orexin bound as immune complexes, indicating a possible

role in the regulation of the sleep-wake cycle (58).
Anxiety disorders

Anxiety may be difficult to define, but according to DSM 5 (59)

the anxiety disorders include Generalised Anxiety disorder (GAD),

Obsessive - Compulsive disorder (OCD), Panic disorder, Post

Traumatic Stress disorder (PTSD) and Social phobia. However, a

later reclassification has defined PTSD as a trauma/stressor-related

disorder. Studies have shown that inflammation can influence

signalling in the HPA axis (60) and brain regions of importance

for anxiety and fear as seen in PTSD (61). Other studies in support

of an association between inflammation and anxiety and depression

has also been established (62, 63).
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There is a link between immunity and anxiety (64), including a

high prevalence of anxiety disorders in patients with immune linked

disorders. A very recent study on general anxiety disorder (GAD)

reported a few causal links between some immunophenotypes and

GAD (65). However, another study (66) explored the previously

described association between anxiety and Systemic Lupus

Erythematosus (SLE) (67, 68), performing a bidirectional

Mendelian randomisation (MR) analysis, and found no support

for a causal relationship between SLE and anxiety disorder (66).

Neuroinflammation seems to play a role in anxiety (69), involving

the corticotropin releasing hormone receptor 2 (CRHR2) in the

etiology of the disorder (70, 71).

It is widely accepted that the CNS is targeted by the immune

system, but how autoAbs pass through the blood–brain barrier (BBB)

is still unclear. Under normal conditions, immunoglobulins go through

the BBB at a very low rate; a good example is immunoglobulin G (IgG).

IgG concentration in the cerebrospinal fluid (CSF) is approximately

1% of the levels in the peripheral circulation indicating that once the

autoantibodies reach the CNS they can cause disease as it has been

observed in autoimmune encephalitis, an immune based condition

causing non-infectious brain inflammation.

After thorough analysis looking for possible biomarkers, studies

have shown that elevated thyroid-stimulating hormone (TSH) and

anti-thyroid globulin (TGAb) could function as significant

predictors of anxiety in depressed patients (72). Regression

analysis has shown that in patients with combined anxiety and

depression, both TSH levels and TGAb levels are found to be

associated with anxiety. However, the clinical characteristics and

factors associated with anxiety varied with the age of onset (73).
Depression

An association between social stress, depression, cytokines,

chronic low-grade inflammation and autoimmune disorders has

been shown (74–82). Greater concentrations of C-reactive protein

(CRP), interleukin-6 (IL-6) and tumor necrosis factor-a (TNF-a)
have also been reported, contributing to the development of the

hypothesis focusing on a cytokine/inflammatory pathway in the

pathophysiology of depression. Antibodies have also been

implicated in the pathophysiology of depression (83) and the role

of immune-related mechanisms in depression has been supported

by the consistent finding of raised peripheral concentrations of

proinflammatory cytokines in the blood of patients with depression

(83, 84). However, the relevance of inflammation in depression

seems related to coexisting physiological disturbances seen in

depressive patients, such as aberrant HPA axis activity and in

particular intracellular mitochondrial processes (85, 86). Synaptic

plasticity and antibodies (anti-ribosomal-P and anti-N-methyl-D-

aspartate receptor antibodies) are deeply related to the pathogenesis

of neurodevelopmental disorders, especially depression (83). In

addition, elevated TSH, anti-thyroglobulin (TgAb), and thyroid

peroxidase antibody (TPOAb) levels have all been linked to

depression (87). There are also studies strongly linking depression

with concomitant Graves’ disease (GD) suggesting GD as a high risk

for depression, although more data is needed (88). Recently, a study
Frontiers in Psychiatry 04
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with depression from 2007 to 2018, with the highest rate found in

white non-Hispanic old women (89).

Depressive disorders are also associated with autoAbs against

neuropeptide Y and oxytocin an vasopressin (90, 91). Animal studies

have also shown depressive behaviour in mice after autoAbs injection

and improvement following immunosuppressive treatment, thus

AutoAbs and depressive symptoms seem linked in depressive

subjects; autoAbs also causing tissue damage to the brain (92).

Pursuing the idea of a cytokine/inflammatory pathway, it is also

suggested that chronic, low-grade inflammation plays a part in the

maintenance of depression (93, 94). Still, low-grade and subclinical

inflammation is not a main feature in all depressed patients, but

rather in a subgroup (95). In this regard, studies of neuronal surface

antigens (NSAbs) (which are the target of autoAbs) against various

antigens have also been suggested to be involved in the pathology of

both depression and anxiety, but again, indications are that this

could be valid only for small groups of patients (96).

The gut microbiota and depression
The gut is the largest endocrine organ in the body (97, 98), and

contains a number of intrinsic and interneuron connections in the

body’s autonomous nervous system (99, 100). The gut complex

seems to be involved in emotional and sensory processing via the

gut-brain axis, (101), and studies have shown that exposure to stress

may have influence on the production of peptides with

antimicrobial effects (102), and furthermore that stress over some

time may cause both depression and anxiety. Of interest is that the

latter conditions also have been associated with alterations of the

composition of the gut microbiota (103–106).

The gut microbiota is composed of several types of commensal

microorganisms, including bacteria, yeast, and viruses—microbes

that help to maintain the integrity of the mucosal barrier.

Communication with a bidirectional dialogue exists between the

gut microbiota and the brain and the metabolic activity of the gut

microbiota and bioactive metabolites are crucial for a normal brain

function and have great influence on the course of many

neuropsychiatric disorders (107).

In a study of gut microbiota and depression, the composition of

the faecal microbiota found in depressive patients had an

overrepresentation of enterobacteria and alistipes. Among the

results, there was a negative correlation between Faecalibacterium

and depressive symptoms (104). Another study confirmed the

differences seen in the gut microbiota composition, showing that

in depressive-like rats, a significantly different composition was seen

compared to the control animals (108). Others studied patients with

Irritable Bowel Syndrome (IBS) coexisting with depression, and

found that altered microbial and metabolomic profiles were

associated with clinical and psychological symptoms (109), e.g.,

bacterial phylotypes correlate with anxiety-like behaviour (110). To

complicate matters, in a meta-study of mental disorders and gut

microbiota composition of 24 patients with major depressive

disorder (MDD), 7 with bipolar disorder (BD) and 15 with

schizophrenia, there was no convincing evidence for a difference

in the number or distribution (a-diversity) of bacteria in those with

a mental disorder compared to controls (111). In a more recent
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study (112), it was described that a high abundance of Candidatus

soleaferrea reduced the risk of prenatal depression and that the

higher the concentration of propanoic acid, the higher the risk of

prenatal depression (112).

The term metabolome refers to the system of qualitative and

quantitative collection of low-molecular-weight molecules in a cell,

including a various range of metabolites in a biological sample. In

brief, the metabolome contains both molecules derived from host

endogenous processes and those derived from the microbiota (113).

There are recent results emphasising that the gut microbiota responds

to changes in female sex hormone status, a finding with potential

negative consequences for normal metabolic function (114). The

organisms in the microbiota may also provide health benefits to the

host (115) and the use of probiotics or faecal microbiota transplants

from healthy individuals are examples of what may ease the illness

and induce fewer symptoms in patients with psychiatric disorders

(115, 116). A study of neonates in a neonatal intensive care unit found

that higher levels of neonatal infant stressors were associated with

differences in the microbiome compared to infants with lower

exposure to neonatal infant stressors (117). Interestingly, these

microbiome differences were evident in adulthood even though the

adversity occurred in childhood (118), demonstrating that early life

stress can have lasting effects on microbiome composition.

Future research on the relationship between the gut microbiota

and associated disorders with an imbalance in the microbiota

composition is needed (119–121).

The gut microbiota and molecular mimicry
The enteric mucosal, endocrine and immune systems, operate

intimately with each other, and the three systems share

characteristics between entero-endocrine cells, pituitary

corticotropic cells and pancreatic islet cells (106), and likewise the

possibility for the secretion of polypeptide hormones is shared. For

each of these three cellular systems, there are molecules thought of

as being unique for each system—cytokines (immune system),

neurotransmitters (nervous system), and hormones (endocrine

system), which also share a common developmental origin (122).

Gut epithelial sensor cells or endocrine cells seem to play a role for

the synaptic connection of the intestinal lumen to the brainstem

(123), thereby allowing regulation of the gut function and

communication with the CNS by secreting hormones, which in

turn, may activate local sensory nerves or by establishing synaptic

communication with enteric glia structures (124).

A person’s gut microbiota contains high microbial variation and

therefore provides continuous antigenic stimulation, maintaining

physiological immune activity. Molecular mimicry seems crucial for

how microbial proteins in the gut microbiota and various

neuropeptides are involved in the regulation of motivated

behaviour and emotion. Immunoglobulins reactive with these

neuropeptides are present in humans and are associated with

neuropsychiatric conditions including depression, anxiety, eating

disorders, and sleep conditions (7).

A recent model for understanding the interaction between the

gut microbiota and bacterial mimicry is based on the finding that an

anorexigenic bacterial protein Escherichia coli caseinolytic protease
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MSH-cross-reactive autoantibodies and this protein was also

detected in human plasma. The model states that eating disorders

such as anorexia nervosa (AN) and bullemia nervosa (BN) may be

the result of altered signalling between the gut microbiota and host

neuroendocrine and immune systems regulating feeding behaviour.

The model includes a specific bacterial antigen mimetic of a-MSH

and the triggering of the production of a-MSH cross-reactive

autoantibodies (autoAbs). These antibodies form immune

complexes (IC) between IgG autoAbs and a-MSH, activating the

melanocortin (MC) system; an activation being of great importance

for the regulation of feeding behaviour. Exposure to highly

immunogenic bacteria such as Salmonella, later in life, as well as

medication or environmental-induced intestinal infections and

dysbiosis, may lead to increased prevalence of pathogenic

Enterobacteriaceae and in turn the production of a-MSH-cross

reactive autoAbs in vulnerable persons (5).

Anti-Ro52 risk factors
Risk factors for depression have often been reported. Among

the best known are a family history of depression, early life abuse

and neglect, female sex, and medical illness, especially metabolic

and autoimmune disorders. The anti-Ro or anti-Sjogren’s

syndrome- related antigen A autoantibodies (SSA antibodies) are

among the most frequently detected IgG autoantibodies and is

associated with systemic lupus erythematosus (SLE), Sjögren’s

syndrome (SjS), subacute cutaneous lupus, and neonatal lupus

syndrome (125). A study from 2023 showed that the anti-Ro52

antibody is a risk factor for depression and anxiety in SLE, SjS,

rheumatoid arthritis (RA) and other connective tissue diseases

(CTDs) (72). Thus, patients with depression have various

immune abnormalities, and in CTDs, the risk of mental disorders

such as depression and anxiety is increased.

Ro52 is a 52-kDa protein that contains a Real Interesting New

Gene (RING) finger domain, B-box motifs and a coiled-coil

domain; a protein containing 40-60 amino acids, mediating

enzymatic interaction between regulatory proteins. This structural

feature places Ro52 within the tripartite motif proteins (TRIM)

family and is designated as TRIM21 protein, the latter an

intracellular antibody effector, binding among others to IgG. The

TRIM proteins family are involved in cellular growth,

differentiation, apoptosis and genetic transcription. Ro52 mediates

ubiquitination, a specific adeno-three phosphate (ATP) dependent

biological process influencing interferon regulatory factors (IRF)

through its E3 ubiquitin ligase enzymatic activity, specifically

inhibiting the excessive production of type 1 interferons and the

subsequent prolonged immune system activation, and in turn, the

development of autoimmune diseases (126).
Aggressive behaviour

Aggression is sometimes considered as a symptom in a co-

occurring disorder, often mental; sometimes a behavioural

description is added. There seems to be an agreement that aggressive
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behaviour involves harming people, including self-harm, animals, and/

or property. Examples of behaviour can include agitation,

hyperarousal, paranoid mindset, mood alterations, quarrelling,

delusions, poor judgement, coping problems, disorganised thinking

and communication, and depression, to mention some. Thus, the

range of symptoms in aggressive behavioural disorders is wide. How to

classify aggression is therefore an ongoing debate since new studies

bring new results, which are more or less important for the

classification of the condition. Traditionally, aggression is divided

into two main categories: impulsive and premeditated (127) or

instrumental. Impulsive behaviour is recognised by its immediate

reaction to provocation and the individual’s loss of behavioural

control, whereas premeditated behaviour with few exceptions is not

associated with agitation. There is also a response to, e.g., fear, threats,

and aggression shown during hunting. This behaviour requires a

distinction between affective defence and predatory attack, referring

to goal-directed attack (128). Whereas defensive aggression might be

considered “normal” behaviour, premeditated and impulsive

aggression are pathological. Intermittent explosive disorder (IED) is

an aggressive behaviour disorder with specific criteria in which there

are changes in the salivary cortisol levels at awakening compared to

controls (129–131). IED has lifetime and 12-month prevalences of

7.3% and 3.9%, respectively. In addition, IED has an early age of onset

and is associated with comorbid mental disorders that, after some

delay, seem to have an older age of (132). Furthermore, results suggest

the involvement of two or more gene risk alleles in adolescent violent/

aggressive behaviour including impulsivity/impulsive behaviours such

as IED and other aggressive and violent behaviours (133).

An aggressive condition featuring wild and uncontrollable anger, is

rage. Rage is associated with primary brain structures, including the

hypothalamus and midbrain periaqueductal grey (PAG), whereas limbic

structures, including the amygdala, hippocampus, septal area, prefrontal

cortex, and anterior cingulate gyrus, serve important modulating

functions (134, 135). Excitatory neurotransmitters that potentiate rage

(136) include excitatory amino acids, substance P, catecholamines,

cholecystokinin, vasopressin, and serotonin that acts through 5-HT2

receptors (137). Inhibitory neurotransmitters include GABA,

enkephalins, and serotonin that acts through 5-HT1 receptors (137).

In an animal study in 1980, it was concluded that tryptophan-

induced increases in brain and spinal cord serotonin content

enhance behaviours that depend on serotonin release (138). This

was the beginning of what later became known as the serotonin

syndrome; a potentially lethal condition, due to the use of

serotonergic drugs on peripheral and central postsynaptic 5HT-

1A, and specifically 5HT-2A receptors (139). A study on a group of

severely aggressive subjects, institutionalised since childhood for

mental retardation, as compared with suicide attempters and

healthy controls, supported an hypothesis of an abnormal

function of the 5HT system in aggressive behaviour (140).

However, despite the strongly established inverse relation between

serotonin and human aggression, a meta-analysis questioned the

established, pointing at the need to revise the serotonin deficiency

hypothesis in view of serotonin’s functional complexity (141).

Studies on psycho-immunology have also had an impact on the

understanding of aggressive behaviour. In a feline defensive rage

model, interleukin-1 beta (IL-1b) has an aggression-facilitating
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effect when injected directly in the PAG and the medial

hypothalamus, and evidence supports a role for brain-derived IL-

1b in contributing to individual differences in aggression (142).

Cross-species studies have shown that aggressive encounters

increase peripheral cytokine releases in both aggressive and non-

aggressive animals and that injection of lipopolysaccharides (LPS) or

IL-1b induces sickness behaviour and reduces aggressive behaviour

(142). In animal studies where rats were administered LPS, it was

shown that the levels of the anti-inflammatory cytokine IL-10, seen in

all brain structures of aggressive rats, were decreased (143).

It has been demonstrated that brain cytokines, including IL-1b and

interleukin 2 (IL-2), powerfully modulate rage behaviour. IL-1b exerts

its actions by acting through 5-hydroxytryptamine 2 (5-HT2) receptors,

while IL-2 acts through gamma-aminobutyric acid A (GABAA) or

neurokinin 1 (NK1) receptors (144, 145). There is evidence supporting

cytokine dysregulation as a possible neuroimmune mechanism

underlying aggressive behaviour, a finding of importance for new

approaches to the treatment of affective disorders (146). One could

perhaps anticipate that some of the ongoing processes would be

reflected in the CSF; however, new studies show that following direct

application of proinflammatory proteins in the brains of animals,

aggressive behaviour is increased, but the influence of the

proinflammatory proteins on the behaviour is not reflected in the

lumbar CSF (147). It has been shown that prenatal glucocorticoid

exposure may influence how fast the stress response is terminated, and

that such exposure seems linked to higher levels of a later manifested

baseline corticosterone concentrations and the associated acute stress

response, thereby suggesting dysregulated negative feedback (148).

Increasing evidence also suggests a role of inflammation and

immunologic processes in modulating aggressive behaviour

induced following chronic exposure to psychological stress (149),

such as cruelty during upbringing. In this regard, it was recently

shown that sympathetic nervous system activity may moderate the

effects of harsh parenting on later aggression (150).

Of interest is also a study, which found that low narrative

coherence and high offender hostility assessment (151, 152),

combined with respiratory sinus arrhythmia (RSA) activation,

were linked to reactive physical aggression in men but not in

women (153). The study also showed that the offender’s hostility

was associated with reactive relational aggression for both men and

women. Thus, there are indications of gender differences and

subtypes of aggressive behavioural responses (153).

One of the existing hypotheses on the understanding of human

aggression is based on hormonal models where ACTH IgG autoAbs

are known to influence, or more precisely, modulate behaviour (154,

155). Simplified, in the working hypothesis, molecular mimicry is

essential, and bacteria and viruses in the human microbiota

generate neuropeptides cross-reacting with endogenous

substances, giving rise to autoAbs, which in turn have the

capability to regulate and modulate behaviour. A study found that

thyroid peroxidase (TPO)-Abs can affect aggressive behaviour but

do not affect suicidal behaviours in patients with major mental

disorders (156). Thus, antibody testing can become important for

psychiatric patients with aggressive behaviour. The TPO-Ab test has

a history of helping the psychiatric staff to determine aggressive

behaviour in advance (156).
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Intermittent explosive disorder

IED has lifetime and 12-month prevalences of 7.3% and 3.9%,

respectively (132). Studies have also shown that IED has an early age

of onset and is associated with comorbid mental disorders that, after

some delay, seem to have an older age of debut (132). Furthermore,

results suggest the involvement of two or more gene risk alleles in

adolescent violent/aggressive behaviour including impulsivity/

impulsive behaviours such as IED and other aggressive and violent

behaviours (133). A case-control study found that both plasma C-

reactive protein (CRP) and interleukin 6 levels were significantly

higher in participants with intermittent explosive disorder compared

with psychiatric or normal controls. These inflammatory markers

were directly correlated with a composite measure of aggression, and

with history of actual aggressive behaviour in all participants (157).
Antisocial personality disorder

The lifetime prevalence of Antisocial personality disorder (ASPD)

in the general population range from approximately 1-4% (158, 159).

ASPD is characterised by high levels of impulsivity, psychopathic traits,

and a high prevalence of co-morbid substance use disorders (SUDs).

Aggression is a frequent manifestation in ASPD and may determine

long and recurrent imprisonment (160). Few studies have been made

on the relationship between ASPD and the immune system. However,

one study found that significantly higher levels of tumor necrosis factor

(TNF)-a, lower levels of transforming growth factor (TGF)-b1 and

brain-derived neurotrophic factor (BDNF) among patients with

ASPD, including for those with ASPD+SUD and SUD alone (161) .
ACTH and aggression

Regardless of whether it is pathological or not, coping with stress

can result in aggressive behaviour (162–164). The hypothalamus, and

especially activity in the hypothalamus-pituitary-adrenal axis (HPA) is

dominant in anxiety and stress reactions and regulates the

coordination and fine interaction between the brain and adrenal

cortisol production via ACTH secretion from the hypophysis (165,

166). Both high and low HPA activity are linked to aggressive

behaviour (167) and cortisol inhibits HPA activity at all levels,

modulating anxious behaviour and lowering testosterone production

(168). A study on long-time imprisoned males showed that, compared

to controls, naturally existing adrenocorticotropic hormone (ACTH)

immunoglobulin G autoAbs (ACTH IgG autoAbs) had specific

epitope binding profiles in their binding to the ACTH peptide in a

population of male violent criminals. The controls were healthy, non-

convicted males recruited from various work sites in normal society.

While IgG from non-violent controls was bound to the central part of

the ACTH (amino acids 11-24), IgG from the violent aggressors

showed a higher affinity for the ACTH N-terminal part (amino acids

1-13). Applying the Resident Intruder Test (RIT) on laboratory rats

after intraperitoneal injection of ACTH and IgG from the violent

criminals but not from the controls, a shorter latency was observed

before the resident’s first attack against the intruder (11).
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Taken together, the results showed that ACTH IgG autoAbs in

plasma bind different epitopes in violent criminals and healthy

controls. Furthermore, the ACTH autoAbs modulate ACTH-

induced adrenal cortisol secretion involved in regulation of the

stress response (11). Another study on antisocial behaviour, stress,

and cortisol response confirms the relationship between the level of

ACTH IgG autoAbs, antisocial behaviour, and HPA activity following

stress in young people (169. Another study showed that both ACTH,

oxytocin, and vasopressin autoAbs are altered in subjects with conduct

disorders, with the levels of ACTH-reactive IgG most-affected (170).
Oxytocin and stress-related behaviour

Oxytocin is an amino acid peptide in the hypothalamus that

activates the oxytocin receptor (OTR), triggers the release of Ca2+,

and causes receptor internalisation (endocytosis). OT has several

functions throughout the body, most of them mapped, e.g., in the

central nervous system (CNS) influencing social behaviour (171). In vivo

real-time recordings of the responses inOTneurons in the hypothalamic

paraventricular nucleus (PVN) in mice, recently showed that OT

neurons were significantly more activated by stressors than by social

stimuli, a finding which correlated with depressive-like behaviour during

stress. In addition, inhibition of OT-neurons in the PVN influenced

stress-induced social memory by impairing the response, and opening

for a role of PVN OT neurons in stress-induced social amnesia (172).

Variations in OT activity at the OT receptor seem to follow a

natural course, with a peak around early childhood (173). Differences

are often seen when comparing groups of ages, but the OT activity

cannot be used to categorically differ between young and old (174). Lack

of OT activity is associated with aggression and other stress-related

conditions (12) and oxytocin receptor activation is found to enhance the

detection of stimuli that are paired with food reward and danger (175).

Diffuse spread of neuropeptides in the extracellular fluid

following dendritic and focal release from axonal terminals has

been suggested to contribute to the combined actions of

neuromodulators and neurotransmitters (176). One of amygdala’s

main functions is to regulate the relationship between emotions and

motivation, e.g., scary and threatening stimuli on one side and

positive feedback on the other side (177), and OT enhances

amygdala-dependent, socially reinforced learning and emotional

empathy in humans (178, 179).

There are reports that intranasal OT administration can favour

social behaviour (180, 181) through influence on the amygdala (180).

However, there are studies showing that low-dose OT supplements,

in certain conditions, can also lead to aggressive behaviour (182, 183).

Other studies on OT’s dysfunction suggest a possible link to the

pathophysiological mechanisms behind schizophrenia and bipolar

disorders (184), but also to anxiety (185). On the other hand, there

are studies failing to confirm that OT may influence social behaviour

and certain psychiatric conditions (186), and conclude instead that

nasal administration has no desired behavioural effect at all (187,

188). Consequently, neither OT functions nor possible relations to

social behaviour are clear (188).

Antibiotic cocktails that are not easily absorbed from the intestine

in mice reduce oxytocin levels in the hypothalamus and were among
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the first to suggest that gut microbes can impact brain oxytocin.

Administering antibiotics also disrupted social behaviour, which is

not surprising when considering that oxytocin plays an essential role

in social behaviour (189). This finding was consistent with studies in

germ free mice that have abnormal social behaviour that can be

normalised by colonisation with normal microbiota (190). Beyond its

role in social behaviours, oxytocin has been gaining recognition for its

ability to alter the immune response. The oxytocin receptor is found

on both innate and adaptive leukocytes, and stimulation of the

oxytocin receptor is largely thought to be anti-inflammatory (191).

For example, oxytocin can reduce Toll-like receptor expression on

neutrophils and can inhibit IL-6 production (192–194).

Research has described a link between OT, childhood trauma, and

adolescent criminal activity (195). Less known is the relation between

childhood trauma and aggression, but there is data from studies on

individuals convicted of murder revealing a history of childhood

trauma and lower levels of plasma OT compared to controls. Data

from the same study also showed that the levels of plasmaOT show an

inverse correlation to childhood trauma in individuals convicted of

homicide (196). Consideration of the current evidence led to the

hypothesis suggesting that a possible defect in the oxytocinergic

system could be responsible for the development of pathological

aggression (196), and emphasising the role for OT in stress-related

neuropsychiatric diseases (197, 198). An environment with chronic

stress causes negative effects on our mental health and induces

depression, anxiety, fatigue, and post-traumatic stress disorder

(PTSD) (199). The prefrontal cortex is a key target region in stress-

related neuropsychiatric disorders, and early life stress alters

amygdala-prefrontal functional connectivity and sensitivity to the

effects of OT treatment (200). OT is produced at various sites in the

central nervous system (CNS) (198), and differences in the distribution

of OTRs are strongly associated with the peptide’s physiological stress

responses (197). In response to stress, OT regulates the HPA axis, and

in particular, the feedback inhibition of corticosteroids (201–203).

Studies have also revealed that patients with anxiety have significantly

lower levels of plasma OT (203) and that patients with BPD have

significantly reduced expression of OT receptors (OTRs); both patient

groups compared to controls (197, 203). OT can amplify stress-

induced fear responses involving the amygdala and thereby play a

role in increasing fear and in the development of anxiety disorders

such as PTSD, panic disorder, and phobias (197), and possibly a

broader range of stress-related disorders (203). Of particular interest

may be that serum OT levels during pregnancy have been associated

with depressive symptoms in early pregnancy or postpartum and may

serve as a predictive target for postpartum depression (204, 205).

Prenatal stress is also a vulnerability factor for development of

anxiety and depression and it is mainly mediated by proinflammatory

cytokines from the mother to the foetus. A recent study concluded that

prenatal mood and anxiety disorders are linked to postpartum

inflammation and women with prenatal psychiatric diagnosis assessed

by the Structured Clinical Interview for the DSM-IV (SCID). These

conditions also showed greater alterations of inflammatory markers,

and the lowest levels of anti-inflammatory markers in pregnancy were

associated with prenatal SCID mood/anxiety diagnoses (206).

On a molecular basis, T regulatory cell (Treg) variations seem

involved with symptoms of anxiety. The FoxP3+ protein is a
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transcription factor, known for its controlling of gene activity, is

also crucial for the normal production and function of Treg cells.

These latter cells have a major role in the prevention of

autoimmunity. One study found inverse associations between

symptoms of anxiety and levels of FoxP3+ Tregs. Psychological

distress was associated with other Treg subpopulations such as

Helios+, Tim3+, and PD-1+. These results point at immunological

tolerance mainly regulated by T cells, as a possible mechanism of

prenatal psychological stress (207).

Results from an animal study underline that a consequence of

being exposed to adverse experiences during gestation could be long-

lasting changes potentially influencing the inflammatory response

not only in the brain, but also in the periphery (208). Likewise, there

are indications that prenatal negative events may influence the

metabolism in organs such as the liver, in turn, causing

vulnerability for developing metabolic related disorders (209).

Plasma levels of OT have been measured in a group of convicted

violent criminals and compared to controls. Sixty percent of OT was

naturally bound to IgG and transported in human plasma, and could

thus, in turn modulate OTR signalling at more distant sites IgG from

violently aggressive inmates was characterised by lower affinity for

OT compared to controls, leading to decreased OT carrier capacity

and reduced activation of the OTR in these subjects (12). In addition,

animal studies have described that peripheral administration of OT

together with human OT-reactive IgG administered to resident mice

in a resident-intruder test, caused reduced c-fos activation in several

involved regions of the brain regulating aggressive and defensive

behaviour, a finding correlating with duration and the number of

attacks (12). The data also establishes IgG as a carrier protein and that

the IgG/OT complex (IOC) activates OTR, although with different

kinetic abilities compared to OT alone. Our interpretation is that IgG

has a modulating role in the effect of OT, supporting the importance

of autoAbs and the IOC on the regulation of human behaviour.

Aggressive behaviour was measured using the revised Buss-Perry

aggression questionnaire by Bryant and Smith (12, 210). An

additional observation was that the lack of effect of the IOC was

linked to hostility subscale (12).

Although it cannot be generalised, OT concentrations obtained in

specific settings are found to correlate positively with the severity of

major depressive disorder (MDD), suggesting an association between

the OT system and social behaviour in depressed patients (211).

However, a negative correlation between symptom severity in

depression, anxiety, and OT has also been reported (212). In other

studies, OT has been characterised as a stress hormone, and there are

reports linking elevated OT concentrations in human plasma to

psychosocial stress in situations with the presence of unknown

persons (183, 213). Levels of OT and vasopressin (VP) autoAbs are

found to be low in moderate depression, and the respective levels of

autoAbs correlate with scale scores for the disorder. However, levels of

VP autoantibody correlate with plasma cortisol, and a blunted

response to plasma cortisol in moderate depression during physical

exercise supports the relevance of OT and VP autoantibodies for

activity in the HPA stress axis and the symptoms of depression (90).

Behavioural despair seems to promote the synthesis and secretion of

OT in the brain and periphery, whereas specific brain-derived OT is

important for depressive thinking (214).
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Some clinical studies describe that plasma OT concentrations in

depressed patients are higher than in healthy controls (215), but

there are other studies claiming the opposite (216).

In a new study, a differentmodel suggests an entirely new emotional

disorder with OT deficiency as the main feature (217). Patients with

vasopressin (VP) deficiency also displayed a deficiency of pituitary

secreted OT, and interestingly, neuropsychological test results from the

patients indicate both increased anxiety and a reduction in prosocial

behaviour as major symptoms. Whether the suggestion of a new

disorder will survive depends on future confirming and otherwise

supporting studies. Moreover, further studies on the endocrine and

immune processes behind neurotransmission within cortical and limbic

brain circuits are needed (218) to fully comprehend depression as a

disorder of possibly neuroimmune origin and perhaps also open up new

diagnostic entities.
26RFa and aggression

The International Union of Basic and Clinical Pharmacology

Committee on Receptor Nomenclature and Drug Classification

(NC-IHUPAR), confirms the existence of the QRFP receptor/Arg-

Phe-amide peptide 26RFa/glutamine RF peptide (26RFa). 26RFa, or

QRFP, discovered in 2003 (219), is a neuropeptide consisting of 26

amino acids, and is mainly found in the hypothalamus. 26RFa is

known for its regulation of hunger and glucose metabolism; however,

much is unclear regarding its importance for emotional regulation.

Studies of plasma levels in male perpetrators serving time for extremely

violent crimes, compared to healthy non-violent controls, showed that

the mean plasma levels of 26RFa were the same for the aggressors as

for the controls, and that these plasma levels of 26RFa correlated

positively with the HADS anxiety subscores in all the studied subjects

and controls. It should be mentioned that in the study there were some

issues with «outliers» in the group of violent perpetrators but not in the

control group. After removing the high outliers, we saw positive

correlations of 26RFa with HADS anxiety subscale and the subscale

of hostility in the aggression scale for the inmates, and there was still a

positive correlation between the plasma levels of 26RFa and anxiety in

both groups studied. We found no correlations between 26RFa and

other subscales of aggression or depression; however, an association

between 26RFa and anxiety in human beings is kept open (12).
Neuropeptide Y

Neuropeptide Y (NPY) is a 36-amino-acid neuropeptide involved

in several different physiological processes in both the CNS and the

peripheral nervous system. In the brain, it is produced at various sites,

including the hypothalamus, and has several functions, such as

causing increased food intake and fat storage, reducing anxiety and

stress, reducing pain perception, lowering blood pressure, and

controlling epileptic activity (220, 221). Studies on personality

disorders with impulsivity and aggression showed that CSF NPY-

like immunity (CSF NPY-LI) was directly correlated withmeasures of
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aggression and impulsivity and a composite measure of impulsive

aggression (130).

Recent experiments on humans suggest that a variety of

neuropeptide systems, including substance P (SP)/tachykinin,

neuropeptide Y(NPY) and their G protein-coupled receptors, are

involved in the regulation of mood disorders (222). Multiple sclerosis

(MS) is commonly associated with depression (223), and alpha(a)
calcitonin gene-related peptide (aCGRP), has a role together with

neuropeptide Y (NPY), and substance P (SP); all three being potent

immunomodulatory neuropeptides and possibly also as novel

biomarkers in MS (224). Studies have shown that patients with

depression have significantly lower levels of NPY in plasma compared

to controls, but not in the CSF (130). In one study, a decrease in plasma

NPY levels was observed, but without any significant difference between

the levels seen in PTSD and depression. However, in patients where the

stress was defined as chronic, there were statistically significantly higher

plasma NPY levels compared to the control subjects with PTSD or

depression. Although not clear, it is suggested that NPY has a role both

in trauma and in depression (225).

Neuropeptide Y (NPY) is also the prototype of a phylogenetically

well-conserved family of peptides and is a very potent orexigenic

substance (226). Several peptide and hormone systems can affect NPY

expression and release. NPY has potent antidepressant properties, and

low central NPY plasma levels have been reported in major

depression. Previous studies have shown that there are no

significant differences in NPY IgG autoantibody (autoAb) affinities

between patients with depression and controls (91). Future studies

may find that quantitative changes in anti-NPY autoAbs plasma levels

could be relevant to emotional changes and to patients with

depression. Differences in affinity between NPY and IgG autoAbs

may be linked to alterations in appetite and body weight (91).
Discussion

The biological and pharmacological understanding of depression

has developed notably since the early models of explanation, focusing

on the presence of 5-hydroxyindoles in human CSF (227) and the

differences between nor-imipramine and imipramine (228) to the

conclusion that there is “no consistent evidence of the association”

between depression and serotonin, perhaps with the exception that

long-term use of antidepressants seems to lower the serotonin levels

(229). Others (230), have argued that there is evidence for a low-grade

inflammation being linked to depression, and refer to studies in which

depressed patients and post mortem brains displayed greater amounts

of cytokines (231–233). And there are also studies pointing out that

acute tryptophan depletion and low plasma tryptophan in depression

indicate 5-HT involvement (234). An hypotheses on the intersection of

the monoaminergic and glutamatergic systems, and immune responses

in the pathophysiology of depression have also been proposed (235).

Undoubtedly, future approaches to depression and other

emotional disorders will include psycho-immunological evaluations.

As seen in Figure 1, common features for our alternative view on

emotional disorders are stress and immunological reactions.
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A study on psychiatric conditions associated with neural autoAbs

over time showed that affective, cognitive, and psychotic symptoms

remained relatively unchanged over the 1.5-years the study period

lasted. Among the results reported, 63% of the patients were diagnosed

with autoimmune psychiatric syndromes (236). Thus, psycho-

immunology is gaining ground, and an important question has

rightfully been raised (217) - whether we are moving towards new

psychiatric entities? The developments in the studies on emotional

disorders point in this direction.

There is also a hypothesis regarding the involvement of the gut

microbiota, bacterial mimicry, and the possible effects of autoAbs on

modulation and regulation of aggressive behaviour. Given the high

overlap of behavioural symptoms and reported immunological

associations (Figure 2) between aggressive and emotional disorders,
FIGURE 1

Psychiatric disorders featuring emotional problems with associated illness behavior and immunological molecular targets.
FIGURE 2

Selected associated behavioral symptoms of emotional problems and aggressive disorders, and their reported immunological associations.
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TABLE 1 Psychiatric disorders featuring emotional problems and
associated molecular targets.

Psychiatric
disorders featuring
emotional problems

Molecular targets Selected
references

Anxiety TSH, TGAb, NSAbs, (72, 73, 96)

Eating disorders CpIB, a-MSH, MC4R (5, 6, 9, 29)

Borderline
personality disorder

Antithyroid antibodies,
Dnase activity?,
Interleukin 6

(33, 38, 42)

Depression CRP, Interleukin 6, TNFa,
TSH, TGAb,
TPOAb, NSAbs

(83, 87, 96)
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there is a reason to hypothesise that there are convergent mechanisms

involved. Modulation and regulation by IgG autoAbs represent a

relatively new undercategory in psycho-immunology, or psycho-

pharmaco-immunology, where studies are currently being conducted.

The existing diagnostic criteria for mental disorders are facing

future challenges, and we believe that it is only a question of time before

there will be enough evidence to include hard biological endpoints as

part of new diagnostic criteria. However, the complexity of pathological

human behaviour is immense, with all the possible concomitant

disorders with overlapping symptoms, keeping up the level of

challenges. Furthermore, the number of various levels of biological

substrates involved is at present beyond our understanding.

More research will have a positive impact on global health

issues, and there is much to gain regarding costs, not only personal

but also for the society (Table 1).

Senior psychiatrists and psychologists have been trained

according to psychodynamic traditions, and today, new

professionals in the field are receiving the same education even if

knowledge about biomedical sciences is gradually incorporated into

the respective educational programs. However, the behavioural

issues we as professionals are faced with in our work with

patients are the same as always; only the theoretical foundations

are undergoing changes.

In this review, we have, on purpose, not included genetics in

behavioural sciences and psychiatry, a field that we leave for others

to review.
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130. Coccaro EF, Lee R, Liu T, Mathé AA. Cerebrospinal fluid neuropeptide Y-like
immunoreactivity correlates with impulsive aggression in human subjects. Biol
Psychiatry. (2012) 72:997–1003. doi: 10.1016/j.biopsych.2012.07.029

131. Meruelo AD, Timmins MA, Irwin MR, Coccaro EF. Salivary cortisol awakening
levelss are reduced in human subjects with intermittent explosive disorder compared to
controls. Psychoneuroendocrinology. (2023) 151. doi: 10.1016/j.psyneuen.2023.106070

132. Kessler RC, Coccaro EF, Fava M, Jaeger S, Jin R, Walters E. The prevalence and
correlates of DSM-IV intermittent explosive disorder in the national comorbidity survey
replication. Arch Gen Psychiatry. (2006) 63:669–78. doi: 10.1001/archpsyc.63.6.669

133. Modestino EJ, Blum K, Dennen CA, Downs BW, Bagchi D, Llanos-Gomez L,
et al. Theorizing the role off dopamine polymorphic risk alleles with intermittent
explosive disorder (IED), violent/aggressive behaavior aand addiction. J Pers Med.
(2022) 12. doi: 10.3390/jpm12121946

134. Matthies S, Rüsch N, Weber M, Lieb K, Philipsen A, Tuescher O, et al. Small
amygdala – high aggression? The role of the amygdala inmodulating aggression in healthy
subjects. World J Biol Psychiatry. (2012) 13:75–81. doi: 10.3109/15622975.2010.541282

135. Haller J. The role of central and medial amygdala in normal and abnormal
aggression: A review of classical approaches. Neurosci Biobehav Rev. (2018) 85:34–43.
doi: 10.1016/j.neubiorev.2017.09.017

136. Siegel A, Schubert KL, Shaikh MB. Neurotransmitters regulating defensive rage
behavior in the cat. Neurosci Biobehav Rev. (1997) 21:733–42. doi: 10.1016/S0149-7634
(96)00056-5

137. de Boer SF, Koolhaas JM. 5-HT1A and 5-HT1B receptor agonists and
aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J
Pharmacol. (2005) 526:125–39. doi: 10.1016/j.ejphar.2005.09.065

138. Brown D, Growdon J. L-Tryptophan administration potentiates serotonin-
dependent myoclonic behavior in the rat. Neuropharmacology. (1980) 19:343–7.
doi: 10.1016/0028-3908(80)90185-9

139. Volpi-Abadie J, Kaye AM, Kaye AD. Serotonin syndrome. Ochsner J. (2013)
13:533–40.

140. Marazziti D, Rotondo A, Presta S, Pancioli-Guadagnucci ML, Palego L, Conti L.
Role of serotonin in human aggressive behaviour. Aggressive Behav. (1993) 19:347–53.
doi: 10.1002/(ISSN)1098-2337

141. Duke AA, Bègue L, Bell R, Eisen-Moul T. Revisiting the serotonin–aggression
relation in humans: A meta-analysis. psychol Bull. (2013) 139:1148. doi: 10.1037/a0031544
Frontiers in Psychiatry 14
142. Takahashi A, Russo SJ. Link between the immune system and aggression. In:
Martin CR, Preedy VR, Patel VB, editors.Handbook of Anger, Aggression, and Violence.
Springer International Publishing, Cham (2023).

143. Alperina E, Idova G, Zhukova E, Zhanaeva S, Kozhemyakina R. Cytokine
variations within brain structures in rats selected for differences in aggression. Neurosci
Lett. (2019) 692:193–8. doi: 10.1016/j.neulet.2018.11.012

144. Siegel A, Bhatt S, Bhatt R, Zalcman SS. The neurrobiologcal basis for
development of Pham acological treatments of aggressive disorders. Curr
Neuropharmaccology. (2007) 5:135–47. doi: 10.2174/157015907780866929

145. Zalcman SS, Siegel A. The neurobiology of aggression and rage: role of
cytokines. Brain Behav Immun. (2006) 20:507–14. doi: 10.1016/j.bbi.2006.05.002

146. Alperina E, Idova G, Zhanaeva S. Rodent modeling of aggression: elucidating
the role of cytokines in the brain. In: Martin CR, Preedy VR, Patel VB, editors.
Handbook of Anger, Aggression, and Violence. Springer International Publishing, Cham
(2023).

147. Coccaro EF, Lee R, Breen EC, Irwin MR. Plasma and cerebrospinal fluid
inflammatory markers and human aggression. Neuropsychopharmacology. (2023)
48:1060–6. doi: 10.1038/s41386-023-01541-3

148. Majer AD, Paitz RT, Tricola GM, Geduldig JE, Litwa HP, Farmer JL, et al. The
response to stressors in adulthood depends on the interaction between prenatal
exposure to glucocorticoids and environmental context. Sci Rep. (2023) 13:6180.
doi: 10.1038/s41598-023-33447-x

149. Kim Y-K, Maes M. The role of the cytokine network in psychological stress.
Acta Neuropsychiatrica. (2003) 15:148–55. doi: 10.1034/j.1601-5215.2003.00026.x

150. Chong LS, Rabkin AN, Emhoff SM, Barry-Menkhaus S, Rivers AJ, Lehrbach M,
et al. Childhood harsh parenting and later aggression: non-violent discipline and
resting skin conductance as moderators. J Aggression Maltreatment Trauma. (2023)
32:537–54. doi: 10.1080/10926771.2022.2051658

151. Barefoot JC. Developments in the measurement of hostility. In Friedman HS
(Ed.), Hostility, coping, & health. American Psychological Association (1992), 13–31.
doi: 10.1037/10105-001

152. Haney TL, Maynard KE, Houseworth SJ, Scherwitz LW. Interpersonal hostility
assessment technique: description and validation against the criterion of coronary
artery disease. J Pers Assess. (1996) 66:386–401. doi: 10.1207/s15327752jpa6602_16

153. Song Q, Lent M, Murray-Close D, Suo T, Wang Q. Narrative processing and
the forms and functions of aggressive behavior: Exploring the roles of physiological
reactivity and gender. Narrative Inquiry. (2023). doi: 10.1075/ni

154. Vaeroy H, Schneider F, Fetissov SO. Neurobiology of aggressive behavior—
Role of autoantibodies reactive with stress-related peptide hormones. Front Psychiatry.
(2019) 10. doi: 10.3389/fpsyt.2019.00872

155. Tennoune N, Legrand R, OuelaaW, Breton J, Lucas N, Bole-Feysot C, et al. Sex-
related effects of nutritional supplementation of Escherichia coli: Relevance to eating
disorders. Nutrition. (2015) 31:498–507. doi: 10.1016/j.nut.2014.11.003

156. Ren L, Wang Y. Relationship between TPO-Ab with aggressive behavior in
major mental disorders. Stress Brain. (2023) 3. doi: 10.26599/SAB.2023.9060006

157. Coccaro EF, Lee R, Coussons-Read M. Elevated plasma inflammatory markers
in individuals with intermittent explosive disorder and correlation with aggression in
humans. JAMA Psychiatry. (2014) 71:158–65. doi: 10.1001/jamapsychiatry.2013.3297

158. Trull TJ, Jahng S, Tomko RL, Wood PK, Sher KJ. Revised NESARC personality
disorder diagnoses: gender, prevalence, and comorbidity with substance dependence
disorders. J Pers Disord. (2010) 24:412–26. doi: 10.1521/pedi.2010.24.4.412

159. Lenzenweger MF, Lane MC, Loranger AW, Kessler RC. DSM-IV personality
disorders in the National Comorbidity Survey Replication. Biol Psychiatry. (2007)
62:553–64. doi: 10.1016/j.biopsych.2006.09.019

160. Azevedo J, Vieira-Coelho M, Castelo-Branco M, Coelho R, Figueiredo-Braga
M. Impulsive and premeditated aggression in male offenders with antisocial personality
disorder. PloS One. (2020) 15:e0229876. doi: 10.1371/journal.pone.0229876

161. Wang T-Y, Lee S-Y, Hu M-C, Chen S-L, Chang Y-H, Chu C-H, et al. More
inflammation but less brain-derived neurotrophic factor in antisocial personality disorder.
Psychoneuroendocrinology. (2017) 85:42–8. doi: 10.1016/j.psyneuen.2017.08.006

162. Haller J, Kruk MR. Normal and abnormal aggression: human disorders and
novel laboratory models. Neurosci Biobehav Rev. (2006) 30:292–303. doi: 10.1016/
j.neubiorev.2005.01.005

163. Nelson RJ, Trainor BC. Neural mechanisms of aggression. Nat Rev Neurosci.
(2007) 8:536–46. doi: 10.1038/nrn2174

164. de Boer SF, Olivier B, Veening J, Koolhaas JM. The neurobiology of offensive
aggression: Revealing a modular view. Physiol Behav. (2015) 146:111–27. doi: 10.1016/
j.physbeh.2015.04.040

165. Chrousos GP, Gold PW. The concepts of stress and stress system disorders:
overview of physical and behavioral homeostasis. JAMA. (1992) 267:1244–52.
doi: 10.1001/jama.1992.03480090092034

166. Gillespie CF, Nemeroff CB. Hypercortisolemia and depression. Psychosomatic
Med. (2005) 67:S26–8. doi: 10.1097/01.psy.0000163456.22154.d2

167. Vedhara K, Miles J, Bennett P, Plummer S, Tallon D, Brooks E, et al. An
investigation into the relationship between salivary cortisol, stress, anxiety and
depression. Biol Psychol. (2003) 62:89–96. doi: 10.1016/S0301-0511(02)00128-X
frontiersin.org

https://doi.org/10.1186/s12888-020-02654-5
https://doi.org/10.1002/dev.21826
https://doi.org/10.1016/j.biopsych.2018.08.018
https://doi.org/10.1111/ejn.14631
https://doi.org/10.3389/fnbeh.2023.1221141
https://doi.org/10.3389/fnbeh.2023.1221141
https://doi.org/10.1046/j.1440-1711.2001.01029.x
https://doi.org/10.1126/science.aat5236
https://doi.org/10.1146/annurev-neuro-091619-022657
https://doi.org/10.1016/j.autrev.2009.02.010
https://doi.org/10.1016/j.autrev.2009.02.010
https://doi.org/10.1007/s12016-021-08911-z
https://doi.org/10.1177/1073191103010002009
https://doi.org/10.1016/S1359-1789(01)00042-8
https://doi.org/10.1176/appi.ajp.2012.11081259
https://doi.org/10.1176/appi.ajp.2012.11081259
https://doi.org/10.1016/j.biopsych.2012.07.029
https://doi.org/10.1016/j.psyneuen.2023.106070
https://doi.org/10.1001/archpsyc.63.6.669
https://doi.org/10.3390/jpm12121946
https://doi.org/10.3109/15622975.2010.541282
https://doi.org/10.1016/j.neubiorev.2017.09.017
https://doi.org/10.1016/S0149-7634(96)00056-5
https://doi.org/10.1016/S0149-7634(96)00056-5
https://doi.org/10.1016/j.ejphar.2005.09.065
https://doi.org/10.1016/0028-3908(80)90185-9
https://doi.org/10.1002/(ISSN)1098-2337
https://doi.org/10.1037/a0031544
https://doi.org/10.1016/j.neulet.2018.11.012
https://doi.org/10.2174/157015907780866929
https://doi.org/10.1016/j.bbi.2006.05.002
https://doi.org/10.1038/s41386-023-01541-3
https://doi.org/10.1038/s41598-023-33447-x
https://doi.org/10.1034/j.1601-5215.2003.00026.x
https://doi.org/10.1080/10926771.2022.2051658
https://doi.org/10.1037/10105-001
https://doi.org/10.1207/s15327752jpa6602_16
https://doi.org/10.1075/ni
https://doi.org/10.3389/fpsyt.2019.00872
https://doi.org/10.1016/j.nut.2014.11.003
https://doi.org/10.26599/SAB.2023.9060006
https://doi.org/10.1001/jamapsychiatry.2013.3297
https://doi.org/10.1521/pedi.2010.24.4.412
https://doi.org/10.1016/j.biopsych.2006.09.019
https://doi.org/10.1371/journal.pone.0229876
https://doi.org/10.1016/j.psyneuen.2017.08.006
https://doi.org/10.1016/j.neubiorev.2005.01.005
https://doi.org/10.1016/j.neubiorev.2005.01.005
https://doi.org/10.1038/nrn2174
https://doi.org/10.1016/j.physbeh.2015.04.040
https://doi.org/10.1016/j.physbeh.2015.04.040
https://doi.org/10.1001/jama.1992.03480090092034
https://doi.org/10.1097/01.psy.0000163456.22154.d2
https://doi.org/10.1016/S0301-0511(02)00128-X
https://doi.org/10.3389/fpsyt.2024.1419574
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Værøy et al. 10.3389/fpsyt.2024.1419574
168. van Honk J, Peper JS, Schutter DJLG. Testosterone reduces unconscious fear
but not consciously experienced anxiety: implications for the disorders of fear and
anxiety. Biol Psychiatry. (2005) 58:218–25. doi: 10.1016/j.biopsych.2005.04.003

169. Schaefer JM, Fetissov SO, Legrand R, Claeyssens S, Hoekstra PJ, Verhulst FC,
et al. Corticotropin (ACTH)-reactive immunoglobulins in adolescents in relation to
antisocial behavior and stress-induced cortisol response. The TRAILS study.
Psychoneuroendocrinology. (2013) 38:3039–47. doi: 10.1016/j.psyneuen.2013.08.015

170. Fetissov SO, Hallman J, Nilsson I, Lefvert AK, Oreland L, Hökfelt T. Aggressive
behavior linked to corticotropin-reactive autoantibodies. Biol Psychiatry. (2006)
60:799–802. doi: 10.1016/j.biopsych.2006.03.081

171. Quintana DS, Rokicki J, van der Meer D, Alnæs D, Kaufmann T, Córdova-
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