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The genetic association between
bipolar disorder and dementia: a
qualitative review
Hirofumi Hirakawa* and Takeshi Terao

Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu, Oita, Japan
Bipolar disorder is a chronic disorder characterized by fluctuations in mood state

and energy and recurrent episodes of mania/hypomania and depression. Bipolar

disorder may be regarded as a neuro-progressive disorder in which repeated

mood episodes may lead to cognitive decline and dementia development. In the

current review, we employed genome-wide association studies to

comprehensively investigate the genetic variants associated with bipolar disorder

and dementia. Thirty-nine published manuscripts were identified: 20 on bipolar

disorder and 19 on dementia. The results showed that the genes CACNA1C,

GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A were overlapping between

patients with bipolar disorder and dementia. In conclusion, the genes CACNA1C,

GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2Amay be associated with the neuro-

progression of bipolar disorder to dementia. Further genetic studies are needed to

comprehensively clarify the role of genes in cognitive decline and the

development of dementia in patients with bipolar disorder.
KEYWORDS

bipolar disorder, dementia, gene, single nucleotide polymorphisms, genome-wide
association study
Introduction

Bipolar disorder is a chronic disorder characterized by fluctuations in mood state and

energy, in addition to recurrent episodes of mania/hypomania and depression (1).

Cognitive impairment has been documented in a variety of neuropsychological domains

during the mood disturbances associated with the acute episodes of bipolar disorder (2, 3).

However, patients with bipolar disorder suffer from cognitive impairment not only during

the acute phase but also during the remission phase (4, 5). Bipolar disorder in the first

episode is associated with widespread cognitive dysfunction, especially in psychomotor

speed, attention, working memory, and cognitive flexibility, suggesting that a broad range

of cognitive deficits is already present at this early stage (6). Cognitive decline occurs with

repeated manic episodes, hospitalizations, and length of illness in patients with bipolar

disorder, suggesting that the recurrence of mania may have a long-term neuropsychological

impact (7, 8). Studies on bipolar disorder have shown that neuropsychological deficits are
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detectable in euthymia, and they contribute to poor outcomes (8, 9).

Patients with bipolar disorder have the greatest risk of dementia,

followed by those with unipolar depression, schizophrenia, and

neurosis (10). A meta-analysis revealed that a history of bipolar

disorder significantly increased the risk of dementia (odds ratio:

2.36; 95% CI: 1.36–4.09) (11). Another meta-analysis showed that

bipolar disorder increases the risk of dementia (odds ratio: 2.96;

95% CI: 2.09–4.18), and the risk of progression to dementia is

higher in bipolar disorder than that in major depressive disorder

(12). Thus, bipolar disorder may be seen as a neuro-progressive

disorder in which repeated mood episodes may lead to cognitive

decline and, finally, the development of dementia.

Genome-wide association studies (GWAS) aim to identify single

nucleotide polymorphisms (SNPs) in which allele frequencies vary

systematically as a function of phenotypic trait values (13). The

identification of trait-associated SNPs distributed throughout the

genome may provide new insights into the biological mechanisms

underlying psychiatric disorders (13). To date, GWAS have

successfully identified SNPs associated with the risk of bipolar

disorder and dementia (14, 15). The clinical question arises as to

which genetic factors are associated with the association between

bipolar disorder and dementia. From a clinical perspective, we

previously hypothesized that there is a specific group of patients

whose diagnoses longitudinally change from depression to bipolar

disorder and finally to dementia, and the glycogen synthase kinase 3b
gene may be a common etiological factor in these diseases and

diagnostic conversions (16). In the current review, using a

completely different perspective, we employed the results of GWAS

to comprehensively investigate genetic variants associated with

bipolar disorder and dementia (including Alzheimer’s disease, Lewy

body dementia, frontotemporal dementia, and vascular dementia).
Methods

This review was qualitative and not systematic in nature. This

study was conducted in January, 2024. Using the PubMed database,

we conducted searches with keywords “bipolar disorder” and

“GWAS”, “dementia” and “GWAS”. In this review, only GWAS

that examined the relationship between the diagnosis of bipolar

disorder or dementia and genes and SNPs were included. Articles

that were not GWAS or were written in languages other than

English were excluded. We simply examined the presence of

overlapping genes and SNPs reported in patients with bipolar

disorder and dementia.
Results

Thirty-nine published manuscripts were identified: 20 on

bipolar disorder (14, 17–35) and 19 on dementia (15, 36–53) (see

Supplementary Figure 1 for the literature screening flow chart).

Table 1 summarizes the characteristics of the included studies. The

lists of significant SNPs and genes associated with bipolar disorder

and dementia reported by GWAS are provided in Supplementary

Tables 1, 2, respectively.
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A review revealed that among the genes reported to be

associated with the diagnosis of bipolar disorder or dementia in

previous GWAS studies, the overlapping gene was calcium voltage-

gated channel subunit Alpha1 C (CACNA1C), gamma-

aminobutyric acid B receptor 2 (GABBR2), sodium voltage-gated

channel Alpha subunit 2 (SCN2A), cathepsin H (CTSH),

methionine sulfoxide reductase A (MSRA), and SH3 and PX

domains 2A (SH3PXD2A) (Table 2; Supplementary Figure 2).

With respect to the type of dementia, rs11062164 of CACNA1C,

rs16916777 of GABBR2, and rs17738042 of SH3PXD2A are

associated with vascular dementia; rs10184275 and rs2119067 of

SCN2A are associated with late-onset Alzheimer’s disease; and,

rs12592898 of CTSH and rs4607615 of MSRA are associated with

Alzheimer’s disease. No SNPs were found to be reported as

associated with both the diagnosis of bipolar disorder and dementia.
Discussion

According to GWAS, the CACNA1C, GABBR2, SCN2A,

CTSH, MSRA, and SH3PXD2A genes were common between

bipolar disorder and dementia.

CACNA1C encodes the alpha-1 subunit of the voltage-

dependent L-type calcium channel expressed in the human brain

(54), which regulates cellular calcium influx and is essential for

normal brain development and plasticity (55). Variants of

CACNA1C have been associated with bipolar disorder and

several neuropsychiatric disorders, such as schizophrenia, major

depressive disorder, autism spectrum disorder, attention deficit

hyperactivity disorder, and substance-use disorders (56). The

CACNA1C gene (especially the rs1006737 A allele) is robustly

associated with bipolar disorder and might be crucial in molecular

biological research on the set of interacting proteins involved in the

calcium channel activity in bipolar disorder (57). The CACNA1C

gene may not only be associated with the onset of bipolar disorder

but also potentially affects the course of cognitive function and

brain imaging. The rs1006737 variant (minor allele: A) of the

CACNA1C gene is associated with cognitive impairment in

patients with bipolar disorder and schizophrenia spectrum (58).

Furthermore, a 2-year longitudinal study on bipolar disorder

revealed that patients with the AA genotype of rs1006737 showed

poorer cognitive performance, particularly in terms of processing

speed (59). The rs10466907 variant of CACNA1C is associated with

cognitive recovery after a major depressive episode in bipolar

disorder (60). CACNA1C is expressed throughout the mouse

brain, including key limbic regions relevant for emotion and

cognition, such as the prefrontal cortex, hippocampus, and

amygdala (61). Moreover, embryonic deletion of CACNA1C in

glutamatergic neurons in the forebrain promotes the manifestation

of endophenotypes related to psychiatric disorders, including

cognitive decline, impaired synaptic plasticity, reduced sociability,

hyperactivity, and increased anxiety (61). In a human brain study

on bipolar disorder, the rs1006737 A allele of the CACNA1C gene

was associated with gray matter volume, functional connectivity

within the corticolimbic frontotemporal neural system, and mean

thickness of cortical brain areas (62, 63). Patients with bipolar
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TABLE 1 The characteristics of the studies included in the present review.

Author Diagnosis Criteria Sample size Platform
GWAS

software

Mullins et al., 2021 (14) Bipolar disorder
DSM-IV, ICD-9,

ICD-10

Bipolar disorder:
41,917,

Controls:371,549
Affymetrix and Illumina PLINK ver 1.90

Li et al., 2021 (17) Bipolar disorder DSM-IV
Bipolar disorder:

1784, Controls:2474
SNaPShot PLINK ver 1.9

Budde et al., 2019 (18) Bipolar disorder DSM-IV Bipolar disorder:1,081
Illumina; HumanHap550v3,
Human610, Human660w

PLINK

Stahl et al., 2019 (19) Bipolar disorder DSM-IV or ICD-10
Bipolar

disorder:20,352,
Controls:31,358

Affymetrix and Illumina PLINK ver 1.09

Ikeda et al., 2018 (20) Bipolar disorder DSM-IV-TR
Bipolar disorder:

2,964, Controls:61,887

Illumina; HumanOmniExpressExome
v1.0/v1.2
chip

LocusZoom

Acikel et al., 2016 (21) Bipolar disorder –
Bipolar disorder: 604,

Controls: 1,767
Affymetrix; Affy6.0 PLINK ver 1.8

Hou et al., 2016 (22) Bipolar disorder DSM-III or DSM-IV
Bipolar disorder:

9784, Controls:30,471

Affymetrix; Affy6.0, 500K and Illumina;
HumanHap550,

HumanOmni2.5M, OmniExpress
PLINK

Li et al., 2016 (23) Bipolar disorder DSM-IV, ICD-10
Bipolar disorder:

7,481, Controls: 9,250
Affymetrix exon arrays Sherlock

Kuo et al., 2014 (24) Bipolar disorder DSM-IV
Bipolar disorder: 240,

Controls: 240
Affymetrix; Affy6.0 PLINK ver 1.07

Mühleisen et al., 2014 (25) Bipolar disorder DSM-IIR, DSM-IV
Bipolar disorder:

9,747, Controls:14,278
Illumina; Human660W, HumanOmni1

PLINK ver 1.07,
INTERSNP
ver 1.11

Xu et al., 2014 (26) Bipolar disorder DSM-IV or ICD-10
Bipolar disorder: 950,

Controls: 950
Affymetrix; Affy5.0 PLINK

Chen et al., 2013 (27) Bipolar disorder DSM-IV
Bipolar disorder: 7773,

Controls:10 915

Affymetrix; Affy6.0, 500K and Illumina;
HumanHap550, HumanHap300, human

610-Quad, Infinium II
PLINK ver 1.4

Green et al., 2013 (28) Bipolar disorder DSM-IV
Bipolar disorder:

7,481, Controls: 9,250
Illumina PLINK ver 1.07

Cichon et al., 2011 (29) Bipolar disorder DSM-IV
Bipolar disorder:

682, Controls:1,300
Illumina; HumanHap550v3 PLINK ver 1.05

Lee et al., 2011 (30) Bipolar disorder DSM-IV
Bipolar disorder: 1409,

Controls: 2000
Illumina; HumanHap550 –

Psychiatric GWAS Consortium
Bipolar Disorder Working

Group, 2011 (31)
Bipolar disorder DSM-IV, ICD-10

Bipolar disorder:
11,974,

Controls: 51,792

Affymetrix; Affy6.0, Affy5.0, 500K and
Illumina; HumanHap550

PLINK

Yosifova et al., 2011 (32) Bipolar disorder –
Bipolar disorder: 188,

Controls: 376
Illumina; HumanHap550v3 –

Djurovic et al., 2010 (33) Bipolar disorder DSM-IV
Bipolar disorder:
194, Controls:336

Affymetrix; Affy6.0 and Illumina;
HumanHap300

and HumanCNV370
PLINK

Scott et al., 2009 (34) Bipolar disorder DSM-IV or ICD-10
Bipolar disorder:

3,683, Controls:14,507
Affymetrix; 500K and

Illumina; HumanHap550
–

Ferreira et al., 2008 (35) Bipolar disorder DSM-IV
Bipolar disorder:

4,387, Controls: 6,209
Affymetrix; Affy6.0, Affy5.0, 500K PLINK

Dalmasso et al., 2024 (36)
Alzheimer’s
disease

NINCDS-ADRDA
Alzheimer’s disease:
539, Controls: 854

Illumina; Infinium Global Screening
Array v.1.0

PLINK ver 1.9

(Continued)
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TABLE 1 Continued

Author Diagnosis Criteria Sample size Platform
GWAS

software

Sherva et al., 2023 (37)
Alzheimer’s
disease

ICD-9, ICD-10
Alzheimer’s disease:

4,012,
Controls: 18,435

MVP 1.0 custom Axiom array
SHAPEIT4 v

4.1.3,
MINIMAC4

Bellenguez et al., 2022 (15)
Alzheimer’s
disease

NINCDS–ADRDA
Alzheimer’s

disease:111,326,
Controls:677,663

Affymetrix; 500K and Illumina; Human
Omni Express-24 v1.1, Human

610, HumanHap550

SNPTEST 2.5.4-
beta3,

PLINK v1.90

Harper et al., 2022 (38)
Alzheimer’s
disease

–
Alzheimer’s disease:
424, Controls: 2,206

Illumina;Infinium Multi-Ethnic Global-
8 v1.0

PLINK

Wightman et al., 2021 (39)
Alzheimer’s
disease

NINCDS–ADRDA,
ICD-9, ICD-10

Alzheimer’s disease:
90,338,

Controls:1,036,225

Illumina; HumanHap550, Human Omni
Express, Infinium Global

Screening Array
PLINK ver 1.90

Jansen et al., 2019 (40)
Alzheimer’s
disease

NINCDS–ADRDA,
ICD-10

Alzheimer’s
disease:71,880,
Controls:383,378

Affymetrix;UK BiLEVE, Illumina;
Human Omni Express-24 v.1.1

Axiom array, UK Biobank Axiom array
PLINK

Kunkle et al., 2019 (41)
Alzheimer’s
disease

NINCDS-ADRDA,
DSM-IV, DSM-V

Alzheimer’s disease:
35,274,

Controls:59,163

Affymetrix; 500K and Illumina;
HumanHap550, 370CNV Duo, Human

610, OmniExpress
PLINK

Moreno-Grau et al., 2019 (42)
Alzheimer’s
disease

–

Alzheimer’s disease:
11,999,

Controls: 9,236
Affymetrix PLINK ver 1.9

Witoelar et al., 2018 (43)
Alzheimer’s
disease

ICD-10
Alzheimer’s disease:
2,135, Controls:6,858

Illumina; Human Omni Express-24 v.1.1 PLINK ver 1.9

Jun et al., 2016 (44)
Alzheimer’s
disease

NINCDS-ADRDA
Alzheimer’s disease:

17,536,
Controls: 3,6175

Affymetrix; Affy6.0, Illumina; Human
Omni Express-24

–

Lambert et al., 2013 (45)
Alzheimer’s
disease

NINCDS-ADRDA
Alzheimer’s disease:

17,008,
Controls:37,154

Illumina; HumanHap550, 370CNV Duo,
Human 610, Omni1

PLINK,
probABEL, R
(GEE), SNPtest

Seshadri et al., 2010 (46)
Alzheimer’s
disease

NINCDS-ADRDA/
DSM-IV

Alzheimer’s disease:
3,006, Controls:14,642

Illumina; HumanHap550, 370CNV Duo,
Human 610

PLINK

Mukherjee et al., 2020 (47)
Late-onset
Alzheimer’s
disease

NINCDS–ADRDA
Late-onset Alzheimer’s

disease:
2431, Controls:3447

– PLINK ver 1.9

Beecham et al., 2009 (48)
Late-onset
Alzheimer’s
disease

NINCDS–ADRDA
Late-onset Alzheimer’s

disease:
492, Controls:496

Illumina; HumanHap550 PLINK ver 1.9

Chia et al., 2021 (49)
Lewy

body dementia

Established consensus
criteria of

DLB Consortium

Lewy body dementia:
2591, Controls:4027

Illumina; HiSeq X Ten sequencer PLINK ver 1.9

Schrijvers et al., 2012 (50)
Vascular
dementia

NINDS-AIREN
Vascular dementia:
67, Controls:5633

Illumina; HumanHap550 v3.0 PLINK

Reus et al., 2021 (51)
Frontotemporal

dementia

Neary criteria,
Rascovsky and Gorno-

Tempini criteria

Frontotemporal
dementia: 354,
Controls: 4,209

Illumina; Genome Screening Array PLINK ver 2.0

Ferrari et al., 2015 (52)
Frontotemporal

dementia

Neary criteria,
Rascovsky and Gorno-

Tempini criteria

Frontotemporal
dementia:

530, Controls:926
Illumina; Human 660K PLINK

Ferrari et al., 2014 (53)
Frontotemporal

dementia
Neary criteria

Frontotemporal
dementia:

3526, Controls:9402
Illumina; Human 370K, 550K, 660K PLINK ver 1.07
F
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disorder carrying the rs1006737 A allele showed age-related cortical

thinning of the left caudal anterior cingulate cortex (64). In contrast,

among non-A carriers, age did not affect cortical thinning in the left

caudal anterior cingulate cortex, suggesting an underlying

relationship with aging-associated cognitive decline (64).

Furthermore, tau phosphorylation is known to increase in the

cerebrospinal fluid (CSF) in patients with Alzheimer’s disease

(65), and the rs1006737 variant of CACNA1C is significantly

associated with hyperphosphorylated tau/total tau ratio in the

CSF of patients with bipolar disorder (66). A study on late-onset

Alzheimer’s disease focusing on protein–protein network

interactions revealed eight genes with strong associations: APOE,

SORL1, APOC1, CD33, CLU, TOMM40, CNTNAP2, and
Frontiers in Psychiatry 05
CACNA1C (67). Interestingly, CACNA1C (rs10848683 variant) is

also associated with ischemic stroke (68). Similarly, CACNA1C

(rs11062164 variant) was significantly associated with vascular

dementia (50). Thus, CACNA1C is associated with dementia.

Furthermore, the rs7297582 T allele of CACNA1C is associated

with a risk of bipolar disorder and poor cognitive performance (69).

Although no studies have reported an association between

rs7297582 and dementia, future studies should consider SNPs of

interest in relation to both bipolar disorder and dementia. In the

present review, the SNPs of CACNA1C did not match across

studies. CACNA1C, especially rs1006737 and rs7297582, may be

strongly associated with the onset of bipolar disorder, cognitive

decline in bipolar disorder, and dementia.
TABLE 2 The overlapping genes and single nucleotide polymorphisms with bipolar disorder and dementia.

Diagnosis SNPs Position
Minor
Alleles

Allele
Directions

Author

Gene: CACNA1C

Bipolar disorder rs1006737 chr12:2236129 A + Chen et al., 2013 (27); Ferreira et al., 2008 (35); Green et al., 2013 (28)

Bipolar disorder rs1024582 chr12:2293080 A + Ferreira et al., 2008 (35)

Bipolar disorder rs10744560 chr12:2277933 T + Stahl et al., 2019 (19)

Bipolar disorder rs10848642 chr12:2222406 G – Chen et al., 2013 (27)

Bipolar disorder rs11062170 chr12:2239678 C + Mullins et al., 2021 (14)

Bipolar disorder rs4765913 chr12:2310730 A +
Green et al., 2013 (28); Psychiatric GWAS Consortium Bipolar Disorder

Working Group, 2011 (31)

Vascular dementia rs11062164 chr12:2224486 A + Schrijvers et al., 2012 (50)

Gene: GABBR2

Bipolar disorder rs7864144 chr9:98643756 G – Xu et al., 2014 (26)

Vascular dementia rs16916777 chr9:98518893 A + Schrijvers et al., 2012 (50)

Gene: SCN2A

Bipolar disorder rs17183814 chr2:165295879 G + Mullins et al., 2021 (14); Stahl et al., 2019 (19)

Late-onset
Alzheimer’s disease

rs10184275 chr2:165271418 – – Beecham et al., 2009 (48)

Late-onset
Alzheimer’s disease

rs2119067 chr2:165270773 – – Beecham et al., 2009 (48)

Gene: CTSH

Bipolar disorder rs16970287 chr15:78935915 G + Yosifova et al., 2011 (32)

Bipolar disorder rs2289700 chr15:78932341 A + Yosifova et al., 2011 (32)

Alzheimer’s disease rs12592898 chr15:78936857 A – Bellenguez et al., 2022 (15)

Gene: MSRA

Bipolar disorder rs3088186 chr8:10368845 T + Mullins et al., 2021 (14)

Alzheimer’s disease rs4607615 chr8:10422116 C – Sherva et al., 2023 (37)

Gene: SH3PXD2A

Bipolar disorder rs2281587 chr10:103617592 C +
Psychiatric GWAS Consortium Bipolar Disorder Working Group,

2011 (31)

Vascular dementia rs17738042 chr10:103596274 A + Schrijvers et al., 2012 (50)
CACNA1C, Calcium voltage-gated channel subunit Alpha1 C; CTSH, Cathepsin H; GABBR2, Gamma-aminobutyric acid B receptor 2; GWAS, Genome-wide association studies; MSRA,
Methionine sulfoxide reductase A; SH3PXD2A, SH3 and PX domains 2A; SNPs, Single nucleotide polymorphisms; SCN2A ,Sodium voltage-gated channel Alpha subunit 2.
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Human gamma-aminobutyric acid type B receptor (GABABR)

is a G protein-coupled receptor central to inhibitory

neurotransmission in the brain (70). GABABR is assembled by

the heterodimeric interaction of the intracellular C-terminal tails of

the two subunits encoded by GABBR1 and GABBR2 (70). In

patients with bipolar disorder, GABAergic hypofunction has been

observed in the cerebellum (71). Additionally, a post-mortem study

revealed reduced protein expressions of GABBR1 and GABBR2 in

the cerebellum of patients with bipolar disorder (72). Dysfunction

of the GABAergic system may cause cognitive impairment in

humans (73). The reduction in GABAergic system components in

the brain and lower GABA levels in the CSF of patients with

Alzheimer’s disease suggest that the GABAergic system is

vulnerable to Alzheimer’s disease pathology and should be

considered a potential target for developing pharmacological

strategies and novel Alzheimer’s disease biomarkers (74, 75).

GABBR2 is also associated with bipolar disorder and dementia.

SCN2A encodes the voltage-gated sodium channel Nav1.2, a

major central nervous system sodium channel that plays a role in

the initiation and conduction of action potentials (76). SCN2A

variants are associated with a range of disorders including autism

spectrum disorder, developmental delay, seizures, and epileptic

encephalopathy (77). Furthermore, SCN2A is associated with

psychiatric disorders such as bipolar disorder and schizophrenia

(14, 78). SCN2A contributes to excitability that facilitates synapse

formation and development (79). A study on Alzheimer’s disease

focusing on protein-protein network interactions revealed six hub

genes: SCN2A, SNAP25, GRIN2A, GRIN2B, DLG2, and ATP2B2

(80). Thus, SCN2A is associated with bipolar disorder

and dementia.

CTSH is a cysteine cathepsin that primarily acts as an

aminopeptidase (81). The main function of cathepsins is to

degrade proteins via proteolysis in lysosomes (81). CTSH has

been implicated in the cis-regulated mRNA association with

Alzheimer’s disease (82). CTSH expression is significantly lower

in the brain tissue of healthy controls than in patients with

Alzheimer’s disease (83). Moreover, CTSH knockout affected

genes related to endocytosis and significantly increased Ab42
phagocytosis in microglial cells (83). The CTSH gene was

significantly associated with Alzheimer’s disease (83). The

mechanism by which CTSH is associated with bipolar disorder is

unknown; however, a GWAS conducted by Yosifova et al. in a

Bulgarian population identified a significant association between

bipolar disorder and CTSH (32). Therefore, CTSH is a gene of

interest related to bipolar disorder and dementia.

MSRA has been postulated to act as a catalytic antioxidant

system that protects against oxidative stress-induced cell injury and

is highly expressed in the brain (84, 85). The methionine sulfoxide

reductase system may contribute to the development of aging-

associated diseases, including neurodegenerative diseases (86).

MRSA knockout mice exhibit enhanced neurodegeneration in the

brain hippocampus compared to their wild-type counterparts (86).

There are hypotheses suggesting that oxidative stress is associated

with bipolar disorder and Alzheimer’s disease (87, 88). The
Frontiers in Psychiatry 06
rs4840463 polymorphism in MRSA is associated with an

increased risk of bipolar I and executive function defects (87). In

this review, the rs3088186 polymorphism is associated with bipolar

disorder, while rs4607615 is linked to Alzheimer’s disease. Thus,

MRSA is implicated in both bipolar disorder and dementia.

The SH3PXD2A gene encodes TKS5, an isoform essential for

proper mammalian development (89). Additionally, SH3PXD2A

directly interacts with the ADAM metallopeptidase domain 15

gene, which is involved in neurodegeneration and inflammatory

processes (90). SH3PXD2A is associated with brain white matter

lesions and stroke (90–92). It is noteworthy that SH3PXD2A

(rs17738042) is significantly associated with vascular dementia

(50). Interestingly, rs3740473 of SH3PXD2A is associated with

Alzheimer’s disease (93). The mechanism by which SH3PXD2A is

linked to bipolar disorder remains unknown; however, a GWAS

revealed a significant association between bipolar disorder and

SH3PXD2A (31). Therefore, SH3PXD2A is a gene of interest in

relation to bipolar disorder and dementia.

In addition, we previously reviewed that rs334558 of the GSK-

3b gene was associated with depression, bipolar disorder, and

dementia (16, 94–96). We hypothesized the existence of a mental

GSK-3 disease, which comprises a specific group of patients

associated with the GSK-3b variant, whose diagnoses

longitudinally transition from depression to bipolar disorder and

finally to dementia (16). Therefore, although we could not find a

significant association between the GSK-3b gene and bipolar

disorder and dementia in this GWAS review, rs334558 of the

GSK-3b gene is associated with bipolar disorder and dementia.

This review has several limitations. First, it relies on GWAS, which

are cross-sectional in nature, and examines bipolar disorder and

dementia at each study time point. Therefore, genetic studies

involving the longitudinal transitions from bipolar disorder to

dementia or cognitive function decline in patients with bipolar

disorder are needed. Hence, future longitudinal studies are needed to

explore the genetic factors associated with cognitive decline in bipolar

disorder and the onset of dementia. Second, bipolar disorder and

dementia are believed to be associated with various genes, and it is

difficult to explain them based solely on a single gene or SNP. Therefore,

it is necessary to consider factors frommultiple genes, such as polygenic

scores, which can summarize global genomic risk rather than focusing

on specific variants. Third, this review only examined whether the

identified genes or SNPs were relevant by extracting them from

individual studies and did not involve a combined GWAS analysis of

the cases in each study. Finally, this review is qualitative, not

quantitative, and weighs the effects of candidate genes.
Conclusion

In conclusion, CACNA1C, GABBR2, SCN2A, CTSH, MSRA,

and SH3PXD2A may be associated with the neuro-progression of

bipolar disorder to dementia. Further genetic studies are needed to

comprehensively clarify the role of genes in cognitive decline and

dementia development in patients with bipolar disorder.
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