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Background: The basolateral complex of the amygdala is a crucial

neurobiological site for Pavlovian conditioning. Investigations into volumetric

alterations of the basolateral amygdala in individuals with major depressive

disorder (MDD) have yielded conflicting results. These may be reconciled in an

inverted U-shape allostatic growth trajectory. This hypothesized trajectory

unfolds with an initial phase of volumetric expansion, driven by enhanced

dendritic arborization and synaptic plasticity. The increase in volume is

followed by a reduction phase, as glucocorticoid exposure cumulatively results

in excitotoxic damage, reflecting allostatic load.

Methods: 7T magnetic resonance brain imaging was conducted on a total of 84

participants (mean age 38 ± 12 years), comprising 20 unmedicated and 20

medicated individuals with MDD, 21 individuals suffering from bipolar disorder

and 23 healthy controls. We employed FreeSurfer 7.3.2 for automatic high-

resolution segmentation of nine amygdala subnuclei. We conducted analyses of

covariance, with volumes of the basolateral complex, the lateral nucleus and,

exploratively, the whole amygdala, as dependent variables, while controlling for

the total intracranial volume and sex. Quadratic regressions were computed

within the MDD group and in relevant subgroups to investigate the presence of a

U-shaped relationship between the number of preceding major depressive

episodes or the duration of the disease since the first episode and the

dependent variables.

Results: Diagnostic groups did not exhibit statistically significant differences in the

volumes of the basolateral amygdala (left F (3,75) = 0.66, p >.05; right F (3,76) =

1.80, p >.05), the lateral nucleus (left F (3,75) = 1.22, p >.05; right F (3,76) = 2.30,

p >.05)), or the whole amygdala (left F (3,75) = 0.48, p >.05; right F (3,76) = 1.58,

p >.05). No quadratic associations were observed between surrogate parameters

of disease progression and any of the examined amygdala volumes. There were no

significant correlations between subregion volumes and clinical characteristics.
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Conclusion: We found no evidence for the hypothesis of an inverted U-shaped

volumetric trajectory of the basolateral amygdala in MDD. Future research with

larger sample sizes, including the measurement of genetic and epigenetic

markers, will hopefully further elucidate this compelling paradigm.
KEYWORDS

amygdala, basolateral amygdala, volume, major depressive disorder, FreeSurfer, BLA,
MDD, 7T
1 Introduction

Affective disorders comprise major depressive disorder (MDD),

also known as unipolar affective disorder, and bipolar disorder (BP).

Affective disorders are mental diseases with high prevalence,

inflicting severe consequences on the affected individuals and

contributing greatly to the global burden of disease (1). For

example, MDD is estimated to affect about one in every six adults

during their lifespan (2). It is a heterogeneous disease with diverse

manifestations (3–6).

As mood, anxiety and stress are inherently interconnected (7,

8), a foundational understanding in contemporary psychiatry is that

mood disorders stem from prolonged stress responses, leading to

dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis (9,

10). A meta-analysis examining HPA-axis dysregulation in MDD

detected medium to small elevations in adrenocorticotropic

hormone and cortisol and a reduction in corticotropin releasing

factor (CRF) levels (11).

The amygdala is a subcortical brain twin structure, located

bilaterally in the anterior medial temporal lobe (12), consisting of 15

nuclei (13). Its medial and central nuclei are projecting to the

paraventricular nuclei of the hypothalamus, e.g., via the bed nucleus

of the stria terminalis (14), rendering it an important part of the

HPA axis. Amygdala activation enhances hypothalamic CRF

secretion (15).

Drawing upon cytoarchitectural and functional assessments, the

amygdala is frequently categorized into three primary subdivisions:

the basolateral, centromedial, and superficial amygdala (16, 17).

The basolateral complex of the amygdala (BLA) is the main input

site, receiving information from all sensory systems (visual,

auditory, somatosensory, olfactory, and gustatory), from the

hippocampus and the entorhinal cortex, and from polymodal

association cortices (18). It is composed of the lateral nucleus

(LA), the basal nucleus (also referred to as the basolateral

nucleus) and the accessory basal nucleus (often also named

basomedial nucleus). The neuronal morphology of the BLA

resembles that of the neocortex and is comprised mostly of

glutamatergic pyramidal neurons which express multipolar

dendritic trees that are covered with spines. Their axons form

numerous projections to other BLA neurons, amygdala nuclei, or

more remote brain areas (19).
02
The amygdala is crucial for evaluating the emotional

significance of incoming stimuli (20). It mediates appropriate

physiological reactions (e.g., autonomic reactivity), memory

consolidation (via reciprocal connections with the hippocampus)

and behavioral adjustments (such as reward processing and

modulation of social behavior, via reciprocal connections with the

ventromedial prefrontal cortex and posterior orbitofrontal cortex)

(18, 21, 22). Neuroimaging studies in healthy individuals have

shown that the amygdala is particularly activated during

processing of negative emotions, most predominantly fear (23).

There is evidence from multimodal MRI studies that the amygdala

is crucially involved in the pathophysiology of depression.

Enhanced glucose metabolism and heightened resting cerebral

blood flow in the amygdala have been shown for individuals

affected by MDD (24, 25). Decreased connectivity of the frontal

lobe to the amygdala (26) is thought to lead to an increased activity

of the amygdala in depressed patients. Increased amygdala

activation in the face of a negative stimulus in depressed

individuals has been reported in a meta-analysis (27).

The BLA is a pivotal locus for associative learning, central in

encoding environmental cues, contexts, and behaviors, thereby

delineating the boundary between safety and recognized threats

(28). Associative learning unfolds as the brain establishes

connections among previously disparate elements, such as objects,

sights, sounds, ideas, or behavior. This process, known as

conditioning, intertwines the significance of one stimulus with

that of another (29). Synaptic plasticity in excitatory and

inhibitory circuits in the BLA, especially in the LA, have been

well established as the cellular substrate of Pavlovian associative

learning (30, 31). Pavlovian associative learning describes the

triggering of physiological and behavioral changes in response to

a conditioned, initially neutral stimulus, by the use of an aversive,

unconditioned stimulus (32). It is required for humans and other

mammals to scan and respond to their environment (32) and is a

near-ideal model to identify processes involved in fear acquisition

and extinction (33, 34).

On the pyramidal neurons of the LA, highly processed input

from sensory cortices converges with direct subcortical inputs via

the thalamus (22, 35). In more detail, excitatory synaptic inputs

conveying conditioned (e.g., sound) stimuli and unconditioned

stimuli (e.g., electric shock) converge on the same pyramidal
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neuron in the LA, leading to NMDA receptor-mediated long-term

potentiation conveying the conditioned stimulus to the LA

(Hebbian plasticity) (36). This leads to a strengthening of the

synapses carrying the conditioned stimulus information (37, 38).

While the central amygdala also contributes to fear conditioning

(19), our study focused on the BLA and the LA. Their

neurocircuitries provide a complex yet fairly well understood

model to approximate the real-world phenomena of fear and

threat learning.

The BLA is known to express mineralocorticoid and

glucocorticoid receptors, which are both susceptible to

glucocorticoids (39). Animal models employing chronic

immobility stress to mimic depression have revealed elevated

levels of glucocorticoids in the BLA (40, 41). After application of

this paradigm, enhanced dendritic length, branching and spines in

the BLA were observed (42, 43). Glucocorticoids are deemed to be

the mediating factor of this link (40, 44). Spines are typically

correlates of strongly excitatory synapses (28). Interestingly, the

effects of glucocorticoids on the BLA seem to differ from their effects

on other regions of the brain, e.g., the hippocampus, where

dendritic retraction was observed after stress exposure (45, 46).

Children with congenital adrenal hyperplasia exhibit reduced

amygdala volumes (47) as well as patients with Cushing

syndrome (48), underscoring the influence of elevated

glucocorticoid levels on amygdala volumes. Glucocorticoids and

CRF mediate changes of brain-derived neurotrophic factor (BDNF)

levels by altering transcription of the BDNF genes (49). BDNF is a

neurotrophin deemed to be potent modulator of neuronal survival,

growth, and differentiation, and specifically regulates morphological

plasticity of dendrites (50, 51). Lakshminarasimhan and Chattarji

showed that chronic stress causes an up-regulation of BDNF in the

BLA in rats (52). BDNF therefore is a potential pathway through

which glucocorticoids influence dendritic-spine formation in the

BLA (53). Antidepressant drugs as well have been proposed to act

on amygdalar spines via BDNF (54–56).

Previous investigations into the subnuclei of the amygdala have

produced inconsistent findings regarding the volume of the

basolateral amygdala. Some studies reported volumetric increases

(57), while others observed decreases (58, 59). Yet, there are also

studies noting no discernible alterations (60–62). In patients with

anxious MDD, which is one of the most common subtypes (63), Li

et al. found no significant differences in amygdala subfield volume

compared to patients with non-anxious MDD (64). A large sample

morphometric study conducted by the ENIGMA group (65)

revealed that patients experiencing their first MDD episode (n =

500) exhibited greater thickness and larger surface area in the BLA

compared to those with recurrent episodes (n = 1,174).

Additionally, this group observed that patients with an onset of

MDD at or before age 21 (n = 476) had lower thickness and smaller

surface area in the BLA relative to HC (n = 2,879). Post-mortem

studies in humans by Rubinow et al. (66) revealed a larger lateral

nucleus in depressed individuals and a higher total count of

neurovascular cells in the BLA compared to controls, respectively.

Notably, individuals with an MDD duration shorter than 5 years
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demonstrated a significantly higher number of neurovascular cells

in the accessory basal nucleus compared to those with a longer

history of the disease, suggesting time dependent effects of MDD on

neurovascular cells. Rubinow et al. did not investigate whether the

observed volume increase was specifically linked to enhanced

dendritic arborization. Therefore, this augmentation may be

attributed to dendritic branching, a higher count of neurovascular

cells, or a combination of both factors.

The concept of allostatic load, as proposed by Danese and

McEwen (67) may help to reconcile the contradictions observed in

volumetric alterations. Allostatic load refers to the cumulative

physiological burden placed on an organism as a result of

prolonged exposure to elevated levels of stress, leading to

structural adaptation processes. While these adaptations may

promote short-term survival, they often fail to establish true

homeostasis. Persistent exposure to stressors can result in chronic

overactivation of the stress-responsive system, which is detrimental

to the organism in the long term. In this context, histoanatomical

allostatic adaptations in the amygdala are correlates of efforts to

contextualize stimuli associated with threat and vigilance.

Hanson and Nacewicz (28) proposed an inverted-U shaped

allostatic growth trajectory to explain changes in amygdala volume.

They suggested that sustained stress initially leads to an increase in

the volume of the BLA through enhanced dendritic arborization.

This enlargement results in greater cellular complexity, particularly

within excitatory synapses, leading to heightened excitation.

However, as the balance between excitation and inhibition is

disrupted, metabolic demands rise, causing the accumulation of

neurotoxic compounds like glutamate. Glutamate, along with other

excitatory amino acids, is known to have neurotoxic effects under

certain conditions (68). Subsequently, the ensuing toxic-metabolic

damage may lead to dendritic loss and volume reduction.

Consistent with this, earlier studies provide evidence suggesting

an increase in amygdalar volume in patients newly diagnosed with

MDD (69, 70) followed by a decrease as the duration of MDD

progresses (71).

Hypothesis I. Given that unmedicated depressed individuals

(group MDDu) in our sample had a relatively short illness duration

and few major depressive episodes (MDEs), we hypothesized that

the volume of the basolateral amygdala (BLA) and its primary

component, the lateral nucleus (LA), would be increased in these

individuals compared to healthy controls as a consequence of

allostatic adaptations (28).

Hypothesis II. For patients in the medicated depressed group

(MDDm), characterized by longer illness durations and more

MDEs compared to those in the MDDu group, we proposed that

cumulative glucocorticoid exposure, leading to excitotoxic damage,

would outweigh any neuroprotective effects of antidepressant

medication. Consequently, we hypothesized volume reductions in

the BLA and LA for the MDDm group compared to the MDDu

group, even below the baseline volume observed in healthy

controls (HC).

Hypothesis III. Considering the significance of the amygdala in

anxiety disorders (72), we hypothesized that patients with comorbid
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1404594
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Kürzinger et al. 10.3389/fpsyt.2024.1404594
anxiety disorders would exhibit smaller volumes of the BLA due to

heightened activation and increased toxic-metabolic strain.

Hypotheses IV & V. Following the concept of allostatic growth

trajectory, we hypothesized a negative quadratic correlation

between the numbers of MDEs or the total duration of the

disease and the volume of the BLA/LA in the major depressive

disorder groups (MDDu and MDDm).
2 Materials and methods

2.1 Study design and participants

The study design incorporated four distinct groups, consisting

of Caucasian in- and out-patients of the University Hospital of

Leipzig. The ages ranged from 18 to 65 years, with a mean age of 38

± 12 years (see Table 1 for further information on the sample

characteristics). Individuals with a history of substance dependency

were strictly excluded.

Two groups of patients suffering from MDD were formed, all

currently experiencing a depressed mood state. One of them, named

MDDm, took medication at the time of the MRI scans. The second

group, MDDu, consisted of patients who had abstained from

psychopharmacological medication for a minimum of three

months before undergoing 7T MRI. For each participant in the

MDDu group, a healthy control (HC) matched in terms of sex, age

and handedness was recruited. Most patients in the fourth group,

which comprised individuals with bipolar disorder (BP), took

medication. All participants provided written informed consent.

The study was approved by the Ethics Committee of the University

Leipzig, Germany, and carried out in accordance with the latest

version of the Declaration of Helsinki.

Of 107 patients initially participating in the study, 101

underwent 3T MRI scanning to exclude neurological diseases.

Structured Clinical Interview for DSM-IV (SCID) (74)

assessments were conducted on 91 participants. Their disease

severity was evaluated with self-rating scales such as the Beck

Depression Inventory (BDI-II) (75), clinical rating scales like the

Bech-Rafaelsen Melancholia Scale (BRMS) (76), and structured

interviews including SIGH-D17/IDS-C3 (77) for the Hamilton

Rating Scale for Depression (HRSD) and the Inventory of

Depressive Symptomatology (IDS). We also recorded additional

parameters including the duration of the disease, defined as the time

interval between a patient’s current age and the age at first

diagnosis, as well as the duration of the current MDE, and the

number of MDEs (78) a patient had suffered from so far. 87 subjects

completed the 7T MRI phase. After 2-4 years, axis I diagnoses were

validated, resulting in a switch of diagnosis for one patient from

MDD to BP. Ultimately, 84 individuals were included for

volumetric analysis, with sample sizes of n = 20 for MDDm, n =

20 for MDDu, n = 23 for HC, and n = 21 for BP. The sample sizes

ensured sufficient test power (1-b = 0.80) for large-sized effects with

an alpha error rate of 5% in a one-way ANOVA with fixed effects

and four groups (79). For further details please refer to Schindler

et al. (78).
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2.2 Image acquisition and pre-processing

A 7T whole-body MR scanner (MAGNETOM 7T, Siemens

Healthineers, Erlangen, Germany) and a 24-channel NOVA coil

(Nova Medical, Inc., Wilmington, MA, USA) were employed to

acquire T1-weighted high (0.7 mm isotropic) resolution images of

the brain.

A 3D Magnetization-Prepared 2 Rapid Acquisition Gradient

Echoes sequence (MP2RAGE) (80) was used with the following

parameters optimized for high contrast-to-noise ratio: repetition

time (TR) = 8.25 s; inversion times (TI1/TI2) = 1 s/3.3 s; flip angles

(a1/a2) = 7°/5°; echo time (TE) = 2.51 ms; and bandwidth (BW) =

240 Hz/Px, 1 average. A field of view (FOV) of 224 mm x 224 mm x

168 mm combined with an imaging matrix of 320 x 320 x 240

resulted in a nominal acquisition voxel size of 0.7 mm isotropic.

With parallel imaging (81) and an acceleration factor of two, a scan

time of 18:02 min could be achieved. The scans were performed

from September 2010 to April 2014.

We used a combination of Medical Image Processing and

Visualization software (MIPAV, version 7.0.1) (82), and

Computational Anatomy Toolbox (CAT12; C. Gaser, Structural

Brain Mapping Group, Jena University Hospital, Jena, Germany,

http://www.neuro.uni-jena.de/cat/) to create binary brain masks.

These masks contained information for every voxel, indicating

whether it was categorized as brain tissues or meninges, or

attributed to the skull or environment.
2.3 FreeSurfer segmentation

FreeSurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu/)

version 7.3.2 (August 2022) was used for cortical reconstruction and

volumetric segmentation. FreeSurfer’s main and fully automatic

image processing pipeline involves several steps such as motion

correction and averaging of the T1 weighted image (83), removal

of non-brain tissue using a hybrid watershed/surface deformation

procedure (84), automated Talairach transformation, segmentation

of subcortical structures (including the amygdala) (85, 86), and

automated topology correction (87). FreeSurfer’s morphometric

methods have been reported to exhibit strong reliability across

different scanners and field strengths (88, 89).

The binary brain masks were input into the main pipeline to

enhance FreeSurfer’s skull stripping process. For 20 images, the

initially acquired NIfTI images required cropping of non-brain

tissue to enable accurate Talairach transformation. Four subjects

required manual white matter editing due to the failure of

FreeSurfer’s automated topology correction. The editing was

conducted in accordance with the official instructions as

established by the FreeSurfer developers and available on their

website. After completing FreeSurfer’s main pipeline, all

segmentations were thoroughly visually quality-checked.

Subsequently, the amygdala subfield segmentation (implemented

in MATLAB runtime) (90) was performed (see Figure 1). Both the

main pipeline and the subfield module generate estimates for total

amygdala volumes. For subsequent analysis of total amygdala
frontiersin.org
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TABLE 1 Comparison of sociodemographic and clinical characteristics of the study groups.

)
Bipolar disorder
(n = 21) Controls (n = 23)

Group comparison

Test statistic p-value

9/12 9/14 X2 (3, n = 84) = 0.27 .97

39.3 ± 12.0 36.0 ± 12.8 F (3, 80) = 1.47 .23

81.0 (-80.0-100.0) 100.0 (-77.8-100.0) X2 (3, n = 83) = 4.63 (k) .20

1.39 (1.17 - 2.04) 1.41 (1.14 - 2.16) X2 (3, n = 84) = 0.498 (k) .92

25.0 ± 3.9 22.2 ± 2.1 F (3, 36) = 4.49 (w) .009**

22.5 ± 13.4 n.a. F (2, 58) = 0.97 .38

18.6 ± 9.0 n.a. F (2, 36) = 1.03 (w) .37

19.5 ± 8.9 n.a. F (2, 58) = 0.78 .46

33.0 ± 15.9 n.a. F (2, 58) = 0.13 .88

15.9 ± 10.6 n.a. F (2, 57) = 3.20 .048*

10.0 (2-56) n.a. X2 (2, N = 58) = 0.60 (k) 0.74

8.0 (1-33) n.a. X2 (2, N = 61) = 23.8 (k) <.001***

11.0 (2-65) n.a. X2 (2, N = 61) = 30.3 (k) <.001***

e group comparisons (ANOVA or chi-squared, respectively) are given in brackets. Laterality quotient, as defined by the Edinburgh inventory (73). *p ≤.05,
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Depression
(unmedicated, n = 20)

Depression
(medicated, n = 20

Sex (male/female) 8/12 7/13

Age 36.2 ± 12.8 42.9 ± 10.8

Laterality quotient 90.2 (- 100.0-100.0) 100.0 (-30.0-100.0)

Intracranial volume (liter) 1.37 ± 0.15 1.36 ± 0.12

Body mass index 25.7 ± 4.9 24.5 ± 6.1

Beck Depression Inventory II 26.4 ± 10.2 21.6 ± 10.6

Bech-Rafaelsen-Melancholia Scale 16.3 ± 4.9 14.8 ± 7.9

Hamilton Rating Scale
for Depression

17.5 ± 6.9 16.2 ± 9.7

Inventory of
Depressive Symptomology

31.3 ± 12.4 30.9 ± 13.9

Years since 1st episode 7.6 ± 10.4 13.3 ± 10.5

Weeks since onset of
current episode

12.0 (3-100) 16.0 (2-29)

No. of depressive episodes 2.0 (1-5) 4.5 (1-60)

Overall no. of illness episodes 2.0 (1-5) 4.5 (1-60)

Means ± SD or medians (range) for not normally distributed data, respectively, are listed. Degrees of freedom of th
**p≤.01, ***p ≤.001, (k) KruskaI—WaIlis test, n.a, not available, (w) Welch Statistic.
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volume, the values obtained from the subfield module were selected

due to their higher accuracy, as acknowledged by the FreeSurfer

developers. Intracranial volume (ICV) was determined using

FreeSurfer’s measurement of estimated total intracranial volume.

Volumes of the left and right BLA were calculated by summing the

computed volumes of lateral, basal, and accessory basal nuclei.
2.4 Data characteristics and
statistical analyses

Statistical analyses were performed using SPSS Statistics 29

(SPSS Inc. Released 2022. PASW Statistics for Windows, Chicago,

USA). All tests were two-tailed and p values below.05 were

considered significant. Normality was tested using the Shapiro-

Wilk test and confirmed for the volumes of total amygdala, BLA

and LA as well as for age. Two subjects (study groups HC and BP)

exhibited unusually high values for the ICV (|z| > 3.29). Visual

inspection did not reveal major segmentation errors. Prior to

further statistical analysis, these outliers were excluded from the

dataset, resulting in confirmation of the assumption of normality.

An additional individual in the BP group demonstrated unusually

small left-sided volumes of interest (|z| for the left LA > 2.58, |z| for

the left BLA > 3.29). As a result, this subject was excluded from the

analysis of the left side only. Therefore, we proceeded with a sample

size of N = 81 for the left-side volumes and N = 82 for the right-side

volumes for further analysis.
Frontiers in Psychiatry 06
As left and right-side volumes of interests highly correlated

(whole amygdala and BLA r (83) = .90, LA r (83) = .88), a

univariate approach was favored. Initially, a one-way ANOVA

was performed for the left and right-side volumes each. The study

groups were well balanced with regard to their main potential

confounders ICV, sex, and age (see Table 1). The impact of these

potential confounding variables on the dependent variables was

examined as shown in Table 2. Based on these analyses, the group

comparisons were repeated under stepwise inclusion of ICV and

then sex (ANCOVA).

To examine the disease progression-dependent inverted U-

shaped trajectory, we conducted bivariate quadratic regressions

between the number of MDEs and the volumes of the left and

right BLA and LA for a pooled MDD group, as well as for the

MDDu and MDDm group separately. Additionally, we computed

bivariate quadratic regressions to explore the relationship between

the overall duration of the disease since the onset of the first MDE

and the volumes of interest for the same groups.

We assessed linear correlations using Spearman’s rho for non-

normally distributed data and Kendall’s t for non-equidistant

ordinal data between the regions of interest and clinical

characteristics, including age of onset, weeks since the onset of

the current episode, BDI, BRMS, HRSD, IDS and the factor two

(anxiety and arousal) items of IDS (91, 92). This assessment was

conducted for the diagnostic groups separately, as well as for a

pooled patients group (comprising BP, MDDu, and MDDm) and a

pooled MDD group (comprising MDDu and MDDm).
FIGURE 1

T1-weighted images at a resolution of 0.7 x 0.7 x 0.7 mm, depicting amygdala nuclei segmentation in coronal (A), sagittal (B), and axial (C)
orientations, as well as in three-dimensional (3D) planar view (D). Blue indicates the lateral nucleus, red the basal nucleus, and orange the accessory
basal nucleus. A, Anterior; I, Inferior; L, Left; P, Posterior; R, Right; S, Superior.
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3 Results

3.1 Group comparisons

In healthy controls, the absolute volume of the left amygdala

was 1766.5 ± 206.4 mm³ and 1801.3 ± 199.9 mm³ for the right

amygdala, 1380.2 ± 163.3 mm³ for the left BLA, and 1392.5 ± 156.4

mm³ for the right BLA. For the LA, volumes of 666.6 ± 78.5 mm³

(left) and 666.1 ± 70.9 mm³ (right) were obtained in healthy

individuals. All volumes are presented in Table 3.

The study groups differed significantly in the number of MDEs

and the time elapsed since the first MDE, but not in clinical

depression severity ratings (see Table 1).

Stepwise global comparisons (ANOVA, ANCOVA with sex, and

ANCOVA with sex and ICV) did not find significant differences

between the study groups with respect to the mean volume of the
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BLA (e.g., full model left F (3,75) = 0.66; right F (3,76) = 1.80, all p

>.05) or the mean volume of the LA (left F (3,75) = 1.22; right F (3,76)

= 2.30, all p >.05). No significant differences were found either in the

exploratory group comparison of the volume of the entire amygdala

(left F (3,75) = 0.48; right: F (3,76) = 1.58, all p >.05). Detailed

statistics on group comparisons are displayed in Table 3.

In the ANCOVA examining the left whole amygdala and the

left BLA, the assumption of homogeneity of regression slopes was

violated when correcting for the covariates ICV and sex. This

violation has little influence on alpha error probability or test

power (93–96).

To compare patients with and without comorbid anxiety disorders

in their medical history, as assessed with the SCID, we conducted

Student’s t-tests, initially including all MDD patients, and subsequently

analyzing MDDm and MDDu groups separately (see Supplementary

Material 1). No statistically significant results were observed.
TABLE 3 Measured volumes in mm3 ± standard deviation and group comparisons.

Healthy
Controls
(n = 22)

Depressed
(unmedicated)
(n = 20)

Depressed
(medicated)
(n = 20)

Bipolar disorder
(n(Left) = 19, n
(Right) = 20)

Group
comparison

Corrected
for ICV

Corrected
for ICV
& sex

Left
Whole
Amygdala

1766.5
± 206.4

1763.0 ± 157.6 1739.4 ± 235.2 1690.1 ± 251.3 F (3,77) = 0.53,
p = .663, partial
h2 = .020

F (3,76) = 0.53,
p = .660, partial
h2 = .021

F (3,75) = 0.48,
p = .694, partial
h2 =.019 (H)

Left
Basolateral
Complex

1380.2
± 163.3

1375.1 ± 122.0 1359.6 ± 186.6 1314.3 ± 193.6 F (3,77) = 0.62,
p = .602 partial
h2 = .024

F (3,76) = 0.66,
p = .578, partial
h2 = .025

F (3,75) = 0.66,
p =.582, partial
h2 = .026 (H)

Left
Lateral Nucleus

666.6 ± 78.5 665.2 ± 71.6 660.5 ± 91.5 628.9 ± 88.6 F (3,77) = 0.90,
p = .443, partial
h2 = .034

F (3,76) = 1.06,
p = .369, partial
h2 = .040

F (3,75) = 1.22,
p = .308, partial
h2 =.047

Right
Whole
Amygdala

1801.3
± 199.9

1825.0 ± 158.5 1776.8 ± 258.4 1700.4 ± 266.5 F (3,78) = 1.17,
p = .328, partial
h2 = .043

F (3,77) = 1.52,
p = .215, partial
h2 = .056

F (3,76) = 1.58,
p =.201, partial
h2 = .059

Right
Basolateral
Complex

1392.5
± 156.4

1410.8 ± 116.6 1370.5 ± 205.7 1308.3 ± 202.2 F (3,78) = 1.33,
p = .270, partial
h2 = .049

F (3,77) = 1.71,
p = .172, partial
h2 = .062

F (3,76) = 1.80,
p = .155, partial
h2 = .066

Right
Lateral Nucleus

666.1 ± 70.9 675.1 ± 56.8 653.6 ± 104.3 622.02 ± 84.0 F (3,78) = 1.67,
p = .181, partial
h2 = .060

F (3,77) = 2.12,
p = .104, partial
h2 = .076

F (3,76) = 2.30,
p = .084, partial
h2 = .083
ICV, intracranial volume. F: AN(C)OVA statistics, degrees of freedom are given in brackets. The p values listed in the table are not corrected for multiple testing using Bonferroni correction. (H)
Homogeneity of regression slopes violated.
TABLE 2 Impact of confounding variables on volumes of interest.

Covariates

Left Right

Whole
Amygdala
(N = 81)

Basolateral
Complex
(N = 81)

Lateral
Nucleus
(N = 81)

Whole
Amygdala
(N = 82)

Basolateral
Complex
(N = 82)

Lateral
Nucleus
(N = 82)

ICV r (81) = .67,
p <.001***

r (81) = .66,
p <.001***

r (81) = .63,
p <.001***

r (82) = .61,
p <.001***

r (82) = .60,
p <.001***

r (82) = .58,
p <.001***

Sex t (81)= 3.97,
p <.001***

t (81) = 3.82,
p <.001***

t (81)= 4.09,
p <.001***

t (82)= 4.16,
p <.001***

t (82) = 4.16,
p <.001***

t (82) = 3.88,
p <.001***

Age r (81) = -.01, p =.915 r (81) = -.01, p =.941 r (81) = -.01, p =.932 r (82) = .09, p = .436 r (82) =.11, p =.323 r (82) = .12, p = .299
***p ≤.001, ICV: intracranial volume, Pearson’s correlation coefficient r, Spearman’s correlation coefficient r, Student’s t for independent t-tests. The p values listed in the tables are not corrected
for multiple testing using Bonferroni correction.
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3.2 Correlation between numbers of MDEs
or duration of illness and volumes
of interest

The quadratic regressions between the number of MDEs and

the volumes of the left and right BLA and LA, calculated for the

pooled MDD group and for the MDDu and MDDm group, did not

reach statistical significance (Table 4).

The quadratic regressions between the overall duration since

the onset of the first MDE and the volumes of the BLA (left R2 = .38,

p <.05; right R2 = .45, p <.01) and LA (left R2 = .36, p <.05; right R2 =

.40, p <.05) were found to be highly significant in the MDDu group.

However, this effect was mainly driven by two individuals (duration

29 and 36 years; see Figure 2), limiting interpretability of the effect.

None of the regressions in the other groups were found to be

significant (Table 4).
3.3 Correlations with clinical characteristics

In the MDDm group, statistically significant correlations were

observed between weeks since the onset of the current episode and

the volumes of the left BLA (r = .49, p <.05), left LA (r = .47, p <.05)

and right BLA (r = .47, p <.05). These correlations did not remain

significant after adjusting for multiple comparisons using

Bonferroni correction. None of the other correlations reached

statistical significance. All clinical correlations are displayed in

Supplementary Material 2.
4 Discussion

4.1 General considerations and reliability of
the study

Our volume measurements obtained using 7T MRI align

excellently with recent subfield studies (58, 60, 97) as well as with

a meta-analysis (98), confirming the general validity of our

volumetric estimates. The total and subfield volumes of the

amygdala correlate bilaterally with the ICV, as anticipated (99).

Previous studies (100) have reported that men tend to have larger

amygdala volumes than women, a finding consistent with our

results. However, this difference is likely due to variations in ICV

rather than a true sexual dimorphism (99). The finding that age is

not a confounder in our study is also consistent with existing

literature (101, 102).

It is widely accepted that the amygdala exhibits subtle to

moderate volumetric asymmetry in healthy individuals, typically

favoring the right hemisphere (103, 104). This asymmetry is

primarily attributed to a larger right-sided nucleus (97). In our

sample, we observed slight asymmetries in favor of the right side

(see asymmetry indices in Supplementary Material 3).
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4.2 BLA/LA volumes (hypotheses I, II
and III)

Contrary to our expectations, we did not find evidence of

increased volumes in the BLA or the LA in the MDDu group

compared to HC. Similarly, we did not find evidence of decreased

volumes in the MDDm population.

The patients in the MDDm group had experienced more MDEs

(U40 = 97.50, p = .005) and a longer period of time (U39 = 120.00,

p = .050) had passed since their first episode (see Table 1). This

suggests that their illness had progressed further compared to

individuals from MDDu group. As previously evidenced, there is

an augmentation in amygdala volume earlier in the progression of

MDD (63, 69, 105), with a subsequent reduction as the disease

advances (71).

However, the medication status of MDDm is also a potential

confounder. Patients from the MDDm group were treated either with

an antidepressant monotherapy, antidepressants combined with

sedative drugs, or with a combination of antidepressants with

lithium plus atypical neuroleptics. Several authors have proposed

that antidepressant medication may influence amygdalar volumes

(56, 106). The neuroprotective effects of antidepressant treatment

may have offset or balanced the effects of cumulative glucocorticoid

toxicity and excitotoxic damage. It is important to emphasize that

both the unmedicated and medicated groups presented with markers

of disease severity that did not differ statistically significantly. This

suggests a persistent disease progression even under antidepressant

medication. Therefore, it appears that the confounding effect could be

considered manageable to a certain extent. To completely rule out

this influence, two groups with the same or similar number of MDEs

and duration of illness would have been necessary, differing only in

medication status. However, this proved unattainable due to

insufficient availability of eligible patients.

Our hypotheses proposed a trajectory wherein basolateral

amygdala volumes would change from a baseline, as observed in

healthy volunteers, to an enlarged state in individuals with MDDu

(indicating a shorter duration of MDD), followed by a subsequent

decline below the original baseline in individuals with MDDm

(reflecting a longer course of the disease). However, establishing

these baselines may be confounded by significant variations in both

the shape and volume of the amygdala among individuals in the

general population, a phenomenon influenced by factors such as

genetics (107, 108). Consequently, the considerable inter-individual

diversity in amygdala volumes within the normal spectrum might

obscure the detection of effects specific to certain diseases. Detecting

or ruling out minor changes in a variable with significant variation

would therefore necessitate large sample sizes to ensure reliability.

Our finding of no significant group difference in BLA/LA

volume is consistent with a recent subfield study by Brown et al.

(62), which comprised a similar sample size (MDD n = 24). They

used an older FreeSurfer version 6.0, and their MDD patients had

been antidepressant free only for at least 4 weeks, while our MDDu
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sample was drug free for at least three months. Our results,

indicating no significant group differences between patients with

and without comorbid anxiety disorders, align with Li et al. (64).

However, these findings should be interpreted with caution due to

our small sample size (MDD with comorbid anxiety, n = 7).
4.3 No quadratic association between
number of MDEs and the volumes of the
BLA/LA (hypotheses IV and V)

Our second hypothesis of a negative quadratic association

between the number of MDEs or duration of illness and the

volumes of interest was also not supported. To our knowledge,
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negative quadratic associations between surrogate parameters of

MDD progression and amygdalar volumes have not been

tested before.

The number of MDEs in our study ranged between 1 and 5

(MDDu) and between 1 and 60 (MDDm). In MDDm group,

however, the range was predominantly between 1 and 10 with

two outliers at the count of 23 and 60 episodes. This range may have

been insufficient for an inverted U-shape pattern to manifest.

By its very nature, attempting to investigate a time-dependent

effect with a cross-sectional study design is very limited.

Longitudinal studies on amygdalar volume alterations in MDD

did not find changes in amygdala volume (109); however, they did

not examine at the subnuclei level. To detect time-dependent

changes in amygdalar volumes, large-scale longitudinal studies at

the subnuclei level would be necessary.
FIGURE 2

Quadratic regression between the duration of disease and the volume of the right basolateral complex.
TABLE 4 Quadratic regressions on number of major depressive episodes and duration of illness.

Left Right

Basolateral
Complex

Lateral Nucleus Basolateral
Complex

Lateral Nucleus

MDD

Number of Major Depressive
Episodes ~

R2 = .11, F (2, 37) = 2.21,
p = .124

R2 = .04, F (2, 37) = 0.85,
p = .437

R2 = .11, F (2, 37) = 2.30,
p = .115

R2 = .07, F (2, 37) = 1.45,
p = .248

Duration of disease ~ R2 = .04, F (2, 36) = 0.82,
p = .448

R2 = .05, F (2, 36) = 1.01,
p = .376

R2 = .02, F (2, 36) = .43,
p = .652

R2 = .02, F (2, 36) = .45,
p = .64

MDDm

Number of Major Depressive
Episodes ~

R2 = .13, F (2, 17) = 1.29,
p = .300

R2 = .05, F (2, 17) = 0.49,
p = .622

R2 = .16, F (2, 17) = 1.57,
p = .236

R2 = .11, F (2, 17) = 1.06,
p = .369

Duration of disease ~ R2 = .01, F (2, 17) = 0.06,
p = .945

R2 = .01, F (2, 17) = 0.07,
p = .933

R2 = .00, F (2, 17) = 0.00,
p = .998

R2 = .00, F (2, 17) = 0.03,
p = .975

MDDu

Number of Major Depressive
Episodes ~

R2 = .13, F (2, 17) = 1.25,
p = .312

R2 = .09, F (2, 17) = 0.85,
p = .446

R2 = .25, F (2, 17) = 2.86,
p = .085

R2 = .19, F (2, 17) = 2.03,
p = .162

Duration of disease ~ R2 = .38, F (2, 16) = 4.87,
p = .022*

R2 = .36, F (2, 16) = 4.50,
p = .028*

R2 = .45, F (2, 16) = 6.42,
p = .009**

R2 = .40, F (2, 16) = 5.29,
p = .017*
Coefficient of determination R2. *p ≤.05, **p ≤.01. p values are not corrected for multiple comparison using Bonferroni correction. MDD, Depressed patients; MDDm, Medicated depressed
patients; MDDu, Unmedicated depressed patients.
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The complexity and heterogeneity of MDD potentially

constitute significant confounding factors, given the incompletely

understood pathophysiology of the disease (3, 4). It is assumed that

the different subtypes of MDD are based on varying underlying

mechanisms (5, 6). E.g., a reduction in amygdala volume was

observed in individuals with psychotic depression, but not in

those with non-psychotic depression (110). Psychotic depression

was rarely observed in our sample population; thus, it couldn’t be

completely ruled out as a confounding factor. Cong et al. reported

bilateral volume increases of the basal nuclei in their subfield study

comprised of 59 first MDE patients with suicidal ideation (57).

Enlarged amygdala volumes and suicidality have been associated

before (111, 112). We did not assess for suicidal ideation in our

sample. Early life adversity and psychological trauma need to be

considered as well as potential powerful confounders. Both correlate

with alterations in amygdala volumes (113) as well as with a

heightened severity and chronicity of MDD (114) and diminished

efficacy in treatment response and remission outcomes (115, 116).

We did not take early life adversity and psychological trauma into

account in this study.
4.4 Exploratory investigation of whole
amygdala volume and clinical correlations

Our exploratory analysis of whole amygdala volumes did not

reveal any significant group differences. This finding is consistent

with several large meta-analyses, which did not identify significant

changes in whole amygdala volumes. An exception is the study by

Hamilton et al. (56) which included only medicated MDD patients.

Given that some of the aforementioned subfield studies have

reported volume increases in certain nuclei alongside decreases in

others, it is likely that these effects counterbalance each other.

Our findings of no significant clinical correlations are consistent

with those of the multicenter study by the ENIGMA group (65), and

are also supported by the work of Roddy et al. (60) and Kim et al.

(58). They stand in contrast to only two subfield studies. Brown

et al. reported significant negative correlations between the severity

of depressive symptoms and the volumes of the right LA, the right

BLA and the left accessory basal nucleus (62). Tesen et al., in their

study involving 76 drug-naïve individuals experiencing their first

episode of MDD, identified an inverse linear correlation between

the total and core scores of the Hamilton Rating Scale for

Depression and the volume of the right LA (61).
4.5 Strengths and limitations

The utilization of a 7T MRI field strength offers superior signal

quality and enables ultra-high resolution, which is particularly

advantageous for distinguishing between the very small amygdala

nuclei (117). We employed the highly up-to-date version 7.3.2

(August 2022) of FreeSurfer, which capitalizes on the submillimeter

resolution of our images, thereby facilitating state-of-the-art automatic
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segmentation. An important advantage of automated segmentation

methods such as ours is the reduction of investigator bias.

Our study comprised for the first-time uni- and bipolar

depression in vivo cohorts that were carefully balanced for key

confounding variables (age, sex, ICV, handedness, disease severity)

and excluded individuals with neurological comorbidities. The initial

diagnoses of MDD and BP were established through a structured

interview cross-sectionally, and their accuracy was subsequently

confirmed by longitudinal data provided by the treating

psychiatrists. Our MDDu group refrained from psychotropic

medication for a minimum of 3 months prior to the 7T MRI scan.

Only original volumes were utilized for statistical analysis, and the

results were rigorously adjusted by stepwise inclusion of all

significant confounders.

A primary strength of this study lies in our meticulous

hypothesis-driven approach. This sets it apart from some other

recent studies on amygdalar subfield volumes, which have not

explicitly stated their a priori hypotheses and have not provided

compelling explanations for their findings. Consequently, we

refrained from conducting tests on the other amygdala nuclei

without establishing stringent hypotheses beforehand.

The sample sizes were calculated to ensure sufficient test power

to detect large-sized effects. Given the aforementioned genetic

variability of amygdala volumes, we acknowledge that the sample

sizes (20 participants each in the medicated and unmedicated MDD

groups) may have been too small to detect basolateral amygdala

volume alterations. Larger sample sizes were not within the scope of

this study, as recruiting unmedicated MDD patients proved to be

very challenging.

We recognize that the more advanced MDD disease state of

patients in the MDDm group is confounded by their medication

status, making it harder to identify effects uniquely attributable to

illness progression.

Despite the extensive validation efforts, there are also reasons to

cautiously evaluate FreeSurfer’s results. Automated segmentation

has significantly improved the feasibility of neuroimaging analysis

and enables the processing of larger sample sizes within a

reasonable timeframe. Nevertheless, there are recommendations

for vigilance in interpreting the findings of these techniques

(118). This is particularly true for “the amygdala [which] is a

highly complex structure with a small overall volume” (97),

making it notoriously difficult to measure accurately. Hanson

et al., e.g., observed only low bivariate correlations between the

automated amygdala segmentations generated by an older (2012)

version of FreeSurfer and the volumes obtained from their hand-

tracing (119).
4.6 Conclusions and implications for
further research

In conclusion, this study could not confirm an inverted U-

shaped trajectory of basolateral amygdala volumes during the

course of MDD. To our knowledge, this is the first examination
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of the allostatic load theory in MDD concerning alterations in

basolateral amygdala volume. No alternative theory to date has

demonstrated comparable ability in integrating previously

discordant findings on basolateral amygdala volume, while

grounding them in robust biophysiological principles. We hope

that other research groups will test the inverted U-shape hypothesis

with larger sample sizes in the future.

To comprehensively assess the structural implications of

affective disorders such as MDD on the brain, it will be

advantageous to investigate not only clinical variables but also

genetic and epigenetic characteristics. That approach may

elucidate longitudinal volume alterations as the disease evolves,

making it even more suitable to explore U-shaped trajectories.
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