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NARP-related alterations in
the excitatory and inhibitory
circuitry of socially isolated
mice: developmental insights
and implications for autism
spectrum disorder
Yasunari Yamaguchi1,2†, Kazuya Okamura1,2†,
Kazuhiko Yamamuro1, Kazuki Okumura1, Takashi Komori1,
Michihiro Toritsuka1, Ryohei Takada1, Yosuke Nishihata1,
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Hiroki Yoshino1,3, Yasuhiko Saito4, Hideo Matsuzaki5,
Toshifumi Kishimoto1 and Sohei Kimoto2*

1Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan, 2Department of
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Background: Social isolation during critical periods of development is associated

with alterations in behavior and neuronal circuitry. This study aimed to investigate

the immediate and developmental effects of social isolation on firing properties,

neuronal activity-regulated pentraxin (NARP) and parvalbumin (PV) expression in

the prefrontal cortex (PFC), social behavior in juvenile socially isolated mice, and

the biological relevance of NARP expression in autism spectrum disorder (ASD).

Methods: Mice were subjected to social isolation during postnatal days 21–35

(P21–P35) and were compared with group-housed control mice. Firing

properties in the PFC pyramidal neurons were altered in P35 socially isolated

mice, which might be associated with alterations in NARP and PV expression.

Results: In adulthood, mice that underwent juvenile social isolation exhibited

difficulty distinguishing between novel and familiar mice during a social memory

task, while maintaining similar levels of social interaction as the control mice.

Furthermore, a marked decrease in NARP expression in lymphoblastoid cell lines

derived from adolescent humans with ASD as compared to typically developing

(TD) humans was found.

Conclusion: Our study highlights the role of electrophysiological properties, as

well as NARP and PV expression in the PFC in mediating the developmental

consequences of social isolation on behavior.
KEYWORDS

social isolation, brain development, prefrontal cortex (PFC), neuronal activity-regulated
pentraxin (NARP), parvalbumin (PV), social behavior, autism spectrum disorder (ASD)
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1 Introduction

Neural networks exhibit heightened susceptibility to

modulation by cellular activity patterns during the postnatal

developmental stage, denoted as the critical period (1). This

period, which represents a transient time window for the

developing brain, is characterized by the rewiring and

consolidation of neuronal networks in response to environmental

stimuli (1). Indeed, early life experiences trigger intrinsic

mechanisms within a critical period to enhance cortical synaptic

plasticity, culminating in enduring large-scale alterations in adult

brain systems (2–4). Prior research has demonstrated that aberrant

juvenile social encounters, such as neglect or social rejection, exert

persistent effects on the structure and function of the prefrontal

cortex (PFC), a brain region that plays a central role in higher-level

cognitive processes in both rodents (4–8) and humans (9, 10).

Notably, these detrimental effects remain resistant to amelioration

through subsequent human foster care (9) and rodent

resocialization (5). Consequently, the impact of such stress on the

PFC circuitry may hold significant relevance during the adolescent

phase and could serve as a predisposing element for the emergence

or amplification of psychiatric conditions, such as autism spectrum

disorder (ASD) and schizophrenia (11–13).

There are two principal neuronal classifications within the cerebral

cortex: glutamatergic excitatory pyramidal neurons and GABAergic

inhibitory interneurons. Studies utilizing genetically or

pharmacologically manipulated mice have primarily focused on the

role of inhibitory interneurons during this critical period. In particular,

parvalbumin-expressing (PV) neurons, which comprise the most

abundant subclass of inhibitory interneurons (14, 15), appear to be

intimately involved in critical period plasticity, as PV neurons act as

powerful regulators of excitatory pyramidal neuron activity,

maintaining an appropriate dynamic range of cortical excitation (16).

Furthermore, multiple lines of evidence suggest that the dysfunction of

PV neurons within the PFC is implicated in various psychiatric

disorders (17–21). Collectively, elucidating the cellular mechanisms

driving the developmental plasticity of the prefrontal excitatory and

inhibitory circuitry during adolescence is essential for public mental

health initiatives and facilitates the development of preventative

strategies and novel therapeutic approaches.

We have previously demonstrated that a two-week period of

social isolation following weaning induces alterations in the

electrophysiological properties of excitatory and inhibitory

neurons within the medial PFC of adult mice (7, 8). Furthermore,

an immediate influence on specific subtypes of deep-layer excitatory

pyramidal and inhibitory neurons at the end of the two-week

juvenile social isolation phase was observed (6). However, the

extent to which these initial effects on excitatory and inhibitory

neurons are accompanied by physiological and molecular changes

across the PFC remains poorly understood. Sensory experiences

foster the growth and maturation of neuronal circuits, partly by

stimulating activity-dependent gene transcription (22). Therefore,

neuronal activity-regulated pentraxin (NARP), one of the

immediate early gene products, may be one potential molecular

factor that affects such alterations following exposure to social
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isolation during this critical period. NARP is prominently

secreted from excitatory pyramidal neurons in an activity-

dependent manner and helps in the development of excitatory

synapses exclusively on PV neurons (23). Generally, excitatory

inputs from pyramidal neurons stimulate PV neurons, which in

turn provide feedback inhibition to the pyramidal neurons (24).

Consequently, the function of NARP is believed to play a vital role

in maintaining cortical excitatory and inhibitory circuitry during

critical periods of developmental plasticity (25). Additionally, given

the alterations in NARP expression within the PFC in schizophrenia

(26), mood disorders (26), and Alzheimer’s disease (27), the NARP

gene product may prove integral to the modified properties of

excitatory and inhibitory neurons resulting from aberrant juvenile

social experiences.

In the present study, using electrophysiological, gene, and

protein expression, and behavioral analyses, we explored the

timing and molecular processes through which the prefrontal

excitatory and inhibitory circuitry is altered in socially isolated

mice, with a focus on the expression and function of NARP. Finally,

using human blood samples, potential alterations in NARP

expression in lymphoblastoid cell line (LCL) samples from

patients with ASD were assessed.
2 Materials and methods

2.1 Mice and housing conditions

C57BL/6J mice were used for all experimental procedures,

without duplications between experiments. The animals were

housed in our animal facility under standard conditions with a

12-hour light-dark cycle and had libitum access to food and water.

Following a previously established protocol (7), a cohort of four

male littermates was randomly assigned to either one isolated

mouse or three group-housed mice after weaning on postnatal

day 21 (P21). The isolated mice were individually housed in cages

from P21 to P35 (jSI). GH mice served as the control group for

typically developing animals. During the re-socialization period,

each isolated mouse was housed with its three littermates until

experiments were conducted between P63 and P70. Consequently,

the following experiments were conducted to evaluate the effect of

social isolation at P35 and/or during adulthood (P63–70). All

experiments were approved by the Animal Care and Use

Committee of Nara Medical University and conducted according

to their guidelines.
2.2 Participants

All study participants and their legal guardians provided written

informed consent before enrollment. ASD was diagnosed by two

experienced child psychiatrists using the criteria outlined in the

Diagnostic and Statistical Manual of Mental Disorders 5th edition

(DSM-5) and clinical interviews were conducted. The Structured

Clinical Interview for DSM-5 was utilized to thoroughly assess any

personal or family history of past or present mental illness.
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2.3 Cell culture

Peripheral blood mononuclear cells (PBMCs) were isolated

from venous whole blood collected from 29 TD subjects,

averaging 12.0 (SD 2.3) years in age, and from 32 subjects

diagnosed with ASD, averaging 11.7 (SD 2.7) years in age

(Supplementary Table 1). All LCLs were developed by infecting

PBMCs with Epstein-Barr virus produced in the supernatant of

cultured B95–8 cells, as described previously (28). This study was

approved by the Nara Medical University Ethics Committee and

was conducted in accordance with the Declaration of Helsinki.
2.4 Electrophysiology

Brain slices, including the medial PFC, were prepared from P35

mice (n = 21 cells from 3 mice; GH, n = 24 cells from 3 mice; jSI).

The brain was quickly removed under anesthesia with isoflurane

and immersed in an ice-cold sucrose-based solution bubbled with a

mixed gas of 95% O2/5% CO2 containing (in mM) 230 sucrose, 2.5

KCl, 25 NaHCO3, 1.25 NaH2PO4, 0.5 CaCl2, 10 MgSO4, and 10 D-

glucose. The frontal cortex was sectioned into 300–330 mm-thick

slices in the coronal plane by a vibrating tissue slicer (Linear Slicer

Pro 7, Dosaka). Slices were incubated for at least 60 min in a

chamber filled with a standard artificial cerebrospinal fluid (ACSF)

continuously bubbled with mixed gas, containing (in mM) 125

NaCl, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and

25 D-glucose at 32°C, and then maintained in the ACSF at 25°C.

Pyramidal cells in the medial PFC layer 3 were current-clamped in

the conventional whole-cell configuration using a Multiclamp 700A

amplifier (Axon Instruments). Patch pipettes were pulled from the

borosilicate glass and filled with an intracellular solution containing

(in mM) 141 K-gluconate, 4 KCl, 2 MgCl2, 2 Mg-ATP, 0.3 Na-GTP,

0.2 EGTA, 10 HEPES, pH adjusted to 7.25 with KOH. All

membrane potentials were corrected for a 13 mV liquid junction

potential, as described previously (29). Data acquisition and

stimulation were controlled using Signal 4 software with Power

1401 interface equipment (Cambridge Electronics Design).

For the current-clamp recordings, the series resistance was

monitored and compensated using a bridge circuit, and the

pipette capacitance was compensated. The voltage signals were

low-pass filtered at 10 kHz and digitized at 20 kHz. The baseline

membrane potential was maintained near -70 mV with current

injection. To examine the action potential and subthreshold

membrane properties, we recorded the membrane potential

responses to depolarizing current pulses from 10–100 pA in 10

pA increments (500-ms duration). The spike threshold was

calculated as the voltage at which the slope of the action potential

trace reached 10 mV/ms at the rheobase, defined as the minimum

current value that elicited at least one action potential. Spike

amplitude and spike frequency were defined as the voltage and

frequencies of the spikes in response to depolarizing 100 pA current

injections from baseline, respectively.
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2.5 Quantitative PCR

Mouse brains were quickly removed from the skull, and medial

PFC sections (Bregma +2.8 mm to +2.1 mm) were microdissected

for sample preparations (n = 7; each group at P35, and n = 7; each

group at adulthood). From samples of mouse tissues and human

LCLs, total RNA was isolated from TRIzol homogenates and

purified using the Direct-Zol RNA Miniprep kit (Zymo Research,

Irvine, CA, USA) according to the manufacturer’s instructions.

First-strand cDNA was synthesized using an iScript kit (Bio-Rad

Laboratories, Hercules, CA, USA), and qPCR was performed using

SYBR Premix Ex Taq II (Tli RNase H Plus, TAKARA BIO Inc.,

Otsu, Shiga, Japan) in a StepOne Plus real-time PCR system (Life

Technologies, Carlsbad, CA). The specificity of amplification was

confirmed by monitoring the dissociation curve at the end of each

run. All primer sets (Supplementary Table 2) had amplification

efficiency ≥ 96% confirmed by standard curve method.

Normalization and relative quantification of the expression levels

of the target genes were determined by the DCT method, using the

constitutively expressed genes b-actin (ACTB), glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), and cyclophilin (Cyclo) in

rodent brains and human LCLs (Supplementary Table 2).

Furthermore, the levels of these three transcripts in the medial

PFC were not affected by age or housing conditions.
2.6 Western blotting

The medial PFC sections (Bregma +2.8 mm to +2.1 mm) from

mice (n = 7; each group at P35, and n = 7; each group at adulthood)

were microdissected, and total protein was immediately isolated

using ice-cold homogenizing buffer [50 mM Tris-HCl buffer (pH

7.5), 8 M urea, 0.1 M NaCl, 2 mM EDTA, 1 mM dithiothreitol

(DTT)] with cOmplete™ protease inhibitor cocktail (Roche,

Mannheim, Germany). The total protein concentration was

determined in triplicate using a BCA assay kit (Thermo Fisher

Scientific, Rockford, IL, USA), according to the manufacturer’s

instructions. Western blotting was performed with the Simple

Western™ system, employing capillary electrophoresis to

automatically detect and quantify a protein of interest

(ProteinSimple, San Jose, CA). In brief, according to the

manufacturer’s instructions (ProteinSimple, San Jose, CA), lysates

of medial PFC sections (1.5 mg/mL), primary antibodies to Cofilin

(#5175; Cell Signaling Technology), NPTX2 (10889–1-AP;

Proteintech), and PV (AF5058; R&D Systems) with secondary

antibodies were loaded into either 12–230 kDa or 2–20 kDa

Separation Module (ProteinSimple) depending on the protein’s

molecular weight to run on the Simple Western machine, Wes™

(ProteinSimple). The digital image was analyzed using Compass

software, where the quantified data of the detected protein were

reported as molecular weight and signal/peak intensity. The

expression level of each protein was calculated based on its

abundance relative to that of cofilin.
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2.7 Behavioral analysis in mice

The sociability and social recognition memory of test subjects

were measured using a three-chamber test (n = 11; GH, n = 11; jSI).

The apparatus consisted of an acrylic open-topped box (60 cm L ×

40 cm W × 40 cm H) partitioned into three chambers with two

acrylic walls. Each 10-minute phase was initiated by allowing the

test mice to freely explore the 3-chamber apparatus for habituation.

During the sociability phase, the test mouse was directed to the

center chamber, while a wired cup containing a strange (stranger 1)

mouse and an empty cup was introduced into the other two

chambers. Subsequently, during the social recognition phase,

another strange mouse (stranger 2) was introduced into the

empty cup, and the movement of the subject mouse was tracked

for another 10 min. To counterbalance any possible bias, the

orientation of the wired cups containing strangers 1 or 2 (empty)

was randomized for each set of experiments. The time spent in each

chamber and the time spent exploring the enclosed novel mice or

empty cups (novel objects) were recorded using an overhead-

mounted camera and analyzed using an automated tracking

program (TopScan, Clever Sys Inc.) during the first 4 min of each

session (30), with comprehensive data encompassing the entire 10-

minute sessions provided in the Supplementary Figure 1. To

minimize individual differences, the sociability index was

calculated as (time spent exploring the stranger 1)/(time spent

exploring the stranger 1 + time spent exploring the empty cup),

while the social recognition index was calculated as (time spent

exploring the stranger 2)/(time spent exploring the stranger 2 +

time spent exploring the familiar).
2.8 Data analyses

Statistical analyses were performed using the software Prism

8.20 (GraphPad Software Inc., CA, USA). For qPCR analyses,

statistical significance was determined using two-way analysis of

variance (ANOVA), followed by Tukey’s test. Otherwise, the

Student’s t-test or Welch’s t-test was applied based on the

outcomes of a test for the equality of variances. All data are

presented as mean ± standard error of the mean (SEM), and

differences between group means were considered significant if p

values showed less than 0.05.
3 Results

3.1 The excitability of medial PFC
pyramidal cells changes after a period of
juvenile social isolation

We previously reported that juvenile social isolation (jSI) from

postnatal day 21 to 35 (P21–P35) induced long-lasting working

memory deficits and altered the electrophysiological properties of

excitatory and inhibitory neurons in the adult medial PFC (5, 7, 8).

Therefore, we first explored the functional abnormalities that arise
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after exposure to social isolation (P35) in layer 3 pyramidal neurons,

which are considered crucial neuronal substrates for working

memory. As shown in Figures 1A, B, whole-cell current-clamp

recordings were performed on medial PFC pyramidal cells in jSI

mice at P35. jSI mice had significantly higher spike thresholds than

group-housed (GH) mice of the same age (Figure 1C; p < 0.0001).

Furthermore, the spike amplitude in jSI mice was significantly

smaller than that in GH mice (Figure 1D; p = 0.010), although

the spike frequency in excitatory pyramidal cells did not differ

between the two groups (Figure 1E; p = 0.973). Recently, we

uncovered reduced excitability of a specific subtype of pyramidal

neurons in the deep layer of the medial PFC after jSI at P35 (6).

Considering the differences in properties and connections to

multiple intracortical and subcortical targets between pyramidal

neurons in layers 3 and 5, electrophysiological alterations in medial

PFC excitatory neurons might be one of the crucial contributors to

the subsequent dysfunction of the entire medial PFC after exposure

to social isolation.
3.2 Altered expression of NARP may
influence the expression of parvalbumin in
socially isolated mice

As previously mentioned, NARP secreted from pyramidal cells

influences the activity of PV neurons, which are required for

homeostatic synapse scaling (22). Considering the dampened firing

properties observed in both layer 3 (Figure 1) and the specific subtype

of layer 5 pyramidal neurons (6–8) within the medial PFC after jSI, we

hypothesized that jSI influences the expressions of NARP and PV in

the medial PFC during brain development (Figure 2A). Using

quantitative PCR (qPCR), we found that the mRNA levels of NARP

and PV in the medial PFC exhibited distinct expression patterns in jSI

mice compared to GHmice (Figures 2B, E). Indeed, the developmental

trajectories of NARP and PV mRNA expression in GH mice aligned

with trends in prior studies (26, 31–33). However, NARPmRNA levels

were significantly influenced by housing condition (2-way ANOVA: p

= 0.04) and interaction effects (2-way ANOVA: p = 0.016), with a trend

effect for age (2-way ANOVA: p = 0.07). Tukey’s post-hoc analyses

revealed that jSI mice at P35 had lower NARP mRNA levels than GH

mice of the same age (p = 0.013). In contrast, PV mRNA levels were

significantly influenced by housing conditions (2-way ANOVA: p =

0.002) and showed a trend with age (2-way ANOVA: p = 0.06). Tukey’s

post-hoc analyses showed that jSI mice had lower PV mRNA levels

than GH mice in adulthood (p = 0.036). Western blot analysis

confirmed that the protein levels of NARP, but not PV, were

significantly lower at P35 in jSI mice than in GH mice (Figures 2C,

D, p = 0.037). Moreover, the protein levels of PV, but not NARP, were

significantly lower in jSI mice than in GH mice during adulthood

(Figures 2F, G, p = 0.005). These data suggest that relatively lower levels

of NARP during the critical period may subsequently affect PV

expression in the adult medial PFC, which may contribute to the

altered electrophysiological properties of prefrontal excitatory and

inhibitory neurons in adult jSI mice.
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3.3 Social isolation during the critical
period affects behavior in adult mice

Numerous lines of evidence from human neuroimaging and

rodent studies (34–38) have suggested that the evolutionarily

conserved medial PFC is a component of a network governing

social behavior. Therefore, we examined whether NARP-related

functional alterations in the prefrontal excitatory and inhibitory

circuitry in socially isolated mice could affect the social behavior of

adult jSI mice. In a three-chamber social preference assay, jSI mice

showed social interactions comparable to those of their GH

littermates (Figures 3A–C, p = 0.19). During the social memory
Frontiers in Psychiatry 05
task, GH mice spent significantly more time exploring the novel

stranger mice. However, jSI mice failed to differentiate between the

novel stranger and familiar mice (Figures 3D–F, p = 0.0003). The

behavioral deficits in adult jSI mice remained consistent throughout

the entire 10-minute observation period (Supplementary Figure 1).

This disparity in response to the novel stranger mouse cannot be

attributed to motor or activity anomalies, as both GH and jSI mice

exhibited similar locomotor activity during the first 10-minute

phase in the three-chamber apparatus (Supplementary Figure 2,

p = 0.36). These findings suggest that social isolation during the

critical period influences certain aspects of social behavior in

adult mice.
B

C

D

E

A

FIGURE 1

Changes in the excitability of medial PFC pyramidal cells following juvenile social isolation. (A) Schematic diagram illustrating juvenile social isolation.
Mice underwent social isolation between P21 and P35, with whole-cell patch-clamp recordings performed at P35. (B) Top: Current-clamp
recordings from pyramidal neurons in the medial PFC layer 3 conducted at P35. Bottom: Representative action potential traces from GH and jSI
mice. The top traces depict a spike at the rheobase, while the bottom traces show a spike with a 100 pA current injection. (C) jSI mice exhibited
significantly higher spike thresholds compared to GH mice [two-tailed t-test, t43 = 4.571, p < 0.0001, n = 21 (GH), n = 24 (jSI)]. (D) The spike
amplitude in jSI mice was significantly smaller than in GH mice [two-tailed t-test, t43 = 2.680, p = 0.0104, n = 21 (GH), n = 24 (jSI)]. (E) There was no
significant difference in spike frequency between GH and jSI mice [two-tailed t-test, t43 = 0.03442, p = 0.9727, n = 21 (GH), n = 24 (jSI)]. PFC,
Prefrontal Cortex; jSI, Juvenile Social Isolation; GH, Group-Housed; P21, Postnatal Day 21; P35, Postnatal Day 35. * 0.01 ≤ p < 0.05; **** p < 0.0001.
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3.4 Lower expression of the NARP gene in
ASD LCLs may be related to
ASD pathophysiology

These data underscore the significant involvement of the NARP

gene in the neuronal and behavioral aspects of socially isolated

mice. Obtaining neurons or neuronal cells from living human
Frontiers in Psychiatry 06
subjects is challenging. However, previous studies have suggested

that LCLs can be used to identify biologically plausible links

between candidate genes and various psychiatric disorders (39–

41), including ASD (42). Therefore, we assessed the NARP mRNA

levels in LCLs derived from adolescents with ASD and typically

developing (TD) adolescents. As shown in Figure 4, a marked

decrease in NARP expression in individuals with ASD compared to
B C D

E F G

A

FIGURE 2

Altered NARP expression impacts the expression of parvalbumin in inhibitory neurons in socially isolated mice. (A) Schematic diagram of molecular and
behavioral analyses. Molecular analysis was conducted at P35 and adulthood, and behavioral analysis was conducted in adulthood. (B) NARP mRNA
levels in the medial PFC of jSI mice were lower than those in GH mice at P35, but not at adult [2-way ANOVA, age (P35 and adult) x housing (GH and jSI)
interaction F(1. 24) = 6.677 p = 0.0163, age F(1. 24) = 3.505 p = 0.0734, housing F(1. 24) = 4.600 p = 0.0423; Tukey test p = 0.0135 (GH vs jSI at P35), n = 7
(GH, P35), n = 7 (jSI, P35), n = 7 (GH, adult), n = 7 (jSI, adult)]. (C) NARP protein levels in the medial PFC of jSI mice were lower than those in GH mice at
P35 (two-tailed t-test, t12 = 2.348, p = 0.0369). (D) Representative images of NARP protein expression in the medial PFC of GH and jSI mice. (E) PV
mRNA levels in the medial PFC of jSI mice were lower than those in GH mice at adult, but not at P35 [2-way ANOVA, age (P35 and adult) x housing (GH
and jSI) interaction F(1. 24) = 0.4791, p = 0.4955; age F(1. 24) = 3.821, p = 0.0624; housing F(1. 24) = 11.71, p = 0.0022; Tukey test p = 0.0361 (GH vs jSI at
adult), n = 7 (GH, P35), n = 7 (jSI, P35), n = 7 (GH, adult), n = 7 (jSI, adult)]. (F) PV protein levels in the medial PFC of jSI mice were lower than those in GH
mice at adult (two-tailed t-test, t12 = 3.440, p = 0.0049). (G) Representative images of PV protein expression in the medial PFC of GH and jSI mice.
NARP, Neuronal Activity-Regulated Pentraxin; PV, Parvalbumin; PFC, Prefrontal Cortex; GH, Group-Housed; jSI, Juvenile Social Isolation; P35, Postnatal
Day 35; Adult/Adulthood, Postnatal Day 63–70; ANOVA, Analysis of Variance. * 0.01 ≤ p < 0.05; ** 0.001 ≤ p < 0.01.
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TD individuals (p = 0.047) was identified. Since social isolation is

considered a critical factor in the development or exacerbation of

ASD and is common among patients with ASD, these data suggest

that alterations in NARP expression may contribute to the

pathophysiology of ASD.
4 Discussion

In the present study, using a comprehensive approach that

integrates electrophysiological, gene and protein expression, and

behavioral analyses, we investigated the timing and molecular

mechanisms underlying the changes in prefrontal excitatory and

inhibitory circuitry in socially isolated mice. After juvenile social

isolation at P35, we found that it immediately affected the

excitability of medial PFC layer 3 pyramidal cells, potentially

contributing to subsequent dysfunction in the adult medial PFC.

Furthermore, the altered expression of NARP, an immediate early

gene product, appeared to influence the expression of PV neurons

in socially isolated mice, which might affect the electrophysiological

properties of prefrontal excitatory and inhibitory neurons in adult

mice. We also observed that while socially isolated mice exhibited

similar levels of social interaction as control mice, they had difficulty

distinguishing between novel and familiar mice during the social

memory task, indicating that social isolation during the critical

period affects certain aspects of social behavior in adult mice.

Finally, given the social behavioral deficits in individuals with

ASD, decreased NARP expression in ASD LCLs might indicate its

potential involvement in ASD pathophysiology. Collectively, we

suggest the importance of the role of the NARP gene in the neuronal

and behavioral features of socially isolated mice and its potential

association with psychiatric disorders, such as ASD.

Our electrophysiological study revealed that social isolation

during the critical period can immediately lead to changes in the

firing properties of pyramidal neurons in layers 3 and 5 of the

medial PFC, which in turn may affect the functional properties and

communication within the cortical circuitry. Previous studies have

shown that layer 3 pyramidal neurons, which are generally smaller

than layer 5 pyramidal neurons (43), are involved in the integration

and processing of information within the medial PFC. These

neurons primarily project to other cortical areas, including the

contralateral medial PFC and other association cortices, and thus

play a crucial role in intracortical communication (44). In contrast,

layer 5 pyramidal neurons, with their distinct electrophysiological

properties, contribute to the output of the medial PFC to subcortical

structures (45). This diverse innervation pattern allows layer 5

neurons to modulate various behavioral and cognitive processes.

Furthermore, the reciprocal connections between layers 3 and 5

neurons play a crucial role in the encoding, integration, and

processing of information within the medial PFC (46). Alterations

in the intrinsic properties of neurons in these layers due to social

isolation during the critical period may disrupt the functional

balance and communication between these layers. Collectively,

this disruption might impair the overall functionality of the

medial PFC, which is essential for higher-level cognitive processes

such as working memory and social behavior. However, our current
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study does not directly track the long-term persistence of these

electrophysiological alterations. Several lines of evidence

suggest that social isolation during a critical period could have

long-lasting effects on several behavioral deficits (47, 48) and

electrophysiological changes, particularly in layer 5 pyramidal

neurons (6, 8, 49, 50). Therefore, further longitudinal studies are

necessary to explicitly trace the electrophysiological changes in layer

3 pyramidal neurons from the juvenile period into adulthood.

Altered expression of NARP, an immediate early gene product

that appears to influence the expression of PV in socially isolated

mice at P35 was observed. This alteration may be associated with

the electrophysiological properties of prefrontal excitatory and

inhibitory neurons in socially isolated adult mice. NARP is an

activity-dependent gene product that is predominantly secreted by

excitatory pyramidal neurons, such as those found in layers 3 and 5

and is involved in the development of excitatory synapses

exclusively in PV neurons (23). The significant effect of housing

conditions on NARP mRNA expression suggests that social

isolation during the critical period may disrupt the normal

activity-dependent regulation of NARP expression in these

pyramidal neurons. This disruption could potentially lead to

altered development of excitatory synapses in PV neurons, which

in turn might affect the balance between excitation and inhibition in

the cortical circuitry during critical periods of developmental

plasticity (32, 51). Furthermore, given the role of PV neurons in

regulating the activity of excitatory pyramidal neurons, including

those in layers 3 and 5, decreased PV expression in jSI mice may

result in an imbalance between excitation and inhibition within the

prefrontal circuitry, potentially contributing to medial PFC

dysfunction during adulthood. However, the present study

revealed that NARP and PV mRNA expression in the medial PFC

of jSI exhibited distinctive patterns when compared to the GH.

Although NARP has been implicated as a crucial regulator of

excitatory and inhibitory synaptic scaling, particularly in PV

neurons (23), the lack of a direct correlation between NARP and

PV expression in our study suggests that additional molecular

factors may be involved in regulating the balance between

excitation and inhibition in the medial PFC of socially isolated

mice. Alternatively, recent studies have identified various subtypes

of inhibitory interneurons, including PV neurons, based on their

morphoelectric and transcriptomic profiles (52, 53). Considering

our previous finding that electrophysiological functions of a specific

PV neuron subtype were immediately altered following social

isolation at P35 (6), the observed PV expression levels at P35

might partially reflect a composite effect involving multiple PV

neuron subtypes. Therefore, further investigations are required to

elucidate the underlying molecular mechanisms and environmental

factors that contribute to the observed changes in the excitatory and

inhibitory circuits in the medial PFC of socially isolated mice.

In this study, we found that social isolation during the critical

period affects certain aspects of social behavior in adult mice,

specifically their ability to distinguish between novel and familiar

mice during social memory tasks. Previous studies have

demonstrated that the medial PFC plays a crucial role in social

memory processing (54, 55). Therefore, the electrophysiological

alterations observed in our study, particularly in medial PFC
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pyramidal neurons, could potentially contribute to the social

memory deficits observed in socially isolated mice. However,

research on the effects of social isolation during critical periods

has produced mixed results regarding social behavior, including

both reduced and intact social interaction (56–58). In our study,

socially isolated mice exhibited comparable levels of social

interaction to control mice. Given that perturbations in synaptic
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levels, such as spine density or gene expression, might also yield

varied findings (48, 59), this discrepancy might be attributed to

differences in experimental design, housing conditions, or the

specific age at which isolation occurred. We suggest that the

effects of social isolation on social behavior are complex and may

vary depending on the framework or paradigm of social behavior

examined. It would be interesting to investigate whether the mode
B

C

D

E

F

A

FIGURE 3

Social isolation during the critical period affects behavior in adult mice. (A) Schematic diagram of the social preference assay. (B) No significant
differences in investigation time of social and object contacts were observed between GH and jSI mice [2-way ANOVA, contact (social and object) x
housing (GH and jSI) interaction F(1. 40) = 3.050, p = 0.0884; contact F(1. 40) = 14.76, p = 0.0004; housing F(1. 40) = 0.00076, p = 0.9781, n = 11 (GH),
n = 11 (jSI)]. (C) No significant difference in social preference was observed between GH and jSI mice [two-tailed t-test, t20 = 1.344, p = 0.1939, n =
11 (GH), n = 11 (jSI)]. (D) Schematic diagram of the social recognition assay. (E) Time spent in contact with a novel stranger by juvenile socially
isolated (jSI) mice was significantly lower than that by group-housed (GH) mice [2-way ANOVA, contact (novelty and familiar) x housing (GH and jSI)
interaction F(1. 40) = 13.20, p = 0.0008; contact F(1. 40) = 0.4613, p = 0.5009; housing F(1. 40) = 0.1073, p = 0.7449; Tukey test p = 0.0376 (GH vs jSI in
familiar), n = 11 (GH), n = 11 (jSI)]. (F) Social recognition in jSI mice was significantly lower than in GH mice [two-tailed t-test, t20 = 3.390, p = 0.0029,
n = 11 (GH), n = 11 (jSI)]. GH, Group-Housed; jSI, Juvenile Social Isolation; S, Social; O, Object; N, Novelty; F, Familiar; ANOVA, Analysis of Variance. *
0.01 ≤ p < 0.05; ** 0.001 ≤ p < 0.01.
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of re-socialization, as studied by Makinodan et al. (58), influences

the electrophysiological and molecular changes observed in socially

isolated mice.

Given that excitatory and inhibitory synaptic dysfunction is

considered a shared pathophysiological mechanism in psychiatric

disorders, including ASD (60, 61), the significant reduction in

NARP expression in LCLs from adolescents with ASD supports

the hypothesis that NARP may play a role in the development or

exacerbation of ASD symptoms. Although LCLs are not neuronal

cells, several studies have demonstrated altered gene expression

profiles in LCLs derived from individuals with ASD compared to

TD (62–65). These findings suggest that LCLs may serve as a useful

model for investigating molecular changes associated with ASD.

Further investigation is required to confirm the role of NARP in the

pathophysiology of ASD and to explore whether modulating NARP

expression or function could be a potential therapeutic target for

treating ASD and related conditions.
Frontiers in Psychiatry 09
Our study has a few limitations. Firstly, our analysis focused solely

on the medial PFC, an important brain region in the regulation of

social behaviors (34); however, it is not the only brain region involved

in these processes. Other regions, such as the amygdala (66),

hippocampus (67, 68), and other cortical areas (69, 70), also play

crucial roles in social behavior and cognition. Future studies employing

optogenetic and chemogenetic approaches could explore the effects of

social isolation on these other brain regions for a more comprehensive

understanding of its impact on the brain. Secondly, we did not examine

molecular changes at the cellular or laminar resolutions within the

medial PFC. Investigating the effects of social isolation on specific cell

types, such as different subpopulations of pyramidal neurons or

interneurons, or the expression of molecular markers in distinct

cortical layers, could provide further insights into the underlying

mechanisms of the observed alterations in excitatory and inhibitory

circuitry. Finally, although our study revealed significant alterations in

NARP expression in LCLs generated from individuals with ASD, it is

important to note that LCLs are not neuronal cells, and thus may not

fully recapitulate the molecular and cellular processes occurring in the

brain. Furthermore, the absence of clinical indices of sociability in our

dataset precludes a direct correlation between NARP mRNA

expression and sociability scores in ASD, which would have provided

deeper insights into the biological underpinnings of social behavior in

ASD. Future studies should incorporate these measures to elucidate the

role of NARP in individuals with ASD. However, the significant

reduction in NARP expression in ASD LCLs, combined with our

findings of altered NARP and PV expression, electrophysiological

properties, and social behavior in socially isolated mice, offers

valuable insights into its role in the pathophysiology of ASD.

In conclusion, the present study provides novel insights into the

impact of juvenile social isolation on the excitability of medial PFC

pyramidal cells and expression of NARP, with subsequent effects on

parvalbumin inhibitory neurons. Furthermore, we suggest a

potential link between NARP expression, social behavior, and

ASD pathophysiology. A deeper understanding of the molecular

mechanisms underlying the effects of social experiences during

critical periods may inform the development of early intervention

strategies to mitigate the long-term consequences of aberrant

juvenile social interactions on brain development and function.
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