
Frontiers in Psychiatry

OPEN ACCESS

EDITED BY

Mingkuan Sun,
Nanjing Medical University, China

REVIEWED BY

Caglar Uyulan,
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Explaining deep learning-based
representations of resting state
functional connectivity data:
focusing on interpreting
nonlinear patterns in autism
spectrum disorder
Young-geun Kim1,2,3†, Orren Ravid2†, Xinyuan Zheng3,
Yoojean Kim2, Yuval Neria1,2, Seonjoo Lee1,2,3, Xiaofu He1,2*

and Xi Zhu1,2*

1Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States,
2Department of Biostatistics, Columbia University Irving Medical Center, New York, NY, United States,
3Mental Health Data Science, New York State Psychiatric Institute, New York, NY, United States
Background: Resting state Functional Magnetic Resonance Imaging fMRI (rs-

fMRI) has been used extensively to study brain function in psychiatric disorders,

yielding insights into brain organization. However, the high dimensionality of the

rs-fMRI data presents significant challenges for data analysis. Variational

autoencoders (VAEs), a type of neural network, have been instrumental in

extracting low-dimensional latent representations of resting state functional

connectivity (rsFC) patterns, thereby addressing the complex nonlinear

structure of rs-fMRI data. Despite these advances, interpreting these latent

representations remains a challenge. This paper aims to address this gap by

developing explainable VAE models and testing their utility using rs-fMRI data in

autism spectrum disorder (ASD).

Methods:One-thousand one hundred and fifty participants (601 healthy controls

[HC] and 549 patients with ASD) were included in the analysis. RsFC correlation

matrices were extracted from the preprocessed rs-fMRI data using the Power

atlas, which includes 264 regions of interest (ROIs). Then VAEs were trained in an

unsupervised manner. Lastly, we introduce our latent contribution scores to

explain the relationship between estimated representations and the original rs-

fMRI brain measures.

Results: We quantified the latent contribution scores for both the ASD and HC

groups at the network level. We found that both ASD and HC groups share the

top network connectivitives contributing to all estimated latent components. For

example, latent 0 was driven by rsFC within ventral attention network (VAN) in

both the ASD and HC. However, we found significant differences in the latent

contribution scores between the ASD and HC groups within the VAN for latent 0

and the sensory/somatomotor network for latent 2.
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Conclusion: This study introduced latent contribution scores to interpret

nonlinear patterns identified by VAEs. These scores effectively capture changes

in each observed rsFC feature as the estimated latent representation changes,

enabling an explainable deep learning model that better understands the

underlying neural mechanisms of ASD.
KEYWORDS

deep learning, variational autoencoder, resting state fMRI, functional connectivity,
autism spectrum disorder
1 Introduction

The use of functional magnetic resonance imaging (fMRI) data

has been pivotal in the field of psychiatry over the last few decades

for studying brain function, evaluating underlying neural

mechanisms of treatment interventions, and aiding in the

diagnosis of a variety of mental disorders. Resting state fMRI

(rs-fMRI), which measures spontaneous neural activities in the

absence of any specific task, has been useful in revealing intrinsic

patterns of brain functional connectivity and providing insights

into brain functional organization. One of the most common

methods to extract measures of brain networks of rs-fMRI data is

to calculate the correlation coefficient between pairs of different

regions of interest (ROIs) in the brain. Examining differences in

connectivity between healthy controls (HC) and those with

psychiatric disorders has helped to understand the underlying

neural network deficits associated those disorders (1). In recent

years, machine learning approaches have gained prominence for

analyzing rs-fMRI data for the diagnosis of psychiatric disorders

and the predicting treatment outcomes at the individual level (2).

Despite its utility, leveraging rs-fMRI data presents significant

challenges. One of the main chanllenges lies in the high

dimensionality of the data. For instance, rs-fMRI data are often

partitioned into several hundred ROIs based on various brain

atlases (3), e.g., 264 ROIs in the Power atlas (4) or 333 in the

Gordon atlas (5). This results in connectivity matrices with more

than ten thousand image features, posing substantial challenges

for standard machine learning techniques such as random forest,

support vector machine, and regressions. Thus, dimensionality

reduction methods are often used as a preprocessing step before

applying machine learning algorithms to rs-fMRI datasets.

Traditional linear methods, such as principal component

analysis (PCA) and independent component analysis (ICA),

have been used to transform the high-dimensional connectome

features into a lower-dimensional space. However, these methods

lack to address the complex nonlinear structure of rs-fMRI data.

For example, PCA may exhibit biases (6) and ICA can have

scalability issues (7) when the data dimension exceeds the

sample size. Recently, deep learning-based approaches have

extracted low-dimensional latent factors (called representations)
02
of resting state functional connectivity patterns (rsFC), showing

remarkable performance with expressive nonlinear neural

networks (8, 9).

As such, the advent of neural networks has provided new

avenues for dimensionality reduction in neuroimaging. One

prominent model architecture is the autoencoder (AE) framework

(10), which aims to learn a relatively low-dimensional latent

representation of the original data, which can then be decoded to

recover the data through the decoding phase. Additionally, to

produce more effective and interpretable latent representations,

variational autoencoder (VAE) approaches have been introduced

and have yielded promising results (11). Compared to AEs, VAE

approaches possess prominent properties: 1) VAEs are probabilistic

models that learn distributions of latent representations, allowing

for better modeling of complex data structures. They are seen as an

extension of nonlinear ICA (12), using nonlinear neural networks

to model the data generation mechanism and creating low-

dimensional latent representations consisting of statistically

independent components (13). VAEs enable the delineation of

each learned component’s role within the framework of nonlinear

data generation models, offering a more precise understanding of

complex neuroimaging data. In the implementation, the

representations follow user-specified distributions called priors,

and one common choice is multivariate Gaussian distributions. 2)

Compared to AEs, the training for VAEs is regularized, which helps

prevent overfitting and enforces the independence between

components in the estimated representations (14). This makes the

representations more interpretable, as each component has a

distinct role from all the others (15). For example, in the analysis

of hand-written digit images (e.g., Modified National Institute of

Standards and Technology [MNIST] http://yann.lecun.com/exdb/

mnist/), VAEs may estimate two-dimensional representations

where the first component explains the size of digits and the

second one explains the slant. In the context of rs-fMRI data,

specific latent components may explain within-network or

between-network connectivity across various networks. 3)

Moreover, VAEs provide personalized inference on the latent

space by approximating the distribution of latent representations

given the observations. This allows for subject-level information

such as uncertainty or variance of estimated representations.
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Despite improvements in the performance of machine learning

models using latent features, interpreting the significance of the

latent features remains a challenge. At first glance, many neural

network models can appear as black boxes, with complex and

difficult-to-interpret representations. However, strides have been

made across the deep learning community to develop tools for

interpreting these models. Much of the initial work in visualizing

the latent features of autoencoder models originated in the field of

computer vision. The tools developed there benefited from the fact

that images are relatively easy to interpret and understand naturally

by humans. Thus, it was easier to see the qualitative contribution of

each latent feature as we could directly examine the images

produced by these tools. However, brain imaging modalities such

as rs-fMRI do not offer the same level of natural interpretability.

Some initial efforts have been made to generate interpretable

latent representations of rs-fMRI data using VAEs. For example,

Kim et al. (2021) trained VAEs using large rs-fMRI data from

Human Connectome Project. They extracted 2D grids of rs-fMRI

patterns at every time as images and input them into the VAE

models. The results demonstrated that estimated representations

from VAEs effectively characterized individual identification (16).

Another study applied VAEs to rs-fMRI data from Autism Brain

Imaging Data Exchange (ABIDE) and found an autism spectrum

disorder (ASD)-related latent factor (17). However, this study only

used a two-dimensional representation space and lacked

explanation of the complicated information in rs-fMRI related to

ASD. Moreover, the latent representations were based on individual

brain regions (e.g., frontal cortices and frontoparietal) rather than

brain networks (e.g., executive control network [ECN], salience

network [SN], and default-mode network [DMN]).

The goal of this paper is to extract the latent representations

from VAE models trained on rs-fMRI data, and create explainable

VAE models by visualizing and quantifying the latent

representation based on the input rs-fMRI brain features. Here

we test the utility of this tool using the rs-fMRI dataset.
2 Methods

2.1 Dataset

We used publicly available data from the Paris-Saclay Center for

Data Science that was initially published for competition in the

Imaging-Psychiatry Challenge (IMPAC; https://paris-saclay-

cds.github.io/autism_challenge/). The dataset comprised rs-fMRI

images from 1,150 participants, including 601 HC and 549 patients

with ASD, collected from 35 sites. The demographic characteristics

of these participants are detailed in Table 1. We further excluded

121 participants who failed to pass quality control procedures.
2.2 Image acquisition and processing

All time-series imaging data were acquired using specific atlases

and a fetcher provided by IMPAC. We extracted rsFC matrices from

the preprocessed rs-fMRI data using Power atlas with 264 ROIs (4).
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The ROI names and the networks they belong to can be found at

https://www.jonathanpower.net/2011-neuron-bigbrain.html.

Pairwise correlations were calculated between each ROI for each

participant and transformed into a correlationmatrix whose elements

are Pearson correlations ranging from –1 to 1. Finally, we vectorized

correlation matrices by flattening the lower triangular part. For a

connectivity matrix with NROIs, the length of the 1D vectorized

correlation vector was calculated by (N − 1)� N=2. The 1D vector

was used as an input signal in VAEmodels. To correct site effects and

adjust for age and gender covariates, we performed a Combat

algorithm on the correlation vectors using neuroHarmonize (18).
2.3 Variational autoencoders

2.3.1 Model architectures
We denote high-dimensional observations and low-dimensional

representations by X ∈ Rm and Z ∈ Rn, respectively. Realizations of

random variables are denoted by small characters. VAEs consist of

two parts: (i) encoders modeling the distribution of representations

given observations, qf(zjx), and (ii) decoders modeling the

distribution of observations given representations, pq(xjz)
(Figure 1), where f and q are neural network parameters. Both qf(

zjx) and pq(xjz) are usually modeled as multivariate Gaussian

distributions with diagonal variances, N(mf(zjx),Sf(zjx)) and N(mq

(xjz),   Im) , respectively, to apply reparameterization trick (11) where

Im is the identity matrix of size m . Encoders extract representations

from observations, decoders reconstruct the original data with them,

and they are trained by maximizing evidence lower bounds (ELBOs)

(19). For example, for a given x, we can first sample z following N(
mf(zjx),Sf(zjx)) , and then use mq(xjz) as reconstruction results.

Compared to AEs, VAEs are distinct in that they are generative

models, i.e., they model distributions of observations. Latent

representations Z consist of statistically independent components

and nonlinear decoders input Z   to model pq(xjz) , e.g., N(mq(xjz),
  Im). When we assume that the pq(xjz) has zero-variance, the data
generation structure of VAE reduces to nonlinear ICA (20). By

estimating the nonlinear decoders with likelihood maximization and

approximating their inverse mapping with encoders, VAEs can

separate blind sources from high-dimensional complicated

observations, e.g., functional connectivity.

2.3.2 Loss function
The loss function of VAEs is the negative ELBO, − Eqf (zjx) log

pq(xjz) + DKL(qf(zjx) ∥ p(z)), and is an upper bound of the negative
data log-likelihood, − log pq(x), where DKL denotes the Kullback-

Leibler (KL) Divergence and p(z) denotes a user-specified prior

distribution of representations, e.g., multivariate standard Gaussian

distributions. Minimizing the loss function of VAEs is equivalent to

maximizing a lower bound of likelihoods. In the loss function, the

first term is called the reconstruction error which measures how

reconstruction results differ from the original observations, and it is

the mean squared error when we use Gaussian distributions for

decoder distributions. The second term measures the discrepancy

between qf(zjx) and p(z). Considering that the loss function of AEs

is the reconstruction error, training VAEs can be viewed as training
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TABLE 1 The descriptive information for each site from the public dataset.

Site Total N Female Male Mean Age StdAge MinAge Max Age Ctrl ASD Reject Accept

0 45 0 45 39.96 14.16 18 62 23 22 6 39

1 32 7 25 7.93 0.97 6 11 15 17 13 19

2 35 11 24 10.43 1.73 8 14 21 14 1 34

3 32 18 14 23.13 11.83 8 47 23 9 5 27

4 17 6 11 26.76 10.01 17 54 11 6 1 16

5 102 38 64 10.43 1.25 8 13 76 26 5 97

6 21 0 21 23.38 3.81 18 33 0 21 0 21

7 48 5 43 10.11 5.98 5 35 16 32 0 48

8 18 3 15 6.69 0.98 5 9 0 18 6 12

9 55 22 33 11.47 2.03 8 15 29 26 1 54

10 32 6 26 13.30 2.97 7 18 13 19 1 31

11 23 0 23 15.43 2.79 12 20 12 11 3 20

12 20 5 15 15.13 1.70 12 18 8 12 2 18

13 20 4 16 22.12 7.67 11 39 10 10 2 18

14 23 6 17 30.86 12.07 18 56 11 12 4 19

15 16 5 11 27.31 6.42 19 40 6 10 3 13

16 32 8 24 10.38 1.31 8 13 18 14 2 30

17 18 0 18 21.89 2.66 18 29 10 8 0 18

18 19 5 14 14.31 1.30 12 17 12 7 3 16

19 40 6 34 28.60 11.76 7 58 26 14 7 33

20 106 25 81 15.52 7.01 7 39 61 45 5 101

21 11 0 11 10.59 1.38 8 13 8 3 0 11

22 24 3 21 17.00 3.57 10 24 12 12 3 21

23 38 6 32 20.03 7.13 9 35 17 21 6 32

25 19 0 19 37.37 8.37 27 64 9 10 7 12

26 23 6 17 14.54 2.01 9 17 15 8 1 22

27 19 3 16 10.13 1.55 8 12 9 10 3 16

28 32 0 32 17.32 3.83 12 26 14 18 2 30

29 38 6 32 12.84 2.23 8 18 18 20 4 34

30 15 1 14 12.42 1.21 10 15 6 9 4 11

31 59 17 42 13.38 2.85 8 19 37 22 9 50

32 28 2 26 15.84 3.60 13 29 16 12 2 26

33 62 0 62 22.10 8.01 9 50 27 35 6 56

34 28 6 22 12.90 2.98 7 18 12 16 4 24

sum 1150 230 920 601 549 121 1029
F
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AEs with the KL-regularization term for the learning data

generation mechanism.
2.4 Latent contribution scores to explain
nonlinear representations

2.4.1 Latent contribution scores
We introduce our latent contribution scores to explain the

relationship between estimated representations and the original rs-

fMRI brain measures.

For any observation x ∈ Rm , encoder parameter f , and decoder

parameter q , to measure the contribution of each component in z ∈
Rn , we propose a matrixD(x) whose elements are latent contribution

scores,

D(x)kl ¼ Eqf (z ❘ x) ∂ x̂ l= ∂ zk; (1)

where x̂ denotes the reconstruction result, k = 1,…, n , and l =

1,…,m.

The proposed latent contribution scores in Equation (1) are

interpretable in two respects: (i) they are extensions of mixing

weights in ICA to the nonlinear data generation mechanism, and

(ii) they are input perturbation-based scores (21, 22). For (i), x̂ is the

reconstruction result with estimated sources whose gradients are

mixing weights under a linear generation mechanism. Similar to the

explanation on mixing weights in ICA, we can explain the

contribution of estimated representations on reconstructions as

follows: The increment of the k-th element of estimated

representations by one unit yields the increment of the l -th

element of reconstructed observations, e.g., the l -th element of

reconstructed rs-fMRI functional connectivity, by D(x)kl units on

average over qf(z ❘ x). With these scores, we can explain how

estimated representations change reconstructions in each group,

e.g., ASD and HC groups. For (ii), in the interpretable machine

learning literature, input perturbation-based scores are types of

feature importance measures used to explain how the outputs of

complicated and nonlinear networks respond to the perturbation on

latent components. This provides an estimate of how important each

feature is for the model’s decision-making process. Our scores are

input perturbation-based scores in which they average gradients, the

marginal changes of outputs by decoders with respect to input

(estimated) representations.
Frontiers in Psychiatry 05
2.4.2 Numerical approximation for latent
contribution scores

Numerical approximation for the proposed latent contribution

scores consists of two parts: (i) approximating gradients for a given

representation and (ii) averaging gradients computed in (i) over

encoder distributions. For (i), we computed average slopes with small

perturbations. Let x be an observation and ẑ be an estimated

representation sampled from qf(z ❘ x). We first compute

reconstructions using ẑ and ẑ + e , denoted by x̂ (ẑ ) and x̂ (ẑ + ek) ,

respectively, where ek   denotes the k -th component of standard basis

of Rn, and then compute x̂ (ẑ + ek) − x̂ (ẑ ) which is a numerical

approximation of partial gradients up to constant multiplication. For

(ii), in computing scores for the k -th latent component, we used

fixed points rather than sampling to provide deterministic scores. For

all axes except the k -th axis, we used means of encoder distributions,

and for the k -th axis, we used pre-specified grid points ranging from

means minus three standard deviations to plus three standard

deviations. We first approximate gradients at each grid point, and

then average them to compute latent contribution scores.
2.5 Explaining rs-fMRI and brain networks
with latent contribution scores

2.5.1 Model architecture
In our experiments on the rs-fMRI dataset, the observations X

are the lower triangular part of functional connectivity matrices

from the Power atlas with 264 ROIs. Each element is the correlation

of the resting state activity between one of 264 brain regions and

another (Figure 2). Both the encoder and decoder have one hidden

layer. The sizes of the respective layers were chosen by performing a

sparse grid search for each of the layers’ sizes independently and

evaluating the performance of the model both with respect to the

loss function (23). For hyperparameter tuning, we considered the

following choices: {tanh, scaled exponential linear unit [SELU]} for

activation functions (24); {20, 40, 50, 80, 100, 150, 200, 250} for the

number of the hidden nodes; {2, 5, 10, 15, 20} for the latent

dimension. We used the loss of VAEs for the model selection

criterion. Both the encoder and decoder have one hidden layer. The

sizes of the respective layers were chosen by performing a sparse

grid search for each of the layers’ sizes independently and evaluating

the performance of the model, both with respect to the loss function
FIGURE 1

VAEs model the data generation mechanism with low-dimensional representations  and neural networks called decoders. The encoders estimate
representations with observations and decoders reconstruct the original data with representations.
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(23). The chosen number of hidden nodes and latent dimension are

80 and 5, respectively.

2.5.2 Training of VAEs
We trained VAEs in an unsupervised fashion without using

labels about ASD and HC groups. We standardized the data with

median and interquartile ranges and added Gaussian noise with a

zero-mean and standard deviation of 0.1 to input data for denoising

purposes to learn robust representations (25). The whole dataset

was split into training+validation (70%), and test (30%) sets. The

batch size, the number of epochs, and the weight decay were 128,

1000, and 0.1, respectively. We applied L2 regularization. For the

stopping criterion to evaluate convergence, we used the validation

loss, negative ELBO. Figure 3 provides training and validation loss

curves. There was no notable overfitting issue.
3 Results

We compared latent contribution scores of each latent variable

based on the rsFC. Figure 4 provides a visualization of the top 0.05%

resting-state functional connectivities with the highest latent
Frontiers in Psychiatry 06
contribution scores. The depicted brain network features change

the most as the estimated representation (latent) changes.

We quantified the latent contribution scores for the ASD and

HC groups at the network level, as detailed in Table 2 and Figure 5.

The ASD and HC groups share the top network connectivity for all

estimated latent components. For example, within ventral attention

network (VAN) contributes the most to latent 0 in both the ASD

and HC. Similarly, latent 1 is primarily influenced by the rsFC

between somatomotor (SMN)-memory retrieval networks, latent 2

is driven by the rsFC within SMN; latent 3 is driven by rsFC

between memory retrieval-cerebellar networks, and latent 4 is

driven by rsFC between cerebellar-dorsal attention networks in

both groups.

Among the rsFC network ROIs that contribute the most to each

latent component (as shown in Table 2), we further compared them

between the ASD and HC groups. We first conducted t-tests to filter

ROIs with significantly different latent contribution scores between

ASD and HC groups, using a significance level of 1%. Subsequently,

we averaged the scores at the network level. We found significant

differences in the latent contribution scores in the VAN network

(top network driven by latent 0), and the SMN (top 2 network

driven by latent 1).

We compared the mutual information (MI) between latent

components from Denoising AEs (DAEs) (26) and from our

method. DAEs focus solely on minimizing the reconstruction error,

aiming for a closer one-to-one relation between the reduced

dimensions and the original data, without learning data

distributions. The smaller MI indicates weaker dependencies and,

consequently, better disentanglement in interpretation. The results

showed that our method exhibited a smaller test MI of 0.6253

compared to the DAEs, which had an MI of 0.6511. The DAEs were

implemented by removing the KL regularization term from the ELBO.
4 Discussion

In this study, we proposed the use of latent contribution scores

to explain nonlinear patterns identified by VAEs. These scores

effectively capture the marginal changes in each component of the
FIGURE 3

Training and validation loss curves from VAEs with the best
validation parameters.
FIGURE 2

Diagram of VAE pipeline: The model was trained using rs-fMRI data. The samples were then split into a training+validation (70%) and independent-
test (30%) data. Then 20% of the training data was set aside for validation and hyperparameter tuning. Once the training+validation was completed,
the model’s performance was evaluated on the independent test data, which provides an unbiased estimate of how the model generalizes to unseen
data. The resulting VAE model learned to encode patterns from the input brain features into its latent representation.
frontiersin.org
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FIGURE 4

Visualization of top 0.05% functional connectivity based on latent contribution scores. Each row shows results on each component of estimated
representations. The left and right columns display results on the ASD and HC groups, respectively.
TABLE 2 Summary of top 3 network connectivity having the highest latent contribution scores.

Latent
Representation

Latent contribution score rank Control Group Autism Group

Latent 0 Top 1 Within ventral attention Within ventral attention

Top 2 Between memory retrieval and subcortical Between memory retrieval and
ventral attention

Top 3 Within subcortical Within uncertain

Latent 1 Top 1 Between sensory/somatomotor mouth and
memory retrieval

Between sensory/somatomotor mouth and
memory retrieval

Top 2 Within sensory/somatomotor mouth Within sensory/somatomotor mouth

Top 3 Within uncertain Within uncertain

Latent 2 Top 1 Between memory retrieval and
ventral attention

Within sensory/somatomotor hand

Top 2 Within sensory/somatomotor hand Between sensory/somatomotor hand
and cerebellar

(Continued)
F
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observations as the estimated representations change. With this

toolkit, we were able to examine both quantitative and qualitative

analyses of the differences in how a VAE-based model represents

psychiatric disorders.

Specifically, we were able to quantify which brain networks

most significantly contribute to each latent component that

differentiated between ASD and HC. We identified five latent

components, including within VAN driven latent 0; SMN-

memory retrieval networks driven latent 1, memory retrieval-
Frontiers in Psychiatry 08
cerebellar networks driven latent 3, and cerebellar-dorsal

attention networks driven latent 4. Among these 5 latent

components, the latent contribution scores in the ventral

attention network driven latent 0, and the SMN driven latent 1

are significantly different between the ASD and HC groups. The

VAN and SMN are two important networks implicated in ASD.

VAN plays a crucial role in processing sensory information and

direct attention. Studies suggest that individuals with ASD have

altered rsFC in the VAN, which could contribute to difficulties with
TABLE 2 Continued

Latent
Representation

Latent contribution score rank Control Group Autism Group

Top 3 Between sensory/somatomotor hand and
memory retrieval

Between sensory/somatomotor hand and
memory retrieval

Latent 3 Top 1 Between memory retrieval and cerebellar Between memory retrieval and cerebellar

Top 2 Within cerebellar Within sensory/somatomotor hand

Top 3 Within sensory/somatomotor hand Between sensory/somatomotor hand and
memory retrieval

Latent 4 Top 1 Between cerebellar and dorsal attention Between cerebellar and dorsal attention

Top 2 Within dorsal attention Within dorsal attention

Top 3 Within ventral attention Between uncertain and memory retrieval
We averaged scores from rsFC across ROIs over the network level.
FIGURE 5

Summary of top 15 network connectivity having the highest latent contribution scores. We averaged scores from rsFC across ROIs over the network level.
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focusing, maintaining and shifting attention and social

communication (27). The SMN is involved in the processing of

sensory information and controlling motor functions. Individuals

with ASD often show different sensory processing compared with

the HC group. Altered rsFC in the SMN could potentially

contribute to these sensory processing differences. Moreover,

altered rsFC in SMN may contribute to the motor coordination

difficulties in individuals with ASD (28).

Our approach is generally applicable to a broader class of

dimension reduction methods, including autoencoders and their

derivatives, bidirectional generative adversarial networks (29, 30),

and deep belief networks (31) that use probabilistic encoders and

any desired imaging modality. In fact, our technique does not

require the model to even be a neural network as long as it has

mapping from high dimensional observations to estimated

representations and vice versa, and the gradient can be

numerically approximated. Some examples of models that fall in

this category are VAE-based generative adversarial networks

(GANs) (32) and hyperspherical VAEs (33). Another advantage

of our approach lies in its visualization capability. When

observations are visually perceived as in natural images, we can

display our latent contribution scores. For example, when the data

modality is 4D fMRI voxel-time space data, we can visualize the

proposed contribution scores for each latent component in the 4D

space and interpret their spatial-temporal patterns.

It is important to note that our analysis was only done on a VAE

applied to ROI-to-ROI measures extracted from resting-state

timeseries data. Other resting-state measurements such as

amplitude of low-frequency fluctuation (ALFF) and regional

homogeneity (ReHo) have not been used for this analysis and may

be explored in the future works. Additionally, we used the Power atlas

(4) with 264 ROIs in this study. Future studies could try leveraging

rsFC matrices using different atlases as well. Moreover, as different

MRI modalities contain complementary information for ASD,

including task-based fMRI, T1 structural MRI and diffusion

weighted imaging, fusing multiple modalities may provide

additional information, and contribute to each latent component.

The proposed deep learning model can potentially be used to

combine different imaging modalities via stacked autoencoders, and

explain the contributions of each modality to the latent components,

which can help in understanding the mechanism of psychiatric

disorders such as ASD. The ABIDE dataset primarily focuses on

ASD, while ASD frequently coexists with attention deficit

hyperactivity disorder (ADHD) and anxiety disorders (34), posing

a significant challenge in differentiating the neurodevelopmental

impacts of each condition. The comorbidity complicates the

analysis, as the overlapping symptoms and neurobiological features

may obscure the specific contributions of ASD to brain network

configurations. Further research could test the generalizability of our

model with respect to comorbidity with other disorders. For example,

by comparing latent contribution scores across three groups - HC,

ASD without comorbidities, and ASD with comorbidities - we can

better dissect the interaction between these disorders and their

associations with brain networks.
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In conclusion, our proposed latent contribution scores enhance

the interpretability of deep learning models. These models, applied

to the rs-fMRI data, can be understood and interpreted by humans.

Moreover, explainable VAEs offer insights into which features, from

either single modality or a combination of multiple modalities, are

most important for particular prediction tasks, such as the

classification of ASD from HC. This is valuable for feature

engineering and for understanding the underlying neural

mechanisms of psychiatric disorders.
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