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Background: Epidemiological studies have linked low birth weight to psychiatric

disorders, including substance use disorders. Genomic analyses suggest a role of

placental physiology on psychiatric risk. We investigated whether this association

is causally related to impaired trophoblast function.

Methods:We conducted a two-sample summary-data Mendelian randomization

study using as instrumental variables those genetic variants strongly associated

with birth weight, whose effect is exerted through the fetal genome, and are

located near genes with differential expression in trophoblasts. Eight psychiatric

and substance use disorders with >10,000 samples were included as outcomes.

The inverse variance weighted method was used as the main analysis and several

sensitivity analyses were performed for those significant results.

Results: The inverse variance weighted estimate, based on 14 instrumental

variables, revealed an association, after correction for multiple tests, between

birth weight and broadly defined depression (b = −0.165, 95% CI = −0.282 to

−0.047, P= 0.0059). Sensitivity analyses revealed the absence of heterogeneity in

the effect of instrumental variables, confirmed by leave-one-out analysis,

MR_Egger intercept, and MR_PRESSO. The effect was consistent using robust

methods. Reverse causality was not detected. The effect was specifically linked to

genetic variants near genes involved in trophoblast physiology instead of genes

with fetal effect on birth weight or involved in placenta development.

Conclusion: Impaired trophoblast functioning, probably leading to reduced fetal

brain oxygen and nutrient supply, is causally related to broadly defined

depression. Considering the therapeutic potential of some agents to treat fetal

growth restriction, further research on the effect of trophoblast physiology on

mental disorders may have future implications in prevention.
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1 Introduction

Epidemiological data revealed an association between prenatal/

perinatal problems, such as gestational diabetes, gestational

hypertension, maternal infections during gestation, nutritional

deficits during gestation, or preeclampsia and mental disorders

(1–3). These agree with the fetal origins of mental health, framed

within the developmental origins of health and disease hypothesis

(4). The hypothesis proposes that inappropriate fetal environment

may affect brain development, leading to an increased susceptibility

to mental disorders later in life.

Low birth weight is commonly used as an easy measure of

putative fetal adversity. Meta-analyses of observational studies

identified that low birth weight is associated with several mental

disorders, such as depression (5), psychosis (2) or autism spectrum

disorder (ASD) (3). Large epidemiological studies also reported an

association between low birth weight, or small for gestational age,

and substance use disorder in adolescence/young adulthood (6) and

adults (7, 8). Remarkably, Pettersson et al. (8) have also found an

association between low birth weight and a latent variable

measuring a general factor of psychopathology, based on 12

outcomes: depression, anxiety, obsessive-compulsive disorder

(OCD), post-traumatic stress disorder (PTSD), bipolar disorder

(BIP), alcohol abuse, drug use, violent crimes, attention-deficit/

hyperactivity disorder (ADHD), ASD, schizophrenia (SCZ), and

schizoaffective disorder.

However, association does not imply causality. Mendelian

randomization (MR) is a methodological approach to test for

causality using genetic predisposition as a proxy for the exposure

factor (9). Arafat and Minica (10) performed a two-sample MR

study using GWAS for birth weight from the Early Growth Genetics

Consortium (EGGC) (11), as a proxy of exposure to fetal adversity,

to test the impact of this exposure on mental disorders, specifically,

depression, SCZ, and ADHD. They did not find any evidence of

causality. Conversely, Orri et al. (12) revealed a putative causal effect

of low birth weight on ADHD by MR. This causal effect was not

detected for other mental disorders, such as BIP, SCZ, or

depression. One explanation for the contradictory results of

ADHD may be that while Arafat and Minica (10) used

unadjusted SNP effects, Orri et al. (12) used direct fetal effects

adjusted for maternal genotype.

Although easy to measure, birth weight has limitations as a proxy

for fetal adversity. It does not distinguish between normal growth in

constitutionally small but healthy newborns and fetal growth

restriction, the condition in which a fetus does not reach its growth

potential (13, 14). A key player in fetal growth restriction is the

placenta. The main cell type of placenta is the trophoblast, whose

origin is fetal. Villous cytotrophoblasts are stem cells that give

rise to syncytiotrophoblast and extravillous trophoblasts.

Syncytiotrophoblasts are involved in most functions of the placenta,

such as active transport of nutrients, waste excretion, oxygenation,

hormone production, and protection against xenobiotics and the

maternal immune system. Extravillous trophoblasts are involved in

the invasion of maternal decidua to establish the maternal-fetal

circulation through vascular remodeling (15–17).
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A role of placenta on risk to psychiatric disorders has been

suggested by an interaction between polygenic risk scores (PRS) of

SCZ and obstetric complications in the onset of SCZ (18).

Furthermore, this interaction was mainly due to PRS of genes

highly expressed in placenta and differentially expressed in

placenta of complicated pregnancies, referred to as PlacPRS. The

interaction, restricted to birth asphyxia, has been confirmed in a

Norwegian sample (19). However, it was not replicated in a larger

independent study (20). The lack of replication may be due to a type

I error or to the use of different scales to measure obstetric

complications at each study (12, 21). PlacPRS was also negatively

associated with neonatal brain volume and cognitive development

at one year (22). Interestingly, the Norwegian study also detected an

interaction between PlacPRS and birth asphyxia in neonatal head

circumference (19).

Here, we perform an MR study of birth weight on mental

disorders based on a larger GWAS than previous studies (23).

Furthermore, we selected as instrumental variables (IVs) those

SNPs with fetal effect and close to genes involved in trophoblast

biology based on single-cell RNA sequencing studies of the

decidual–placental interface (24, 25) to distinguish fetal adversity

from constitutionally small newborns. By selecting as IVs, SNPs

related to trophoblast biology with only direct fetal effect on

birth weight, we limit the probability of dynastic effects, that is,

the effect of the SNP on the offspring outcome via parental

phenotype (Figure 1).
2 Materials and methods

This study was conducted in accordance with the STROBE-MR

(Strengthening the Reporting of Observational Studies in

Epidemiology–Mendelian Randomization) guidelines for

reporting MR studies (Supplementary Table S1) (26). A flow

chart of the study is presented in Figure 2.
2.1 Selection of genetic
instrumental variables

For an SNP to be a valid IV, it must meet the following

conditions (referred to as core MR assumptions): it should be

associated with the exposure (relevance assumption), not

associated with confounders (independence assumption), and

only related to the outcome through the exposure (exclusion

restriction assumption) (27). SNPs used as IVs were taken from

the currently largest GWAS meta-analysis on birth weight (N =

423,683, including samples from EGGC, UK Biobank, and the

Icelandic birth register). Birth weight was normalized to a

standard normal distribution using rank-based inverse normal

transformation prior to analysis (23). The study included

information on whether the variants exert their effect directly

through the fetal genome or indirectly through the maternal

genome, based on a subset of 104,920 Icelandic parent–offspring

trios. The selected SNPs accomplished these conditions: (i) P< 5 ×
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FIGURE 2

Flow chart of the study.
FIGURE 1

Directed acyclic graph illustrating our Mendelian randomization approach. Gray arrows correspond to the IV assumptions. Green arrow indicates the
causal effect of interest. By selecting as IVs SNPs with specific characteristics, we avoid dynastic effects (dashed black arrows), as it is improbable that
SNPs accomplishing these characteristics act on the outcome via parents’ phenotype.
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10−8 in the main GWAS of birth weight, that is, genome-wide

significant (GWS) SNPs, (ii) classified as acting exclusively through

the fetal effect, and (iii) located near genes involved in trophoblast

biology. Specifically, all annotated coding genes in the 300 kb region

centered on each SNP were collected using the MAGMA (28)

auxiliary file for the GRCh38 version and the R package

“GenomicRanges 1.52.1” (29). Then, the PlacentalCellEnrich tool

(30) was used to test for cell-specific expression of these genes in any

of the three types of trophoblast cells identified in single-cell RNA

sequencing of first-trimester human placenta, that is, villous

cytotrophoblast, syncitiotrophoblast, and extravillous trophoblast

(24, 25). All types of cell-specific expression defined by

PlacentaCellEnrich were considered, corresponding to at least

fivefold higher expression level in a particular cell type or group

of cell types compared to all other cells or to average levels in all

other cells. The default expression threshold of 1 was used.

PlacentalCellEnrich was also used to test for cell-specific gene

enrichment of the subset of genes around the GWS SNPs with

fetal effects, using the hypergeometric test.

Additional IVs were selected in sensitivity analyses. Specifically,

all human genes with direct or indirect relationships with the Gene

Ontology (GO) (31, 32) term GO:0001892, embryonic placenta

development, were retrieved using AmiGO 2 (33). SNPs were

selected if present a P< 5 × 10−8 in the GWAS of birth weight

and are at less than 150 kb of any gene from this list. Another group

of SNPs selected as IVs were all independent GWS SNPs with

predicted fetal effect by Juliusdottir et al. (23). Finally, subsets of

SNPs were selected based on the trophoblast cell type where specific

gene expression was detected.

To confirm the relevance of the SNPs selected as IVs in relation to

trophoblast physiology, information on the chromatin state in E005

H1 BMP4 derived trophoblast cultured cells from the Roadmap

Epigenomics Consortium (34) were retrieved using the WashU

EpiGenome Browser (https://epigenomegateway.wustl.edu/).

Specifically, SNPs were classified as located in active or inactive

chromatin regions based on the 18-stated model.

As a measure of the strength of the association between each IV

or the overall IV and the exposure, the F-statistic was computed for

each SNP using the formula

F =
R2 (N − k − 1)

1 − R2

where R2 is the proportion of variance explained by each SNP

(or their sum, in case of overall IV), N is the sample size and k is

equal to 1 when applied to each SNP and equal to the number of IVs

when applied to the overall IV. R2 was estimated as 2b2MAF(1 −

MAF), where b is the beta coefficient and MAF is the minor

allele frequency.
2.2 Summary data for outcomes

Summary statistics from the largest available GWAS for eight

psychiatric disorders with at least 10,000 cases have been selected

for this study. The traits included were alcohol dependence (35),
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ADHD (36), ASD (37), BIP (38), cannabis use disorder (CUD) (39),

depression (40), PTSD (41), and SCZ (42) (Supplementary Table S2

lists all GWAS summary statistics used with descriptive

information). All included GWAS are from European ancestry

samples to ensure a similar pattern of linkage disequilibrium.

As a sensitivity analysis of the main results, a GWAS of clinically

ascertained depression from the Psychiatric Genomics

Consortium (PGC), comprising 25% of the total depression cases,

was used (43).
2.3 Mendelian randomization analysis

Two-sample MR analyses were performed between birth weight

as exposure and all psychiatric outcomes using the R package

“TwoSampleMR 0.5.6” (44). Prior to MR analyses, the exposure

and outcome summary statistics were harmonized to ensure that

the effects were referenced to the same allele. Palindromic SNPs

with minor allele frequency (>0.4) were removed. In case of any IV

not present in a GWAS, a search for proxy SNPs at r2 > 0.8 with the

IV was performed in the “LDlink” web service (45), using the

“LDproxy” tool, genome version GRCh38, the 1000 Genomes

Project European populations as reference, and a base pair

window of ±150,000. As most MR methods are based on

uncorrelated variants, TwoSampleMR includes a clumping step.

This clumping step was performed with default parameters,

removing the less significant SNP in the exposure GWAS at each

pair with LD r2 > 0.001 using the 1000 Genomes Project European

populations as reference.

Summary statistics of alcohol dependence did not report effect

size. In this case, the effect size was estimated from Z score using the

following formula

b =
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p(1 − p) (n + z2)

p

where b is the beta coefficient, z is the Z score, n is the sample

size, and p is the effect allele frequency (46). This frequency was

taken from the 1000 Genomes Phase 3 European reference panel. In

order to estimate the standard errors of beta in ADHD, ASD, PTSD,

and alcohol dependence summary statistics, the following formula

was used:

SE =
b
z

where SE is the standard error of the beta coefficient, b is the

beta coefficient and z is the Z score (46).

The causal estimate for each SNP was measured as the ratio

between the effect of the SNP on the outcome and the effect of the

SNP on the exposure, that is, the Wald ratio estimate. Wald ratio

estimates were meta-analyzed using the random effects inverse-

variance weighted method (IVW) as the main MRmethod to obtain

exposure effect size estimates. This is the more commonly used

method and is the most powerful method in the absence of

pleiotropy or if the pleiotropy is balanced (47, 48). Heterogeneity

was tested using the Q-statistic. Significance for the main results
frontiersin.org
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was established as P< 0.00625, corresponding to a Bonferroni’s

correction for test on eight outcomes. Considering the existence of

genetic correlation between the different outcomes (49), this

correction is conservative.

In case of a significant association detected by IVW, several

sensitivity tests have been carried out to check the robustness of the

results (9, 48). Leave-one-out analysis was performed to assess the

effect of any single IV on the MR estimate. The MR-Egger

regression (50) was used to allow for unbalanced pleiotropic

effects. Egger-intercept was used to test for heterogeneity of Wald

ratio estimates. MR-PRESSO was used to detect outliers. After

outlier removal, MR-PRESSO performs an IVW approach (51).

Two methods robust to outliers were used, the weighted median

and the weighted mode. The first method is robust to up to 50% of

SNPs violating the IV assumptions. The weighted mode is valid

under the assumption that the largest subset of IVs with the same

estimate are valid instruments, that is, the majority assumption.

This method is sensitive to the bandwidth parameter that defines

the clustering of IVs. The default value of 1 was used as first option,

while other values were used to analyze the robustness of the

method. Putative bias due to sample overlap between the

exposure and outcome GWAS was quantified using the method

proposed by Burgess and Davies (52). Reverse causality was tested

using each psychiatric disorder as exposure and birth weight

as outcome.
3 Results

3.1 Selection of SNPs as instrumental
variables based on trophoblast-specific
gene expression

There were 351 genes around the 87 lead GWS SNPs, including

secondary signals, for fetal growth GWAS with predicted fetal effect.

As expected, the most significantly enriched cell types detected by

PlacentaCellEnrich corresponded to trophoblast (Supplementary

Figure S1). Specifically, syncytiotrophoblasts were significant in the

Suryawanshi et al.s’ dataset (24) (adjusted P = 0.047, fold-change =

2.97) and extravillous trophoblasts were significant in the Vento-

Tormo et al.’s dataset (25) (adjusted P = 0.0035, fold-change = 4.82).

There were 18 SNPs with a gene specifically expressed in

trophoblast at less than 150 kb. These SNPs were selected as IVs

(Table 1). Thirteen of the 18 SNPs were located in active chromatin

regions of the E005 H1 BMP4–derived trophoblast cultured cells,

while 80% of the average epigenome corresponds to inactive

chromatin states (34).

Individual F-statistic ranged from 48.30 to 165.37, indicative of

no problems with weak instrument bias. The total number of IVs

common to each exposure-outcome analysis was 13–15. The overall

F-statistic ranged from 78.21 (depression) to 84.18 (ADHD). The

mean F-statistic ranged from 78.63 (depression) to 83.99 (ADHD).

The rest of the outcomes employ the same 15 IVs whose overall F-

statistic value is 81.78 and mean F-statistic is 81.56. Of the selected

IVs (Table 1), rs5777204588 and its eight proxy SNPs were not

found in any of the summary statistics of the outcomes.
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rs141845046 was not found in the GWAS of depression, and

rs10913200 and rs41355649 were not found in the GWAS of

ADHD. There was a proxy SNP, rs73024215, for one of these

SNPs, rs41355649 (r2 = 0.87), but it was absent from the ADHD

GWAS. As for the SNPs rs7771453 and rs1011476, they were

removed in the clumping step in all MR analyses.
3.2 Main Mendelian randomization analyses

Main results for the MR analyses for each outcome are shown in

Figure 3A. IVW method based on 14 trophoblast IVs was

significant for depression after correction for multiple tests (b =

−0.165, 95% CI = −0.282 to −0.047, P = 0.0059). The association is

in the expected direction, that is, lower birth weighted is causally

associated with increased risk of depression. No other exposure

outcome was significant (P > 0.05 in all cases). When birth weight

was considered the outcome and each psychiatric disorder the

exposure, there were no association, although PTSD was not

tested due to lack of IVs (Figure 3B).

Assuming that the 217,397 samples from UKBB at the birth

weight GWAS are also among the 361,315 samples from UKBB at

the depression GWAS, and that the 11,526 samples from Iceland at

the depression GWAS are also among the 125,541 samples from

Iceland at the birth weight GWAS, the maximum sample overlap is

around 45% of the depression samples. Taking into the lower limit

of the F-statistic 95% CI, 71.15, the estimated bias associated with

overlap was negligible.
3.3 Sensitivity analysis for the birth weight–
depression association

In agreement with the absence of heterogeneity (Q = 9.07, P =

0.77), the association remained significant in leave-one-out analysis

(Figure 4). Furthermore, MR-PRESSO did not detect any outlier

using the default outlier significance threshold of 0.05. Egger

intercept was not significant (intercept = −0.006, 95% CI =

−0.004 to −0.016, P = 0.24), suggesting absence of directional (or

unbalanced) pleiotropy. The MR-Egger estimate was not significant

(b = 0.084, 95% CI = −0.324 to 0.493, P = 0.69), and the causal

estimate is in the opposite direction (Figure 5). However, there is

absence of heterogeneity (Q’ = 7.514, P = 0.82), and the difference Q

– Q’ was not significant (1.556, P = 0.21), indicating that MR-Egger

does not fit substantially better to the data. The weighted median

estimate was similar to the IVW (b = −0.152, 95% CI = −0.313 to

0.009) (Figure 5). The result is near significance (P = 0.0638), in

agreement with the low power of the method. Finally, the weighted

mode estimate using the default bandwidth of 1 was lower and

insignificant (b = −0.054, 95% CI = −0.285 to 0.176, P = 0.65)

(Figure 5). However, the use of different bandwidths gave rise to

different conclusions. For instance, the causal estimate using a

bandwidth parameter of 2 is more similar to that of the IVW

method (b = −0.13, 95% CI = −0.28 to −0.02, P = 0.089). Using a

bandwidth of 2.5 the MR estimate reached significance (b = −0.139,

95% CI = −0.279 to 0.000, P = 0.050).
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In order to test the effect of different definitions of depression on

the results, we analyzed the subsample of depression comprising

only clinically ascertained samples from the PGC. In this sample,

the IVW analysis was not significant (b = −0.087, 95% CI = −0.340

to 0.166, P = 0.498).

A final set of sensitivity analyses considered distinct IV selection.

To test for the effect of trophoblast specific expression, MR IVW was
Frontiers in Psychiatry 06
performed using all independent GWS SNPs for birth weight with

predicted fetal effect, n = 79. The causal effect estimate was not

significantly different from 0 (b = −0.009, 95% CI = −0.092 to 0.075,

P = 0.84), in agreement with a specific role for trophoblast physiology.

Another IV selection included 11 SNPs located near genes involved in

embryonic placental development according to GO (Supplementary

Table S3). Five SNPs are common to those from the main analysis
TABLE 1 Instrumental variables (IVs) selected for the Mendelian randomization (MR) analysis.

SNP ID1 Position
hg38

Alleles2 EAF3 Beta
(s.e.)
birth
weight

P
birth
weight

Trophoblast
gene
(distance)

Trophoblast
cell type4

Nearest
gene
(distance)

R2 F-
statistic

rs12401656 Chr1:42991096 A/G 0.1272 −0.0277
(0.0036)

2.4E-14 SLC2A1(32228) SCT SLC2A1
(32228)

1.78E-04 75.51

rs141845046 Chr1:155015228 T/C 0.0298 0.0746
(0.008)

1.6E-20 EFNA1(112648) EVT, SCT ZBTB7B(0) 2.89E-04 122.67

rs10913200 Chr1:176552519 A/G 0.0229 −0.0552
(0.0078)

1.4E-12 PAPPA2(0) EVT PAPPA2(0) 1.48E-04 62.53

rs12656216 Chr5:36160566 G/A 0.2247 −0.0196
(0.003)

7.4E-11 SKP2(0) EVT, VCT SKP2(0) 1.29E-04 54.56

rs75104038 Chr6:34222327 A/G 0.0447 0.0465
(0.0053)

2.9E-18 HMGA1(14546) VCT HMGA1
(14546)

2.20E-04 93.42

rs7771453 Chr6:35530855 G/A 0.2097 0.0243
(0.003)

3.9E-16 TEAD3(33776) SCT TULP1
(17986)

2.05E-04 87.05

rs577204588 Chr6:53156939 C/T 0.0010 −0.1535
(0.0234)

5.8E-11 GCM1(8098) EVT, SCT GCM1(8098) 2.48E-04 105.09

rs34776209 Chr7:23473474 T/C 0.2386 −0.0239
(0.0029)

6.9E-17 IGF2BP3(2983) VCT IGF2BP3
(2983)

2.07E-04 87.67

rs1323438 Chr9:116353252 T/C 0.2724 −0.0203
(0.0027)

1.3E-13 PAPPA(0) EVT PAPPA(0) 1.70E-04 72.06

rs2901307 Chr10:122368927 C/T 0.5328 −0.0213
(0.0025)

5.6E-18 TACC2(114385) SCT PLEKHA1
(5781)

2.27E-04 96.04

rs1011476 Chr11:2277805 T/G 0.2465 0.0179
(0.0027)

4E-11 ASCL2(7217) EVT ASCL2(7217) 1.30E-04 55.15

rs234864 Chr11:2836067 G/A 0.4523 −0.0169
(0.0025)

1.2E-11 CDKN1C
(47146),
PHLDA2(92206)

EVT, SCT |
EVT, SCT, VCT

KCNQ1(0) 1.42E-04 60.22

rs4444073 Chr11:10310114 C/A 0.4732 −0.0219
(0.0024)

2.8E-19 ADM(2722) EVT ADM(2722) 2.39E-04 101.39

rs12584892 Chr13:73050396 T/C 0.1710 −0.0196
(0.0032)

1.3E-09 KLF5(4580) VCT KLF5(4580) 1.14E-04 48.30

rs222857 Chr17:7261244 C/T 0.4205 −0.0282
(0.0025)

2.2E-30 CLDN7(0) EVT, SCT, VCT CLDN7(0) 3.90E-04 165.37

rs41355649 Chr19:33299650 A/G 0.0646 −0.0366
(0.0051)

5E-13 CEBPA(284) SCT CEBPA(284) 1.63E-04 69.09

rs753381 Chr20:41168825 T/C 0.4602 0.0154
(0.0024)

2.8E-10 TOP1(44338) SCT PLCG1(0) 1.18E-04 49.89

rs220193 Chr21:42161198 A/G 0.2346 0.021
(0.003)

1.5E-12 ABCG1(38491) SCT UMODL1
(17745)

1.53E-04 64.76
fro
1SNPs located in active chromatin states in E005 H1 BMP4 derived trophoblast cultured cells from the Roadmap Epigenomics Consortium are in boldface.
2First allele is the effect allele.
3Effect allele frequency in the 1000 Genomes reference panel (European population).
4EVT, extravillous trophoblasts; SCT, syncytiotrophoblasts; VCT, villous cytotrophoblasts.
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FIGURE 4

Leave-one-out sensitivity analysis for depression as outcome. The y-axis indicates the SNP that is removed in each analysis. The x-axis shows the
beta (dot) and 95% CI (line) for each analysis.
A

B

FIGURE 3

Forest plot of the main results of the Mendelian randomization (MR) analysis. (A) Results of the MR analysis using the different psychiatric disorders as
outcome. The size of each square is proportional to the effective sample size of each GWAS (Supplementary Table S2). (B) Results of the MR analysis
in which independent SNPs significantly associated with each of the psychiatric disorders were taken as IVs to assess their effect on birth weight,
evaluating the inverse causality hypothesis. In case of just one IV, the Wald ratio test is shown. The other results are based on the IVW method.
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based on trophoblast specific expression. Once again, the result lacked

significance (b = −0.019, 95% CI = −0.175 to 0.136, P = 0.81). Last,

when the IVs were selected based on the specific trophoblast cell type

where specific gene expression was present, IVW estimates were

significant in extravillous trophoblasts and villous cytotrophoblasts

but not in syncytiotrophoblasts (Figure 6).
4 Discussion

Using an MR approach, we present evidence for the

involvement of placenta in susceptibility to broadly defined

depression. Specifically, we selected SNPs with fetal effect on birth
Frontiers in Psychiatry 08
weight and near genes with differential expression in trophoblasts as

IVs for oxygen and nutrient supply to the fetus. However, we did

not detect any significant result with other psychiatric or substance

use disorders. Reverse causality was also discarded, as none of the

sets of IVs chosen for each disorder had a significant effect on

birth weight.

A previous MR study analyzed the effects of birth weight on

several psychiatric disorders, using a different approach, as their

SNP effects were direct fetal effects adjusted for maternal genotype

(12). In contrast with our results, the authors found evidence of an

effect of birth weight on ADHD and PTSD but not on depression.

These different findings may also be related to the selection of IVs.

We have chosen SNPs with fetal effect on birth weight and near
FIGURE 6

Results of the MR analysis based on subsets of IVs according to trophoblast cell type.
FIGURE 5

Scatter plot showing the beta effects of SNPs on exposure (birthweight) and outcome (depression). The estimates are represented as dots, with 95%
CI represented by horizontal and vertical lines, respectively. The slope of each colored line corresponds to the estimated causal effect by each
MR method.
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genes with differential gene expression in trophoblasts as a way to

identify IVs specifically involved in oxygen and nutrient supply to

the fetus instead of SNPs related to normal growth in

constitutionally small but healthy newborns. The relevance of the

selection based on differential gene expression in trophoblast was

confirmed by lack of significance in sensitivity analyses in

depression using as IVs all SNPs with fetal effect on birth weight

or SNPs near genes within the GO term “embryonic placenta

development.” The use of larger exposure and outcome GWAs in

our study may also contribute to differences with the previous

one (12).

The outcome GWAS used for depression was based on a

highly heterogeneous phenotype, which includes both people with

self-reported past help seeking for problems with “nerves, anxiety,

tension or depression” (termed “broad depression”) as well as

patients ascertained with a diagnostic interview from the PGC,

representing about 75% and 25% of the total sample, respectively

(40). In contrast to the main result based on the total samples, the

sensitivity analysis including only the clinically ascertained

samples was not significant. This may be interpreted

considering that the genetic susceptibility associated with

minimal phenotyping definitions of depression is less specific to

depression, probably incorporating genetic susceptibility to

different psychiatric disorders (53, 54). Thus, it may be possible

that the causal association we detected was the only significant

result in MR due to higher power instead of being specific to

depression. This agrees with the epidemiological study of

Pettersson et al. (8), who found an association of birth weight

with a general psychopathology factor. Alternatively, GWAS

associated to broad depression may identify different type of

variants, such as those related to personality traits and disorders

or to nonspecific subclinical depressive symptoms secondary to

other traits (53, 54).

The causal effect of trophoblast functioning on susceptibility to

psychopathology may be related to the process of invasion of the

uterine walls that takes place in the early stages of placentation. The

aim of this process is the remodeling of the uterine arteries to provide

the fetus a sufficient and permanent supply of oxygen and nutrient

(15, 16). A problem in the migration capacity of the trophoblasts

could potentially result in a reduced number of invaded blood vessels

leading to an incomplete remodeling process of the uterine arteries.

The reduced blood flow to the fetus will cause a lower or intermittent

provision of nutrients and oxygen, and there could be episodes of

oxidative stress that can lead to a misfolded protein accumulation

(55, 56). Hypoxic conditions have also been linked to a reduced

activity of differentiation pathways of trophoblasts, such as

syncytialization (57, 58). Thus, a maternal–fetal interface

imbalance mediated by impaired trophoblast function may

compromise the normal development of the large human fetal

brain, considering its high demand of oxygen and nutrients (15,

59). Trophoblast invasiveness has recently been suggested as a

candidate mechanism to explain the interaction of PlacPRS

and obstetric complications on early neurodevelopmental

impairment (60).
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5 Limitations

The findings in this work must be interpreted in the context of

an MR approach. The reliability of MR results is based on several IV

assumptions. While the strength of the association between IVs and

exposure was confirmed by the F-statistics, other assumptions

cannot be formally tested (9). Several sensitivity analyses, such

use of methods robust to outliers or analysis of heterogeneity in IVs

effects were used to deal with putative horizontal pleiotropy. In

addition, we selected IVs near genes with differential expression in

trophoblast, as this is the cell type with a more important role in

establishment and maintenance of a maternal–fetal interface.

Several of the selected genes, such as ADM, ASCL2, CDKN1C,

GCM1, HMGA1, IGF2BP3, PAPPA, PAPPA2, and PHLDA2, play a

known role in trophoblast physiology and related pathologies, such

as intrauterine growth restriction (IUGR) or preeclampsia (61–68).

However, we cannot discard an effect of the selected IVs by another

mechanism not related with fetal growth restriction.

Another limitation was the low sample size of some of the

GWAS of psychiatric disorders reducing the power of the analysis.

This is especially problematic in case of substance use disorders.

This low power may also be the reason for non-significance of the

weighted median analysis in spite of similar effect than the IVW

method. Increase of knowledge of trophoblast physiology in near

future may lead to identification of more IVs as a way to increase

power in addition to increase sample size in GWAS. Finally, the

studies included in the PlacentalCellEnrich database (30) use

expression data for placentas in the first three months of

pregnancy. Although this period is key for establishment of the

maternal–fetal interface, it would be necessary to include results

from placentas in the second and third trimester to obtain a more

complete view of placenta-associated variants.
6 Conclusion

In summary, we have identified a causal effect of placental

impairment in broadly defined depression, probably reflecting an

unspecific psychopathology. This adds new data on the current

debate about placental role in mental health (21, 60, 69, 70).

Although no treatments for fetal growth restriction are currently

available, there are several promising agents on clinical trials or

preclinical research, acting on processes such as oxygen supply by

angiogenesis or vasodilatation, or mitigation of oxidative stress (71,

72). Therefore, further research is needed to confirm this causal

effect, as it could have clear implications in prevention of mental

disorders in near future.
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