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Introduction: Stress is a pervasive health concern known to induce physiological

changes, particularly impacting the vulnerable hippocampus and the

morphological integrity of its main residing cells, the hippocampal neurons.

Eye Movement Desensitization and Reprocessing (EMDR), initially developed to

alleviate emotional distress, has emerged as a potential therapeutic/preventive

intervention for other stress-related disorders. This study aimed to investigate the

impact of Acute Variable Stress (AVS) on hippocampal neurons and the potential

protective effects of EMDR.

Methods: Rats were exposed to diverse stressors for 7 days, followed by dendritic

morphology assessment of hippocampal neurons using Golgi-Cox staining.

Results: AVS resulted in significant dendritic atrophy, evidenced by reduced

dendritic branches and length. In contrast, rats receiving EMDR treatment

alongside stress exposure exhibited preserved dendritic morphology

comparable to controls, suggesting EMDR ’s protective role against

stressinduced dendritic remodeling.

Conclusions: These findings highlight the potential of EMDR as a neuroprotective

intervention in mitigating stress-related hippocampal alterations.
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1 Introduction

Stress represents a significant health challenge, triggering

physiological responses that encompass various bodily systems,

including metabolism, immune response, and reproduction (1–4).

The brain exhibits remarkable adaptive capabilities through

neuroplastic changes, including modifications in dendritic and

synaptic morphology, allowing for dynamic responses to internal

and external stimuli (5). Notably, intense stress can induce

alterations in dendritic branching and synaptic connectivity,

particularly affecting brain regions like the hippocampus (6, 7).

The hippocampus, vital for memory and stress response

regulation, is particularly vulnerable to the effects of stress (6, 7).

Acute stressors have been shown to elicit a cascade of

neurobiological changes in the hippocampus, including alterations

in neurotransmitter levels, disruption of neurogenesis, and

impairment of synaptic plasticity (8, 9). Chronic or severe acute

stress can lead to neuronal damage and atrophy within the

hippocampal region, specifically in the CA3 and dentate gyrus

subfields, as evidenced by reduced dendritic arborization and

decreased spine density (10). These structural changes are often

accompanied by functional deficits, such as impaired spatial

memory and decreased resilience to further stressors (8, 11, 12).

Eye movement desensitization and reprocessing (EMDR) is a

psychotherapeutic approach originally developed to eliminate

emotional distress resulting from traumatic memories (13). This

therapeutic technique was first used by Francine Shapiro in 1980’s

and combines imagined exposure and other techniques to reduce the

intensity of distressing thoughts and feelings (14). EMDR positive

effects have been mainly attributed to bilateral sensory stimulation

typically elicited by the therapist`s hand movements that induce

lateral eye movements while the patient recalls distressing memories.

Bilateral stimulation may facilitate information processing and

adaptive memory consolidation, thereby reducing emotional

distress and promoting psychological resilience (15, 16).

Experimental research, including meta-analyses, systematic reviews,

and clinical trials, consistently supports the efficacy of Eye Movement

Desensitization and Reprocessing (EMDR) as a treatment for post-

traumatic stress disorder (PTSD) and related conditions (17, 18).

Although EMDR has proven to be effective, the intricacies of its

mechanisms remain unknown, in part due to the lack of animal

studies. Animal models are indispensable in medical research as they

offer insights into physiological and pathological processes, mirroring

those in humans. Animal models, particularly rats, are indispensable

in medical research because they share many physiological and

pathological traits with humans, as extensively documented in

toxicological and other biomedical studies. These models offer

invaluable insights into human biological processes and disease

mechanisms because they replicate human organs and tissues (19).

The use of rats is particularly prevalent in studies involving complex

physiological responses, such as those observed in burn treatment

research, due to their cost-effectiveness and the breadth of available

histopathological data (20). This is particularly critical for EMDR,

where understanding the neurological underpinnings could

significantly enhance therapeutic outcomes.
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This study aims to provide neuroanatomical evidence of

EMDR´s effects using an Acute Variable Stress (AVS) rat model.

We hypothesized that EMDR would reduce the effects of stress

exposure on the dendritic tree of hippocampal neurons.
2 Materials and methods

2.1 Animals

In this study, 90-day-old Wistar male rats were employed. A total

of 20 male rats, weighing 299.4 ± 26.41g, were randomly allocated to

groups using a computer-generated sequence (Research Randomizer,

https://www.randomizer.org) to ensure equal distribution among

groups, with the process blinded to minimize bias into four groups: a

Control group (n = 5), EMDR group (n = 5), AVS (n = 5), and an

EMDR + AVS (n = 5). All groups were maintained in a 12:12 light–

dark cycle, with lights on at 7:00 am. The temperature in the

experimental room was maintained at 25 ± 2°C, and humidity at

70%. The animals had free access to tap water and balanced food. The

cages were changed in the testing room every day at 13:00h. All animal

experiments followed the National Institute of Health guide for the care

and use of laboratory animals, and the study was approved by the

Health Sciences Ethics, Biosafety, and Scientific Board, at the University

of Guadalajara, México CI. 068-2014. Figure 1 illustrates all

experimental procedures.
2.2 Acute variable stress protocol

The stimulus involved a sequential exposure to two distinct

stressors over a seven-day period, starting with spatial restriction.

Each rat was confined in an 8x18 cm PET plastic cylinder, equipped

with 5 mm ventilation holes, for 30 minutes to limit movement

while ensuring adequate ventilation, aiming to induce physical

stress. Following this, to introduce psychological stress, rats

underwent a forced swim in a 45 cm high, 30 cm diameter

plexiglass cylinder filled with water at 10°C for 15 minutes, with a

10-minute rest interval between the stressors. This regimen was

conducted daily at 9:00 am to minimize circadian variations, in

contrast to a control group was remained unexposed to stressors

and was kept under standard laboratory conditions. The term

‘variable stress’ was used to represent the combination of physical

and psychological stressors, rather than a variation in the stressors.

The term exposure as ‘acute’ was established on our interpretation

in contrast with other protocols that employed a 21-day model for

chronic stress (21–23). Despite potential ambiguities in

distinguishing between acute, sub-acute, and short-term chronic

stress, this classification is validated by our prior findings (24).
2.3 Eye movement desensitization and
reprocessing stimulation

The EMDR device used in the study facilitated simultaneous

stimulation of up to five rats. It had dimensions of 40 x 75 x 30 cm,
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with individual compartments for rats measuring 40 x 15 x 30 cm

each. These dimensions were selected to allow for a certain level of

space restriction, enabling rats to observe LEDs installed in the box

from any position without complete immobilization. During

experiments, rats were closely monitored to ensure that received

light stimulus.

Upon activation, the EMDR device emitted light stimuli through

20 intermittently flashing LEDs at a frequency of 1Hz (25). These

LEDs sequentially turned on and off from one end of the device to the

other and vice versa controlled by an electrical circuit consisting of an

NE555 timer, 3 resistors of 1 kΩ, and a 100 mF capacitor at 16 V,

regulated by a 10 kΩ potentiometer. The LED strip was positioned

10 cm from each end of the box to ensure visibility from any position.

After completing each day of acute variable stress protocol, rats

from the EMDR and EMDR + AVS groups were placed in the

EMDR box in darkness, away from distractions. We used the same

room and conditions than previously used to induce stress in order

to elicit distressing memories. They were given 5 minutes to

familiarize themselves with the EMDR box for environmental

recognition. Subsequently, the stimulus was applied through two

1-minute sessions, with a 30-minute rest period between sessions.
2.4 Golgi-Cox staining

Immediately after the animals completed the experimental

procedure, they were anesthetized and decapitated. The skulls were
Frontiers in Psychiatry 03
opened, and the brains were quickly removed, cut with a blade into

1 cm thick slabs, and processed using a FD Rapid GolgiStain™ kit

(FD Neuro Technologies, Ellicott City, MD, USA PK401 CAT#

PK401). In each procedure, blocks from all rat groups were put in

the dark at room temperature into a mixture of solutions (provided

by the kit producer) for the next 2 weeks. The tissues were then

transferred into a protectant solution C (0.1 M phosphate buffer,

sucrose, polyvinylpyrrolidone and ethylene glycol) and stored for 48

hours in the dark at 4°C. The tissues were sectioned into 120 mm
slices using a vibratome (Leica, VT1000 S). Each section was

mounted with a protectant solution on gelatin coated microscope

slides. Sections were then dried at room temperature in the dark for a

couple of hours. For the next procedure the slides were collocated into

the staining solution D and E (ammonia and sodium thiosulfate).

Then the tissues were dehydrated in 50%, 75%, 95% and 100%

ethanol and cleared in xylene. The tissues were coverslipped in

Permount™ Mounting Medium. The slides were finally viewed

under a Leica DMi8 microscope (Leica Microsystems Inc,

Bannockburn, IL), Figures 2F, G.
2.5 Dendritic arborization imaging

The neuronal tree arborization imaging was performed on

hippocampus sections encompassed between Bregma 3.72 mm

and Bregma −4.68 mm. Positive Golgi-Cox staining was localized

and photographed in all hippocampal cortex regions. Briefly, distal
FIGURE 1

This shows the main procedures of the experiments carried out. Control group (CONTROL), Variable Stress (AVS), Eye Movement Desensitization
and Reprocessing group + Acute Variable Stress (EMDR + AVS), and an Eye Movement Desensitization and Reprocessing group (EMDR).
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apical and basal dendrites of neurons were imaged using a Leica

DMi8 microscope (Leica Microsystems Inc, Bannockburn, IL) with

a 20× objective lens. Images were acquired with a DFC 7000T Leica

camera, at 1296×972 pixels in the x- and y-axis (0.22 px/mm).

Inclusion criteria for the dendritic quantification involved neurons

that were fully intact, with clearly distinguishable dendritic

structures observable within the designated hippocampal region.

Neurons were also required to exhibit no signs of damage or

pathological abnormalities. Exclusion criteria encompassed

neurons with incomplete dendritic trees due to slicing or

processing artifacts, as well as those showing signs of

degeneration or any form of morphological distortion that could

interfere with accurate measurement. This stringent selection

process was implemented to ensure that only neurons suitable for

accurate and representative analysis were included in the study.
2.6 Morphological quantification analysis

The neurons were processed according to the Sholl

methodology (23, 26, 27). It consisted of image acquisition,

skeletonization, generation of meta-data, quantification, analysis,

and interpretation. The semi-automated tools available through the

NeuronJ plugin (28) to ImageJ (NIH, Bethesda, MD) were used to

define the positions of all neurites. Then, Matlab scripts were

employed to convert the strings of nodes provided by NeuronJ

into SWC format NeuronStudio (29) and then used to define the

pattern of connectivity between neurite segments. Finally, the

Bonfire scripts of Matlab´s software were applied to integrate

neuronal digitization (NeuronJ and NeuronStudio) and extract
Frontiers in Psychiatry 04
Sholl profiles. We analyzed 50 neurons per group and quantified

the number of intersections in concentric rings at 3 mm intervals

(Sholl analysis). Figure 2E illustrate the total number of dendrites

and the total length of dendrites. Figures 2A-D shows a

representative digitalized neuron from each group.
2.7 Statistical analysis

Data measurements were averaged and the significance of the

differences between groups of rats were tested by one-way ANOVA.

All statistical analysis was performed using GraphPad (GraphPad,

version Prism 8). Data were expressed as mean ± SEM. Post hoc test

analysis (Holm–Sıd́ák analysis to correct multiple comparisons)

was employed to explore differences in single time points between

groups. Differences were considered statistically significant at a

value * p < 0.05 (** p < 0.01, *** p < 0.001).
3 Results

3.1 Effects of AVS and EMDR stimulation on
hippocampal dendritic complexity

ANOVA analysis revealed significant differences in Sholl

analysis [F(3, 196) = 20.55; p < 0.0001]. The number of

intersections in the AVS group decreased significantly (126.7 ±

9.01 & 242.3 ± 16.66; p < 0.001), in comparison to the control

group. Also, in the AVS +EMDR group a statistically significant
FIGURE 2

Schematic representation of neuronal dendritic morphology. (A) Control group; (B) Eye Movement Desensitization and Reprocessing group (EMDR);
(C) Acute Variable Stress group (AVS); (D) Acute Variable Stress group + Eye Movement Desensitization and Reprocessing group (AVS +EMDR); (E)
Sholl analysis; (F) Panoramic microscopy photograph of the hippocampus stained with Golgi-cox; (G) Representative microscopic photograph 20X
(1296×972, 0.22 px/mm) of Golgi-cox staining.
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increase was exhibited (126.7 ± 9.01 & 236.3 ± 13.91; p < 0.001), in

contrast to the AVS group, Figure 3.

The quantification of dendritic arborizations in AVS group

revealed a substantial reduction (12.30 ± 1.11 & 20.40 ± 1.67; p <

0.001) Figure 4A, specifically evident in the intermediate (2.44 ± 0.41

& 5.58 ± 0.75; p < 0.0024) Figure 4C, and terminal dendritic segments

(5.88 ± 0.66 & 10.30 ± 0.90; p < 0.0004) Figure 4D, as compared to the

control group [F(3, 196) = 11.27; p < 0.0001]. Notably, in the AVS +

EMDR experimental group, there were no statistically significant

differences in dendritic counts when contrasted with the control

group (22.12 ± 1.332 & 20.40 ± 1.676; p = 0.5931). However, when

analyzed against the AVS group, a marked increase in dendritic count

was observed in the AVS + EMDR group (2.44 ± 0.41 & 7.24 ± 0.85; p

< 0.001), particularly within the intermediate (12.30 ± 1.11 & 22.12 ±

1.33; p < 0.001), and terminal dendritic subpopulations (5.88 ± 0.66 &

12.44 ± 0.94; p < 0.001) Figures 2, 4.

In line with the dendritic count results, when assessing the

overall length of the dendrites [F(3, 196) = 18.86; p < 0.0001], it was

observed that the AVS group demonstrated shorter lengths (934.4 ±

66.04 & 1723 ± 119.1; p < 0.001) Figure 5A, both in the intermediate

(91.70 ± 17.12 & 241.7 ± 35.11; p < 0.0010) Figure 5C, and terminal

segments (478.8 ± 53.94 & 1090 ± 89.77; p < 0.001) Figure 5D.

Similarly, the AVS + EMDR group exhibited significantly longer

dendritic segments (934.4 ± 66.04 & 1727 ± 103.5; p < 0.001) at both

the intermediate (91.70 ± 17.12 & 282.2 ± 33.40; p < 0.001), and

terminal levels (478.8 ± 53.94 & 1033 ± 74.68; p < 0.001), compared

to the AVS group, Figures 2, 5.
4 Discussion

In this experiment, we investigated the impact of visual

stimulation through EMDR on dendritic morphology in the

hippocampal neurons of male rats subjected to acute variable stress.
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First, our data evidenced that exposure to AVS led to significant

dendritic atrophy in hippocampal neurons, evidenced by reductions

in both the number of secondary and tertiary branches and their

dendritic length. We believe that, since the stimulus was acute,

changes were limited to intermediate and terminal dendrites, which

could be reversible. This contrasts with studies of chronic stress over

21 days, where significant damage is reported in the apical neuronal

dendritic morphology of hippocampus, with permanent alterations

in its structure (30). These findings corroborate previous research

demonstrating the detrimental effects of chronic stress on

hippocampal structure and function (31).

The hippocampal formation has consistently been reported as

highly susceptible to damage from various stressors, which was a

primary reason for its inclusion in our experiment. This

susceptibility arises primarily due to the intricate interplay

between stress-related signaling pathways, notably the

hypotha lamic-pi tu i tary-adrenal (HPA) axis (32–34) .

Consequently, the impact of stress on the hippocampus is

regulated by several mediators, influencing brain function across

different spatial and temporal scales. Glucocorticoids, for instance,

are released in response to stress and can have widespread effects on

brain function, often leading to elevated levels of these

hormones (35).

Numerous studies have provided evidence supporting the

detrimental effects of stress on hippocampal structure and

function (36). For instance, chronic stress exposure has been

shown to lead to significant dendritic retraction and synaptic loss

in the CA3 region of the hippocampus in rodents (37). Similarly,

other experiments found that chronic stress induced hippocampal

atrophy and impaired spatial memory performance (33, 38).

Glucocorticoids have the potential to impact plastic remodeling,

particularly when stress persists over extended periods (30, 39).

Specific experimental conditions have been demonstrated to induce

CA3 dendritic retraction, including 21 days of predator stress (40),
FIGURE 3

Morphometry of hippocampal neurons. Illustrates the Sholl analysis with the number of intersections found in 50 neurons per group. Control group;
Eye Movement Desensitization and Reprocessing group (EMDR); Acute Variable Stress group (AVS); Acute Variable Stress group + Eye Movement
Desensitization and Reprocessing group (AVS +EMDR). Data represent the mean ± SEM. *p < 0.05 (**p < 0.01, ***p < 0.001).
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6 days of activity stress (41), 28 days of unpredictable stress (42, 43),

14 days of social defeat stress (44, 45), 10 days of restraint stress

(35), and 21 days of acoustic stress (27). The detrimental effects of

acute variable stress (AVS) described in our experiment are thus

well supported.
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The hippocampus was chosen for our analysis not only due to

its susceptibility to stress-induced damage but also because of its

crucial role in learning and memory processes (46–48). It is well-

established that the hippocampus is closely implicated in the

pathophysiology of trauma and stress-related disorders, such as
B

C

D

A

FIGURE 5

Length dendritic complexity in hippocampal neurons. Control group; Eye Movement Desensitization and Reprocessing group (EMDR); Acute Variable
Stress group (AVS); Acute Variable Stress group + Eye Movement Desensitization and Reprocessing group (AVS +EMDR). Data represent the mean ±
SEM. *p < 0.05 (**p < 0.01, ***p < 0.001).
B

C

D

A

FIGURE 4

Dendritic complexity in hippocampal neurons. Control group; Eye Movement Desensitization and Reprocessing group (EMDR); Acute Variable Stress
group (AVS); Acute Variable Stress group + Eye Movement Desensitization and Reprocessing group (AVS +EMDR). Data represent the mean ± SEM.
*p < 0.05 (**p < 0.01, ***p < 0.001).
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post-traumatic stress disorder (PTSD) and major depressive

disorder (MDD). Individuals with PTSD often exhibit

hippocampal volume reductions and alterations in hippocampal

function, particularly in relation to memory encoding and retrieval

processes (49, 50). Similarly, structural and functional

abnormalities in the hippocampus have been observed in

individuals with MDD. There is evidence that stress via the

hypothalamic-pituitary-adrenal axis can result in elevated

glucocorticoid levels and binding with glucocorticoid receptors in

the hippocampus. As a result, neuronal atrophy occurs (51, 52).

These effects have been reported as a smaller hippocampus

associated with decreased brain activity, resulting in reduced gray

matter volume, and reduced functional activity leading to negative

emotions and impaired cognitive processing (53–55). These suggest

a bidirectional relationship between hippocampal dysfunction and

depressive symptoms (56). Therefore, our model closely mimics

conditions where stress and cognition, such as learning and

memory, interact to shape hippocampal structure and validate it

to explore preventive treatments. As exposed before, EMDR

represents a promis ing intervent ion for trauma and

distressing memories.

In this context, we found that the EMDR-treated group exposed

to the same stress condition did not exhibit dendritic retraction,

maintaining identical levels of dendritic morphology as the control

group. Furthermore, the group of rats receiving only EMDR

stimulation showed an increase in both the number of primary

dendritic branches and their length. Therefore, visual EMDR

stimulation appears to mitigate the effects of stress on the

dendritic architecture of hippocampal neurons.

EMDR stimulation has emerged as a therapeutic intervention

specifically designed to address traumatic memories and associated

stress symptoms, demonstrating efficacy in facilitating the

processing of traumatic events (14, 57, 58). Despite its clinical

success, the precise neurobiological mechanisms underlying trauma

reprocessing through EMDR stimulation remain elusive. One

prevailing hypothesis posits that bilateral stimulation may induce

alterations in cognitive processing centers within the brain,

facilitating the establishment of connections between past adverse

experiences and responses to current non-traumatic stimuli (59).

This bilateral stimulation is believed to elicit a relaxation response

and trigger physiological reactions that, when integrated with stored

information about prior adverse experiences, generate novel

information in a functional manner (59–61). Despite various

proposed theories, a unified understanding of EMDR therapy

mechanisms remains lacking due to insufficient evidence.

Recently, Baek and colleagues conducted a groundbreaking

study utilizing a mouse model to investigate the neurobiological

mechanisms underlying EMDR therapy for the first time. In their

research, animals conditioned to fear responses through sound

paired with unpleasant electrical shocks exhibited reduced fear of

the traumatic context following EMDR therapy. This reduction in

fear was accompanied by a decrease in neuronal excitability within

circuits involving the basolateral amygdala (62), providing

pioneering evidence of the neurobiological effects of EMDR in a

murine model. Furthermore, Mattera and colleagues propose a

neural network model in PTSD and EMDR therapy that involves
Frontiers in Psychiatry 07
four areas representing the role of sensory cortices, the

hippocampus, the amygdala, and the PFC (63). Moreover, clinical

studies in humans have demonstrated the effectiveness of EMDR

therapy in treating various populations, including infants with post-

traumatic stress symptoms (64, 65), adults with post-traumatic

stress disorder (66, 67), and patients resistant to depression

treatment (68). A recent study reporting decreased levels of

salivary cortisol in EMDR responder PTSD patients suggests that

EMDR therapy may positively regulate cortisol levels and for this

mechanism mitigate the impact of stress on hippocampal neurons

(69). Also, it has been reported that the rise in limbic activity,

characterized by heightened activation of the amygdala during the

handling of negative emotional stimuli, coincides with a noted

decline in activation within dorsolateral prefrontal brain regions

associated with cognitive control mechanisms (70). However,

additional experiments are warranted to investigate this hypothesis.

Furthermore, our findings represent the first histological

experiment reporting the effects of EMDR therapy in a rat model.

Our novel findings provide promising insights into conditions related

to stress and trauma in humans. Demonstrating the impact of EMDR

on neuronal structures within a controlled animal model allows us to

propose potential neurobiological pathways through which EMDR

could have therapeutic effects in humans. This discovery opens new

avenues for future research aimed at exploring the neurobiological

mechanisms of EMDR therapy. Nonetheless, must be approached

with caution, acknowledging the gap between animal models and

human clinical realities. These limitations highlight the need for

further research to bridge these gaps and enhance the translational

potential of our findings.

Future research will aim to incorporate hormonal and

behavioral measures, offering a more comprehensive view of the

stress response and the therapeutic potential of EMDR.
5 Conclusions

Our experiment provides valuable insights into how EMDR

stimulation might mitigate the effects of intense stress. We

demonstrated that dendritic debranching/remodeling in

hippocampus represents a core target for the benefits of EMDR.

These findings may offer neurobiological insights into the therapeutic

advantages of any procedure that incorporates EMDR stimulation.
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