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This study addresses the pervasive and debilitating impact of Alzheimer’s disease (AD)

on individuals and society, emphasizing the crucial need for timely diagnosis. We

present a multistage convolutional neural network (CNN)-based framework for AD

detection and sub-classification using brainmagnetic resonance imaging (MRI). After

preprocessing, a 26-layer CNNmodel was designed to differentiate between healthy

individuals and patients with dementia. After detecting dementia, the 26-layer CNN

model was reutilized using the concept of transfer learning to further subclassify

dementia into mild, moderate, and severe dementia. Leveraging the frozen weights

of the developed CNN on correlated medical images facilitated the transfer learning

process for sub-classifying dementia classes. An online AD dataset is used to verify

the performance of the proposedmultistage CNN-based framework. The proposed

approach yielded a noteworthy accuracy of 98.24% in identifying dementia classes,

whereas it achieved 99.70% accuracy in dementia subclassification. Another dataset

was used to further validate the proposed framework, resulting in 100%

performance. Comparative evaluations against pre-trained models and the current

literature were also conducted, highlighting the usefulness and superiority of the

proposed framework and presenting it as a robust and effective AD detection and

subclassification method.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that causes

irreversible cognitive dysfunction, amnesia, and progressive loss of brain function,

eventually resulting in an inability to function independently in daily life (1). AD is the

most prevalent type of dementia and requires a high level of medical attention. Global
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projections anticipate a significant increase in the number of

individuals affected by AD, with an estimated 152 million affected

by 2050 compared to the current 47 million. This poses challenges

across the economic, medical, and societal domains (2). Every 3

seconds, one person worldwide is affected by dementia, with AD

accounting for 60% of all dementia cases (3). The phases of

dementia associated with AD can be broadly divided into the

following categories: i) mild cognitive impairment (MCI), ii) mild

dementia, iii) moderate dementia, and iv) severe dementia. MCI,

which is often characterized by memory loss with increasing age,

can lead to dementia in certain individuals. Individuals with mild

dementia occasionally struggle with cognitive deficits that affect

their daily activities. The symptoms include disorientation, memory

loss, uncertainty, personality changes, and difficulties in performing

daily chores. Moderate dementia significantly complicates daily life

and requires greater assistance and care. These symptoms are more

prominent and resemble those observed in patients with mild

dementia. Individuals may require assistance with basic tasks,

such as brushing their hair, and experience significant personality

changes, including sudden onset of irritation or anxiety. Sleep

disturbances were also frequent. Patients with severe dementia

experience a marked decline in their condition as symptoms

progress. Loss of communication skills may necessitate full-time

care. The inability to perform basic activities, such as sitting in a

chair or holding one’s head up, and loss of bladder control are

characteristics of this stage.

Currently, there are no viable treatments to cure or decrease the

progression of AD, and a complete understanding of its

pathogenesis remains elusive. MCI is the transitional stage

between AD and normal cognitive aging. Individuals with MCI

are more likely to develop AD than those with age-matched healthy

cognition (4). Preventive strategies to limit disease progression as

well as efficient treatment and care procedures depend on the early

detection of AD.

Medical history, physical examination, and further diagnostic

tests such as neurological screenings that examine reflexes,

coordination, and muscle tone are all common components of

AD diagnostic evaluation (5). Magnetic resonance imaging (MRI),

computed tomography (CT), and positron emission tomography

(PET) are important imaging techniques for the diagnosis of AD. In

particular, fluid-attenuated inversion recovery sequences in MRI

are used to suppress the cerebrospinal fluid, allowing for a more

thorough evaluation of anatomical structures and examination of

gliotic alterations (6, 7). The advantages of MRI include improved

flexibility, clear tissue contrast, lack of ionizing radiation, and the

capacity to provide insightful information regarding the structure of

the human brain (8). Developing an improved computer-aided

diagnostic system capable of analyzing MRI images to determine

whether individuals have AD or are in good health is crucial.

A wide range of machine-learning methodologies that integrate

neuroimaging have improved the accuracy of identifying distinct

dementia subtypes (9). Conventional machine-learning methods

such as support vector machine (SVM) (10), random forest (11),

and linear program boosting algorithms (12) have been used to detect
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AD using MRI (13). Furthermore, the variants of SVM and the

ensemble of classifiers were also proposed. However, conventional

machine-learning approaches frequently require the manual selection

of predefined brain areas of interest based on established MRI

markers linked to AD. Due to an inadequate understanding of

definitive MRI biomarkers for AD, predetermined regions are likely

unable to include all the information required to unravel the

complexities of AD. In addition to being labor-intensive and time-

consuming, manual selection also has the potential for subjective

errors. Likewise, when it comes to choosing ensemble methods,

managing computational expenses poses a significant challenge.

In contrast, deep-learning networks adopt a more advanced

approach, including methods such as convolutional neural

networks (CNNs), deep belief networks, recurrent neural

networks, long-short term memory, stacked autoencoders, and

restricted Boltzmann machine (14–17). These techniques combine

low-level features in the data to automatically create a higher-level,

more abstract representation of a learning system (18). Because of

high image classification accuracy, deep learning state-of-the-art

techniques are preferred over conventional machine-learning

methods. In general, CNN and its variants are the most popular

deep-learning algorithms due to their better performance in

identifying AD. CNN models are widely used in segmentation,

object recognition, and classification (19–21). This popularity can

be attributed to several benefits including leveraging the spatial

information of neighboring pixels, direct acceptance of image data

as input, and efficient reduction of model parameters by utilizing

weight-sharing, subsampling, and local receptive fields. A CNN

trained using MRI slices can automatically extract features from

images, thereby eliminating the requirement for manual feature

selection during the learning phase (22). Furthermore, they also

display higher generalization skills when dealing with scans from

various sources or scanners.

Several CNN models have recently been proposed as diagnostic

tools (23). Lu et al. (24) presented a multimodal CNN model using

MRI and PET. Their proposed framework yielded an accuracy of

82.4% for patients with MCI who were subsequently diagnosed with

AD. The model achieved a classification accuracy of 86.3% for

individuals without dementia. In another study (25), accuracies of

90.05 and 85.55% were achieved for different datasets using CNN-

based features and softmax as classifiers for binary classification

(normal controls and AD). A pretrained AlexNet CNN model was

used to retrieve deep features, and conventional machine-learning

methods were used as classifiers (26). The results showed that the

proposed methodology outperformed other handcrafted features

with an accuracy of 99.21%. A VGG-16-based CNNmodel was used

to classify the MRI slices (27). The model achieved a high accuracy

of 95.73% for tertiary classification problems (early MCI, normal

control, and late MCI). Pan et al. (28) hybridized ensemble learning

and CNN models to classify brain MRI for various classification

problems. Their models exhibited reasonable classification

performance. Murugan et al. (29) presented the DEMNET model

to classify various stages of dementia using MRI. They used the

synthetic minority oversampling technique (SMOTE) approach to
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resolve class imbalance issues. Their model achieved a high

accuracy of 95.23% for four classes. Although DEMNET shows

high classification performance, the accuracy of an augmented

dataset is not considered reliable for real-time applications.

Recently, Fathi et al. (30) introduced a weighted probability-based

ensemble method to combine six 2D-CNN architectures and obtain

a high classification rate of 93.88 for four classes. Furthermore, they

compared different ensemble methods and showed that the

ensemble methods yielded better results than individual

architectures. Kang et al. (31) proposed a three-round learning

strategy based on a 3D deep convolutional generative adversarial

network model and obtained an accuracy of 92.8% for two classes.

To improve the prediction performance, numerous studies have

recently included attention models. The attention models focus on

the most informative image regions. By combining two distinct

attention modules (i.e., enhanced non-local attention and

coordinate attention), Illakiya et al. (32) presented an adaptive

hybrid attention network to enhance the performance of the

DenseNet architecture, resulting in a higher classification

accuracy of 98.53%. Similarly, in another study (33), an integrated

model consisting of a depthwise group shuffle, global context

network, hybrid multi-focus attention block, and EfficientNEt-B0

was developed to improve the prediction performance of MCI

classification. Zhang et al. (34) developed an end-to-end 3D CNN

framework based on the ResNet architecture, which employs multi-

modality brain images to perform AD diagnostic and MCI

prediction tasks by integrating 3D attention processes with multi-

layer feature fusion algorithms. They showed that their multimodal

model outperformed a single modality in predicting AD and MCI,

with superior results of 6.37% and 3.51%, respectively. Some studies

have also combined the transformer and attention networks. Hu

et al. (35) designed a classifier model by combining a CNN with a

swine transformer. In addition, they added a shift window attention

mechanism to the transformer to improve the feature extraction.

They achieved an accuracy of 93.5% for the two classes using their

proposed model. Illakiya et al. (36) utilized a swine transformer, a

dimension-centric proximity-aware attention network, and an age

deviation factor to improve feature extraction from brain MRI

images. The proposed network improves the classification results by

utilizing a novel feature fusion strategy that incorporates global,

local, and proximal characteristics, as well as dimensional

dependencies. The literature describes various methods for

classifying AD using conventional machine-learning and deep-

learning models. However, there are challenges related to the

large number of model parameters, training time, and high

performance without augmentation in multiclass AD classification.

To address these issues, the primary contributions and steps of

this study are outlined below:
Fron
• We hypothesized that leveraging the frozen weights of

the developed CNN on correlated medical images

facilitated the transfer learning process for sub-classifying

dementia classes.

• To prove the hypothesis, a lightweight CNN model was

developed in stage 1 to detect dementia using MRI images

after preprocessing.
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• In stage 2, a new model was built by reutilizing the frozen

weight of the developed model for further classification of

dementia into mild, moderate, and very mild dementia

using transfer learning.

• Various online AD datasets were used to validate the

proposed model.

• Various pre-trained models were trained using the same

parameters and datasets for a fair comparison.
The results were compared with those reported in the literature.
2 Materials and methods

2.1 Proposed framework

The proposed CNN-based framework is depicted in Figure 1. In

the proposed framework, dementia detection and sub-classification

were divided into two stages (i.e., stage 1 and stage 2). In stage 1, the

brain MRI scans were classified into two classes (healthy and

dementia) using a proposed 26-layer CNN model (presented in

Section 2.4). In stage 2, transfer learning was used to reutilize the

frozen weights of the 26-layer CNN model (i.e., developed in stage

1) to fine-tune the new transfer-learned model by replacing the last

three layers of the developed CNN for dementia subclassification

(mild, moderate, and very mild dementia).
2.2 Datasets

Two different datasets (the Alzheimer’s dataset (four classes of

images) and ADNI_Extracted_Axial) were used to validate the

proposed approach. Both datasets are publicly available (https://

www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-

images and https://www.kaggle.com/datasets/katalniraj/adni-

extracted-axial; accessed November 13, 2023). The specifications

of this dataset are listed in Table 1.
2.3 Pre-processing

In CNN applications, irrelevant information in an image

can adversely affect the subsequent image-processing steps.

Preprocessing is imperative to address these issues and ensure

the accuracy of subsequent steps in image processing. Therefore,

a cropping and zero-center approach was applied to remove

unwanted information and normalization (37). After preprocessing

and normalization of the dataset, the images were input into a

developed CNN, which identified the AD-affected area by

extracting discriminating features.
2.4 Design of CNN for AD Detection

CNNs are a type of deep-learning model developed specifically

for analyzing structured grid data, such as images. Their ability to
frontiersin.org
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learn hierarchical feature representations autonomously has

revolutionized computer vision tasks. CNNs comprise layers that

perform convolutional operations to capture local patterns and

pooling operations to reduce spatial dimensions. Weight sharing

characterizes these networks, allowing them to recognize

comparable features across the input space. Convolutional layers

are often followed by fully connected layers to achieve a high level of

feature integration and classification. CNNs excel at image

identification, object detection, and segmentation and

demonstrate superior performance across various domains. The

ability of CNNs to automatically extract significant characteristics
Frontiers in Psychiatry 04
from raw data makes them valuable tools for complicated pattern

detection, leading to the development of artificial intelligence.

In this study, a 26-layer CNN model was developed from

scratch to detect dementia in stage 1. This architecture comprised

five blocks of convolutional layers, batch normalization, ReLU

activation functions, and max-pooling layers. Fully connected

layers and a softmax output layer were used for the classification.

The model uses dropout for regularization, and the final output

layer employs cross-entropy loss. Complete information regarding

the designed CNN model is presented in Table 2. The details of the

layers are presented in the subsequent sections.
FIGURE 1

CNN-based proposed framework for dementia detection and subclassification.
TABLE 1 Details of various online available datasets.

Dataset Classification Subclassification MRI Slices No. of Samples

Alzheimer’s
Dataset

Healthy Lack of Dementia 2560

Dementia Mild Dementia 717

(Continued)
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2.4.1 Input layer
The input layer of the developed model represents

the initial layer and accepts normalized images. This layer

sets the input size and normalization strategy for the

subsequent processing.
Frontiers in Psychiatry 05
2.4.2 Convolutional layer
The foundation of any CNN model is comprised of

convolutional layers. Convolutional layers are the core layers

of any CNN model and are responsible for the extensive

computational work. The input image is passed through this layer
TABLE 1 Continued

Dataset Classification Subclassification MRI Slices No. of Samples

Moderate Dementia 52

Very Mild Dementia 1792

ADNI_Extracted
_Axial

Healthy Common Normal 1440

Dementia

Alzheimer’s Disease 1124

Mild Cognitive Impairment 2590
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to produce a feature map or response by convolving it with weight

filters and adding bias values. Subsequently, the feature response is

passed through the following layers. Mathematically, convolution

involves taking the element-wise product of the filter and a patch of

the input and summing up all these products. The input (x), can be

expressed as Equation (1).

y =oW ∗ x + bi (1)

whereW and bi are the filter and bias of each filter, respectively.

2.4.3 Batch normalization
Batch normalization was applied to the output of the

convolutional layer. This layer normalizes the activation and

enhances convergence and training stability. This introduced

learnable parameters for scaling and shifting. x is assumed to be

the convolutional layer output. Batch normalization normalizes x

across batch dimensions using Equation (2) (38):

x̂ =
x − mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2+ ∈

p (2)

where m is the mean, s is the variance, and ∈ is a

small constant used to avoid division by zero. It scales and

shifts the normalized output y = a x̂ + b , where a and b are

learnable parameters.

2.4.4 Rectified linear unit activation
The rectified linear unit (ReLU) activation function was applied

element-wise. ReLUs introduce nonlinearity, which allows the

model to capture more complex data patterns. If the input value

is positive, the ReLU activation function immediately outputs the

value. If not positive, it outputs zero. This can be mathematically

expressed as Equation (3) (29):

f (x) = max (0, x) (3)
2.4.5 Max pooling
Pooling layers were used between the convolutional layers to

reduce the representation in the spatial domain and computation

space. Max pooling helps retain essential information while

reducing the computational complexity by reducing the spatial

dimensions. Max pooling was calculated using Equation (4) (29):

Max Pooling = Floor
Input x − Pooling window size

stride
+ 1

� �
(4)

2.4.6 Fully connected layer
The fully connected layer is densely connected. It captures high-

level features from convolutional layers and prepares a classification

model. Mathematically, this can be expressed as Equation (5).

y = W ∗ x + bi (5)

2.4.7 Dropout layer
Dropout prevents overfitting by randomly deactivating neurons

during training, enhancing model generalization.
TABLE 2 Details of the designed CNN model for AD detection.

Layer
No.

Type
of Layer

Properties

1 Image Input 227×227×1 images with
‘zerocenter’ normalization

2 2-
D Convolution

32 3×3×1 convolutions with stride [2 2] and
padding [0 0 0 0]

3 Batch
Normalization

Batch normalization with 32 channels

4 ReLU ReLU

5 2-D
Max Pooling

2×2 max pooling with stride [2 2] and padding
[0 0 0 0]

6 2-
D Convolution

32 3×3×32 convolutions with stride [1 1] and
padding [2 2 2 2]

7 Batch
Normalization

Batch normalization with 32 channels

8 ReLU ReLU

9 2-D
Max Pooling

2×2 max pooling with stride [2 2] and padding
[0 0 0 0]

10 Batch
Normalization

Batch normalization with 32 channels

11 2-
D Convolution

64 3×3×32 convolutions with stride [1 1] and
padding [2 2 2 2]

12 ReLU ReLU

13 2-D
Max Pooling

2×2 max pooling with stride [2 2] and padding
[0 0 0 0]

14 2-
D Convolution

128 3×3×64 convolutions with stride [1 1] and
padding [2 2 2 2]

15 Batch
Normalization

Batch normalization with 128 channels

16 ReLU ReLU

17 2-D
Max Pooling

2×2 max pooling with stride [2 2] and padding
[0 0 0 0]

18 2-
D Convolution

256 3×3×128 convolutions with stride [1 1] and
padding [2 2 2 2]

19 Batch
Normalization

Batch normalization with 256 channels

20 ReLU ReLU

21 Batch
Normalization

Batch normalization with 256 channels

22 Fully
Connected

1024 fully connected layer

23 Dropout 30% dropout

24 Fully
Connected

2 fully connected layer

25 Softmax –

26 Classification
Output

–

CNN, convolutional neural network; AD, Alzheimer’s disease; ReLU, rectified linear
unit activation.
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2.4.8 Softmax
Softmax applies an activation function to convert logs into class

probabilities. Softmax ensures that the sum of probabilities for all

classes is one.

2.4.9 Classification output
It uses cross-entropy loss, specifically ‘crossentropyex’ in

MATLAB, for model training. Cross-entropy measures the

dissimilarity between predicted and actual class probabilities as

Equation (6).

H(y, p) =o
n

i=1
pi · log (yi) (6)

where H denotes the cross-entropy loss, yi denotes the

predicted probability distribution, and pi denotes the true

probability distribution.
2.5 Design of transfer learned CNN
for subclassification

Transfer learning, a machine-learning technique, leverages pre-

existing models to expedite learning in new tasks. That is, the model

developed for a task is reused as the starting point for the model for

a second task. This approach is particularly useful when data are

scarce. The main concept of transfer learning is to leverage the

features learned from tasks with a large amount of available data to

improve the performance of tasks with less data. This is based on

the idea that tasks share commonalities that can be utilized to

improve performance. Assume that a domain is composed of two

elements (39, 40), as shown in Equation (7).

Am = Y + prob(y) (7)

In Equation (7), Y and prob(y) denote the feature space and

marginal probability, respectively. Suppose a task has two

components:

Lr = X + a (8)

In Equation (8), X and a symbolize the label space and the

objective function, respectively. Here, As
m and Lsr represent the

source domain and task, respectively, and At
m and Ltr represent

the target domain and task, respectively. The goal of transfer

learning is to utilize knowledge from the source domain to

understand the conditional probability in the target domain.

In stage 2 of this study, transfer learning is applied to the 26-layer

CNN model that was developed in the first stage (section 2.4).

Reutilizing the frozen weights of the 26-layer CNN model, the model

was retrained by replacing the last three layers (i.e., fully connected,

softmax, and classification layers) for dementia subclassification (mild,

moderate, and very mild dementia). Figure 2 shows the concept of

knowledge sharing from dementia to dementia subclassification.

3 Results

MATLAB 2023a was used to perform all simulations and

analyses on a personal computer with the following specifications:
Frontiers in Psychiatry 07
Core i7, 12th Generation, 32 GB RAM, NVIDIA GeForce RTX

3050, 1 TB SSD, and 64-bit Windows 11 operating system. The

dataset was randomly divided into 80 and 20 ratios for model

training and testing, respectively. The images used for model testing

were not used to train the CNN. The following initial parameters

were utilized: 100 Epochs, 0.9 momentum, 128 mini batch-size, and

0.001 learning rate. The stochastic gradient descent with

momentum (SGDM) solver was utilized to train and test the model.

First, various publicly available pre-trained CNNs, such as

ResNet50, Inception-v3, GoogleNet, EfficientNet-b0, and

DenseNet-201, were used to categorize the brain MRI dataset.

Subsequently, the proposed CNN model was trained to classify

the brain MRI scans using the same parameters. Table 3 shows a

performance comparison of various pre-trained models with the

developed 26-layer CNN; and the confusion matrix of all models is

presented in Figure 3, which also shows the true positive rate (TPR),

false negative rate (FNR), positive predictive value (PPV), and false

discovery rate (FDR).

After thoroughly analyzing the results presented in Table 3 and

Figure 3, it was found that the developed 26-layer CNN model has

the best classification rate, with minimal training time and a high

true positive rate for each class compared to all other pre-trained

models. The learning curves of the various pre-trained models with

the developed multistage 26-layer CNN are presented in Figure 4.

After a comprehensive analysis of the results presented in

Figure 4A, it was found that DenseNet-201 was 100% trained in

fewer epochs than ResNet50, Inception-v3, GoogleNet,

EfficientNet-b0, and 26-layer CNN; it took approximately 5

epochs to stabilize the results. DenseNet-201 also demonstrates

the highest validation accuracy of 93.93% among all pre-trained

models for dementia classification (Figure 4B). In contrast,

GoogleNet took almost 32 epochs to train the model and also

showed a reasonable validation performance (92.57%) than the

remaining pre-trained models. The developed 26-layer CNN took

almost 47 epochs to reach 100% training accuracy but had the best

validation accuracy of 97.45% for dementia classification.

Furthermore, the time consumed for the training of the

developed 26-layer CNN was only 8 min 57 s for 100 epochs,

which was the fastest among all methods. It validates the robustness

and high classification performance of the developed CNN model

compared to other pre-trained models.

To further enhance the dementia detection rate and

subclassification performance, the proposed framework is

divided into two stages. The performance of the proposed

framework for both stages is presented in Table 4. Figures 5A, B

show the confusion matrix for dementia detection and sub-

classification, respectively.

After carefully evaluating the result presented in Table 4, it was

found that the proposed 2-stage approach performs efficiently to

differentiate between healthy and dementia persons with a high

classification rate of 98.24% with only 6 min 42 s training time.

The comprehensive performance of the model is presented in

Figure 5 using a confusion matrix. The proposed model only

misclassified 9 samples of each class (Figure 5A), resulting in a

high true positive rate of 98.2% for each class. After that, a new

transfer-learned model was used for the subclassification of the
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dementia class and yielded a high accuracy of 99.7%, with only one

sample of mild dementia misclassified, as shown in Figure 5B. The

learning curves of the dementia detection and subclassification are

shown in Figures 6A, B, respectively.

To further validate the performance of the proposed 2-stage

approach against overfitting, the results of 10-fold cross-validation

are presented in Figure 7.

Furthermore, other data were also used to validate the approach’s

reliability, adaptability, and accuracy. The results of dementia detection

and subclassification are presented in Figures 8A, B, respectively.
4 Discussion

This study investigated the application of CNNs to identify AD

and differentiate between the different stages of dementia by

analyzing MRI. Recently, there has been an increase in the use of
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computer-aided systems for early AD detection, using both

machine learning and CNNs. This study contributes to the

development of an automated AD detection system for improving

the operating efficiency of medical centers.

The ablation study was performed for the layers selection of

developed CNN. The effect of changing the number of layers (from

22 to 34 layers) is reported in Table 5. All models attain 100%

training accuracy showing that the deep network models match the

training data closely. However, 26-layer CNN yielded the less

training loss. Furthermore, the 26-layer CNN model also gives

higher validation accuracy and lower validation loss as compared to

other models. This shows that the 26-layer model seems to provide

a greater generalization of the unknown validation data. The 26-

layer CNN model was chosen because it appears to achieve an

optimal balance between model complexity and generalization at

this depth. Too few or too many layers may result in suboptimal

performance on validation data.
FIGURE 2

The concept of knowledge sharing.
TABLE 3 Performance comparison of various CNN models for Alzheimer’s Dataset.

Parameters

CNN

ResNet50 Inception-v3 GoogleNet EfficientNet-b0 DenseNet-201
Developed

26-layer CNN

Training
Accuracy (%)

100 100 100 100 100 100

Training Loss 1.9 ×10-04 4.3 ×10-04 3.6 ×10-04 2.8 ×10-03 1.4 ×10-04 1.8 ×10-04

Validation
Accuracy (%)

88.95 84.84 92.57 90.32 93.93 97.45

Validation Loss 0.3938 0.5598 0.3584 0.3030 0.2152 0.07675

Training Time
299 min
40 s

435 min
47 s

40 min
30 s

329 min
45 s

1062 min
20 s

8 min
53 s
CNN, convolutional neural network.
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A B

D

E F

C

FIGURE 3

Confusion matrix of various CNN models for Alzheimer’s Dataset. (A) ResNet50, (B) Inception-v3, (C) GoogleNet, (D) EfficientNet-b0, (E) DenseNet-
201, and (F) Developed 26-layer CNN. MID, mild dementia; MOD, moderate dementia; ND, non-dementia; VMD, very mild dementia; CNN
convolutional neural networks.
A B

DC

FIGURE 4

Learning curves of various convolutional neural networks. (A, C) shows the training accuracy and loss curves, (B, D) of training and depict the
validation accuracy and loss curves.
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The developed 26-layer CNN model achieved an impressive

classification accuracy of 97.45% for directly categorizing MRI scans

into four classes, demonstrating superior performance with

minimal training time compared to several pre-trained CNNs

(Table 3). DenseNet-201 yielded better results than the other pre-

trained networks. In the validation, the proposed model correctly

classified 998 of the 1023 images (see Figure 3F). The TPR of all

classes was higher than 95%, with a very low FDR. All pre-trained

models converged faster during the training, indicating that transfer

learning facilitates fast convergence in the learning of pre-trained

models (see Figures 4A, C).

The proposed technique for advancing diagnostic capabilities

comprises two key stages. First (i.e., stage 1), a 26-layer CNN model

was developed to detect dementia using MRI slices. Next (i.e., stage

2), the weights of the developed model were reutilized to subclassify
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the dementia class. In the first stage, to detect only dementia, the

results showed that the proposed model yielded a high accuracy of

98.24% for binary classification, with a TPR of more than 98% for

both classes (see Figure 5A). In the second stage, the developed

CNN model was reused using the transfer learning concept for

dementia subclassification. The results showed that only one sample

out of 512 samples was misclassified, and the model produced a

high classification rate of 99.7%, with a very high TPR and low FDR

(see Figure 5B). Furthermore, fast convergence was observed as a

result of transfer learning (Figure 6B). These results support our

hypothesis that the frozen weight of a trained model from correlated

images benefits transfer learning and results in a high classification

performance. To further evaluate the performance of the model

against data leakage issues, the authors have further performed 10-

fold cross-validation. The proposed multistage framework shows

almost similar high classification accuracy, further validating the

effectiveness of the proposed approach (Figure 7). Another ADNI

MRI scan dataset was used to validate the efficacy of the proposed

framework. The framework validated the 100% classification rate of

the developed CNN for dementia detection and subclassification

(Figure 8). Table 6 compares the proposed multistage framework

with those of recent studies.

After deeply analyzing the results presented in Table 6, it can be

concluded that the proposed CNN-based framework has the highest

classification rate compared to others. These outcomes underscore

the efficacy of the proposed model in efficiently and accurately

handling the classification task, emphasizing its potential as a robust

solution in AD detection and subclassification.

A single-modality dataset was used to evaluate the performance

of the proposed network. In the future, multiple-modality datasets

may be utilized to improve the classification performance for AD
A

B

FIGURE 5

Confusion matrices using the proposed 2-stage framework. (A) Dementia detection and (B) dementia subclassification.
TABLE 4 Performance of proposed CNN-based framework for dementia
detection and subclassification.

Parameters Developed 26-
layer CNN for

Binary
Classification

Developed Transfer
Learned 26-layer CNN
for Subclassification

Training
Accuracy (%)

100 100

Training Loss 2.2 ×10-04 5.9 ×10-04

Validation
Accuracy (%)

98.24 99.70

Validation Loss 0.0553 0.0134

Training Time 6 min 42 s 3 min 9 s
CNN, convolutional neural network.
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diagnosis. In addition, this study proposes a simple architecture;

however, more intuitive architectures, such as transformers or the

incorporation of attention networks, may be tested in the future.

Confounding variables, such as the independent variable (imaging

data in this case) and the dependent variable (presence or absence of

AD), should be considered in designing AD studies. These

confounding variables can introduce spurious correlations,

leading to reduced AD identification accuracy. The key clinical

confounding variables to be considered include age, education,

vascular health, genetic factors, and lifestyle. For instance, a CNN

model trained on an older-skewed dataset might learn age-related

features instead of AD-specific ones, resulting in misdiagnosis for

younger AD patients and overdiagnosis in healthy older adults.

Other important confounding variables related to the imaging data

of AD identification include data collection, preprocessing,

model designing, and the evaluation of model performance for
Frontiers in Psychiatry 11
variables unseen during training. Image quality can be affected and

data inconsistencies introduced by differences in acquisition

paradigms, spatial resolution, and magnetic field strength.

Furthermore, inadequate preprocessing can result in artifacts,

spatial distortions, and data inconsistencies, all of which can have

an impact on the accuracy and reliability of the study. Model

architecture, hyperparameter tuning, and regularization

techniques are also important in reducing confounding effects

and maximizing model performance. Finally, the evaluation of the

model must be done by employing a rigorous validation process.

For example, k-fold cross-validation can assist in reducing the

impact of data variability and produce more reliable estimates of

model performance. Evaluation criteria should also be carefully

chosen to take into consideration confounding variables unique to

AD identification tasks, such as class imbalance and susceptibility to

false positives.
A

B

FIGURE 6

Training and loss curves. (A) for dementia detection and (B) for dementia subclassification. MID, mild dementia; MOD, moderate dementia; VMD,
very mild dementia.
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5 Conclusion

AD is a common and devastating neurological condition that

substantially reduces the quality of life in affected individuals. These

effects affect not only patients but also their families and society.
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Timely diagnosis is critical to adequately control AD and reduce its

socioeconomic consequences. This paper proposes a multistage

CNN-based AD detection and subclassification framework. A 26-

layer CNN model was developed from scratch using MRI images to

detect dementia. The model yielded a high accuracy of 98.24% in
A

B

FIGURE 7

Confusion matrices using 10-fold cross-validation for the proposed 2-stage framework. (A) Dementia detection and (B) dementia subclassification.
AD, Alzheimer’s disease; CI, mild cognitive impairment.
A

B

FIGURE 8

Confusion matrices using the proposed 2-stage framework for another dataset. (A) Dementia detection and (B) dementia subclassification. AD,
Alzheimer’s disease; CI, mild cognitive impairment.
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dementia detection using an online AD dataset. Subsequently, the

developed CNN model was reutilized for the subclassification of

dementia classes using transfer learning. This yielded a high

accuracy rate of 99.70%, with only one misclassified sample.

Moreover, another AD dataset was used to validate the model,

and the results showed a 100% performance rate. The proposed

framework was also compared with various pre-trained models and

the latest literature to prove the effectiveness and superiority of the

proposed model.
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et al. Convolutional neural networks for classification of alzheimer's disease: overview
and reproducible evaluation. Med image Anal. (2020) 63:101694. doi: 10.1016/
j.media.2020.101694

24. Lu D, Popuri K, Ding GW, Balachandar R, Beg MF, Weiner M, et al. Multimodal
and multiscale deep neural networks for the early diagnosis of alzheimer’s disease using
structural mr and fdg-pet images. Sci Rep. (2018) 8:5697. doi: 10.1038/s41598-018-
22871-z

25. Ahmed S, Choi KY, Lee JJ, Kim BC, Kwon GR, Lee KH, et al. Ensembles of
patch-based classifiers for diagnosis of alzheimer diseases. IEEE Access. (2019) 7:73373–
83. doi: 10.1109/ACCESS.2019.2920011

26. Nawaz H, Maqsood M, Afzal S, Aadil F, Mehmood I, Rho S. A deep feature-
based real-time system for alzheimer disease stage detection. Multimedia Tools Appl.
(2021) 80:35789–807. doi: 10.1007/s11042-020-09087-y

27. Jain R, Jain N, Aggarwal A, Hemanth DJ. Convolutional neural network based
alzheimer’s disease classification from magnetic resonance brain images. Cogn Syst Res.
(2019) 57:147–59. doi: 10.1016/j.cogsys.2018.12.015

28. Pan D, Zeng A, Jia L, Huang Y, Frizzell T, Song X. Early detection of alzheimer’s
disease using magnetic resonance imaging: A novel approach combining convolutional
neural networks and ensemble learning. Front Neurosci. (2020) 14:259. doi: 10.3389/
fnins.2020.00259

29. Murugan S, Venkatesan C, Sumithra MG, Gao XZ, Elakkiya B, Akila M, et al.
Demnet: A deep learning model for early diagnosis of alzheimer diseases and dementia
from mr images. IEEE Access. (2021) 9:90319–29. doi: 10.1109/ACCESS.2021.3090474

30. Fathi S, Ahmadi A, Dehnad A, Almasi-Dooghaee M, Sadegh M. for the
alzheimer’s disease neuroimaging I. A deep learning-based ensemble method for
early diagnosis of alzheimer’s disease using mri images. Neuroinformatics. (2024)
22:89–105. doi: 10.1007/s12021-023-09646-2
frontiersin.org

https://doi.org/10.1016/j.nurpra.2017.10.014
https://doi.org/10.3389/fnins.2015.00307
https://doi.org/10.1007/s40120-017-0069-5
https://doi.org/10.1186/s40708-020-00112-2
https://doi.org/10.1016/0730-725X(95)00009-6
https://doi.org/10.1007/s00259-008-0938-3
https://doi.org/10.1016/j.nicl.2018.08.019
https://doi.org/10.1016/j.artmed.2011.05.005
https://doi.org/10.1016/j.neuroimage.2009.05.056
https://doi.org/10.18280/ts.390608
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1007/s12021-023-09625-7
https://doi.org/10.1111/exsy.12400
https://doi.org/10.1155/2023/6850772
https://doi.org/10.1155/2023/6850772
https://doi.org/10.3390/s22010372
https://doi.org/10.3390/diagnostics12081793
https://doi.org/10.3390/diagnostics12081793
https://doi.org/10.3389/fnins.2018.00777
https://doi.org/10.1016/j.media.2020.101694
https://doi.org/10.1016/j.media.2020.101694
https://doi.org/10.1038/s41598-018-22871-z
https://doi.org/10.1038/s41598-018-22871-z
https://doi.org/10.1109/ACCESS.2019.2920011
https://doi.org/10.1007/s11042-020-09087-y
https://doi.org/10.1016/j.cogsys.2018.12.015
https://doi.org/10.3389/fnins.2020.00259
https://doi.org/10.3389/fnins.2020.00259
https://doi.org/10.1109/ACCESS.2021.3090474
https://doi.org/10.1007/s12021-023-09646-2
https://doi.org/10.3389/fpsyt.2024.1395563
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Ali et al. 10.3389/fpsyt.2024.1395563
31. Kang W, Lin L, Sun S, Wu S. Three-round learning strategy based on 3d deep
convolutional gans for alzheimer’s disease staging. Sci Rep. (2023) 13:5750.
doi: 10.1038/s41598-023-33055-9

32. Illakiya T, Ramamurthy K, Siddharth MV, Mishra R, Udainiya A. Ahanet:
adaptive hybrid attention network for alzheimer’s disease classification using brain
magnetic resonance imaging. Bioengineering. (2023) 10:714. doi: 10.3390/
bioengineering10060714

33. Illakiya T, Karthik R. A deep feature fusion network with global context and
cross-dimensional dependencies for classification of mild cognitive impairment from
brain mri. Image Vision Computing . (2024) 144:104967. doi: 10.1016/
j.imavis.2024.104967

34. Zhang Y, He X, Liu Y, Ong CZL, Liu Y, TengQ. An end-to-endmultimodal 3d cnn
framework with multi-level features for the prediction of mild cognitive impairment.
Knowledge-Based Syst. (2023) 281:111064. doi: 10.1016/j.knosys.2023.111064

35. Hu Z, Li Y, Wang Z, Zhang S, Hou W. Conv-swinformer: integration of cnn and
shift window attention for alzheimer’s disease classification. Comput Biol Med. (2023)
164:107304. doi: 10.1016/j.compbiomed.2023.107304

36. Illakiya T, Karthik R. A dimension centric proximate attention network and swin
transformer for age-based classification of mild cognitive impairment from brain mri.
IEEE Access. (2023) 11:128018–31. doi: 10.1109/ACCESS.2023.3332122

37. Helaly HA, Badawy M, Haikal AY. Deep learning approach for early detection of
alzheimer’s disease. Cogn Comput. (2022) 14:1711–27. doi: 10.1007/s12559-021-09946-2

38. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by
reducing internal covariate shift. Int Conf Mach Learn. (2015) 37:448–56.

39. Fatima M, Khan MA, Shaheen S, Almujally NA, Wang S-H. B2c3netf2: breast
cancer classification using an end-to-end deep learning feature fusion and satin
bowerbird optimization controlled newton raphson feature selection. CAAI Trans
Intell Technol. (2023) 8(4):1374–90. doi: 10.1049/cit2.12219

40. Zahoor S, Shoaib U, Lali IU. Breast cancer mammograms classification using
deep neural network and entropy-controlled whale optimization algorithm.
Diagnostics. (2022) 12:557. doi: 10.3390/diagnostics12020557
Frontiers in Psychiatry 15
41. Wang H, Shen Y, Wang S, Xiao T, Deng L, Wang X, et al. Ensemble of 3d densely
connected convolutional network for diagnosis of mild cognitive impairment and
alzheimer ’s disease. Neurocomputing . (2019) 333:145–56. doi: 10.1016/
j.neucom.2018.12.018

42. Mohammed BA, Senan EM, Rassem TH, Makbol NM, Alanazi AA, Al-Mekhlafi
ZG, et al. Multi-method analysis of medical records and mri images for early diagnosis
of dementia and alzheimer&Rsquo;S disease based on deep learning and hybrid
methods. Electronics. (2021) 10:2860. doi: 10.3390/electronics10222860

43. Acharya H, Mehta R, Singh DK eds. (2021). Alzheimer disease classification
using transfer learning, in: 2021 5th International Conference on Computing
Methodologies and Communication (ICCMC); 8-10 April 2021. Erode, India.

44. El-Latif AAA, Chelloug SA, Alabdulhafith M, HammadM. Accurate detection of
alzheimer's disease using lightweight deep learning model on mri data. Diagnostics.
(2023) 13:1216. doi: 10.3390/diagnostics13071216

45. Loddo A, Buttau S, Di Ruberto C. Deep learning based pipelines for alzheimer's
disease diagnosis: A comparative study and a novel deep-ensemble method. Comput
Biol Med. (2022) 141:105032. doi: 10.1016/j.compbiomed.2021.105032

46. Kaplan E, Dogan S, Tuncer T, Baygin M, Altunisik E. Feed-forward lpqnet based
automatic alzheimer's disease detection model. Comput Biol Med. (2021) 137:104828.
doi: 10.1016/j.compbiomed.2021.104828

47. Ching WP, Abdullah SS, Shapiai MI, Islam AM. Transfer learning for
alzheimer's disease diagnosis using efficientnet-B0 convolutional neural network.
J Adv Res Appl Sci Eng Technol. (2024) 35:181–91. doi: 10.37934/araset.34.3.181191

48. Mohammad F, Al Ahmadi S. Alzheimer’s disease prediction using deep feature
extraction and optimization.Mathematics. (2023) 11:3712. doi: 10.3390/math11173712

49. Hasan ME, Wagler A. New convolutional neural network and graph
convolutional network-based architecture for AI applications in alzheimer’s disease
and dementia-stage classification. AI. (2024) 5:342–63. doi: 10.3390/ai5010017

50. Shukla A, Tiwari R, Tiwari S. Alz-convnets for classification of alzheimer disease
using transfer learning approach. SN Comput Sci. (2023) 4:404. doi: 10.1007/s42979-
023-01853-7
frontiersin.org

https://doi.org/10.1038/s41598-023-33055-9
https://doi.org/10.3390/bioengineering10060714
https://doi.org/10.3390/bioengineering10060714
https://doi.org/10.1016/j.imavis.2024.104967
https://doi.org/10.1016/j.imavis.2024.104967
https://doi.org/10.1016/j.knosys.2023.111064
https://doi.org/10.1016/j.compbiomed.2023.107304
https://doi.org/10.1109/ACCESS.2023.3332122
https://doi.org/10.1007/s12559-021-09946-2
https://doi.org/10.1049/cit2.12219
https://doi.org/10.3390/diagnostics12020557
https://doi.org/10.1016/j.neucom.2018.12.018
https://doi.org/10.1016/j.neucom.2018.12.018
https://doi.org/10.3390/electronics10222860
https://doi.org/10.3390/diagnostics13071216
https://doi.org/10.1016/j.compbiomed.2021.105032
https://doi.org/10.1016/j.compbiomed.2021.104828
https://doi.org/10.37934/araset.34.3.181191
https://doi.org/10.3390/math11173712
https://doi.org/10.3390/ai5010017
https://doi.org/10.1007/s42979-023-01853-7
https://doi.org/10.1007/s42979-023-01853-7
https://doi.org/10.3389/fpsyt.2024.1395563
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

	Enhancing Alzheimer’s disease diagnosis and staging: a multistage CNN framework using MRI
	1 Introduction
	2 Materials and methods
	2.1 Proposed framework
	2.2 Datasets
	2.3 Pre-processing
	2.4 Design of CNN for AD Detection
	2.4.1 Input layer
	2.4.2 Convolutional layer
	2.4.3 Batch normalization
	2.4.4 Rectified linear unit activation
	2.4.5 Max pooling
	2.4.6 Fully connected layer
	2.4.7 Dropout layer
	2.4.8 Softmax
	2.4.9 Classification output

	2.5 Design of transfer learned CNN for subclassification

	3 Results
	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


