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Generation and discrimination
of autism MRI images based
on autoencoder
Yuxin Shi1, Yongli Gong1*, Yurong Guan2* and Jiawei Tang1

1Computer School, Hubei Polytechnic University, Huangshi, China, 2College of Computer Science,
Huanggang Normal University, Huanggang, China
This study aims to explore an autoencoder-based method for generating brain

MRI images of patients with Autism Spectrum Disorder (ASD) and non-ASD

individuals, and to discriminate ASD based on the generated images. Initially, we

introduce the research background of ASD and related work, as well as the

application of deep learning in the field of medical imaging. Subsequently, we

detail the architecture and training process of the proposed autoencoder model,

and present the results of generating MRI images for ASD and non-ASD patients.

Following this, we designed an ASD classifier based on the generated images and

elucidated its structure and training methods. Finally, through analysis and

discussion of experimental results, we validated the effectiveness of the

proposed method and explored future research directions and potential

clinical applications. This research offers new insights and methodologies for

addressing challenges in ASD studies using deep learning technology, potentially

contributing to the automated diagnosis and research of ASD.
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1 Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by

deficits in social interaction and communication, as well as restricted behaviors. Over the

past decades, with the advancement of medical imaging technology, researchers have begun

utilizing Magnetic Resonance Imaging (MRI) to study the differences in brain structure and

functional connectivity in individuals with ASD. However, due to the high heterogeneity

and complexity of ASD, relying solely on expert manual analysis of MRI images has its

limitations. Thus, the use of deep learning technologies for the analysis and diagnosis of

ASD has become increasingly important.

As machine learning and deep learning continue to evolve, significant progress has

been made in the analysis and diagnosis of ASD. For instance, Support Vector Machines

(SVM) have been widely used and studied in brain medical image classification. Early

research by Katuwal et al. (1) explored SVM classifiers using MRI data to detect ASD,

demonstrating that classification accuracy increases with the severity of autism. Beyond
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SVM, other machine learning methods have also achieved notable

successes in ASD analysis and diagnostics. Bhaumik et al. (2)

used Partial Least Squares Regression (PLS) based on features

obtained from 42 bilateral Brodmann areas to distinguish

between ASD patients and healthy controls. Donato et al. (3)

employed Bayesian methods for reverse inference studies, finding

probabilistic evidence of gray matter changes selective to ASD in

specific brain regions.

Compared to machine learning, deep learning can learn high-

level features from data without the need for expert identification

(4). The applications of deep learning in ASD diagnostics and

analysis can be broadly divided into three categories: methods based

on Convolutional Neural Networks (CNNs), Generative

Adversarial Networks (GANs), and autoencoders. CNN methods

often employ various CNN variants or increase the depth of CNNs

to handle the high dimensionality of MRI data, making them

suitable for image classification tasks in deep learning. Zhao et al.

(5) proposed a 3D CNN framework to capture the overlapping

spatial brain network patterns between ASD and healthy controls,

proving it to be effective. Dolz et al. (6) used a 3D CNN ensemble

model with internally annotated images for 3D segmentation of

infant T1-weighted and T2-weighted MRI images, achieving

notable performance. Recently, Yin et al. (7) combined

autoencoders with Deep Neural Networks (DNN), achieving

82.4% AUC and 79.2% accuracy. While CNNs effectively leverage

spatial structural information across the entire brain, they have

limitations in handling spatial coordinate transformation-related

issues (8). Therefore, in ASD image generation tasks, integrating

CNNs with other models is preferred.

GANs, as generative models, utilize game theory methods to

generate images, thereby enhancing ASD datasets. Yang et al. (9)

successfully improved classifier performance by using FC-GAN to

augment ASD datasets. Recently, Devika et al. (10) employed a

GAN-based encoder-decoder framework using consecutive sMRI

slices as input, where the error between the reconstructed and actual

adjacent slice stacks was used to identify ASD samples as outliers,

yielding effective results. GANs learn the distribution of real data to

generate lifelike images, and their generators can capture multiple

data patterns, adding diversity to the generated images. However,

training GAN models can be challenging due to the need to achieve

Nash equilibrium (11).

Meanwhile, the accuracy of MRI image diagnostics depends on

the quality of the images, which is often compromised by noise and

artifacts (12). Thus, MRI image generation methods that also assist

in noise reduction can significantly enhance image quality. For

image denoising, autoencoders are generally more suitable

than GANs.

For high-dimensional data image reconstruction (13) and noise

removal (14), autoencoders are an excellent choice. As a deep

learning model, autoencoders learn data features to reconstruct

data. Their advantages include the ability to learn data

representations that capture essential features of the data while

minimizing redundancy, reducing the dimensionality of the data to

make it more manageable, and removing noise from images to

enhance clarity and accuracy (15). Autoencoders minimize the

difference between input and reconstructed output during
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training, attempting to remove noise or unnecessary information

from input images, thus typically providing a more stable model

training process. Given the high dimensionality of neuroimaging

data and the complexity involved in manually creating features

from such data, the applications of autoencoders in brain disease

research are of significant relevance (16).

Autoencoders have been used for MRI data generation and

reconstruction, yielding positive research results. For example,

Pinaya et al. (17) first trained a deep autoencoder model using

data from healthy subjects, then estimated the overall and regional

neuroanatomical deviations in ASD patients using the ASD dataset.

This model provides a flexible framework for assessing overall and

regional neuroanatomical deviations in neuropsychiatric

populations. Li et al. (18), based on transfer learning techniques,

proposed a novel deep neural network framework aimed at

improving the ASD classification problem in situations with

limited training samples. This framework first trained an SSAE

using healthy subject data, which was then transferred to a new

classification task for target subjects to achieve more accurate

classification. Eslami et al. (19) proposed an Auto-ASD-Network

model that combines the advantages of autoencoders and SVM,

aimed at classifying ASD patients from healthy individuals using

fMRI data, significantly enhancing classification results. Most

recently, Mostafa (20) proposed using a CAE model to reconstruct

images of ASD and healthy control groups. This model first

processes 3D T1 images through slice analysis and classification,

then inputs the slice images into an autoencoder for image

reconstruction, using various similarity metrics to measure the

resemblance between actual and reconstructed images, achieving

high accuracy. These studies show that autoencoders can extract key

features from MRI data, aiding medical experts in better

understanding the brain structures and functions of ASD patients,

providing support for early diagnosis and personalized treatment of

the disorder. These studies demonstrate that, within ASD research,

autoencoders are capable of extracting crucial features from MRI

data, aiding medical experts in better understanding the brain

structure and function of ASD patients. This facilitates early

diagnosis and personalized treatment of the disorder.

Given this, we will detail the architecture and training process of

the proposed autoencoder model, as well as how to use this model to

generate MRI images of ASD and non-ASD patients. Next, we will

introduce the structure and training methods of our designed ASD

classifier, and describe in detail how to use the generated MRI images

for ASD discrimination. Finally, we will analyze the experimental

results and discuss future research directions and potential clinical

applications. Specific research contributions include:
1. Autoencoder-generated MRI images of ASD and non-ASD

patients: By designing and training the autoencoder model,

this paper successfully generates MRI images for ASD and

non-ASD patients. This method not only expands the

dataset and increases sample diversity but also helps

understand the characteristic brain structure features and

differences in ASD patients. This is significant for ASD

research in situations with limited sample sizes and high

data heterogeneity.
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2. ASD discrimination method based on generated images:

Using the generated MRI images, this paper proposes a

novel ASD classifier for discriminating patients with ASD.

Compared to traditional methods based on original MRI

images, this image generation-based approach offers more

universality and effectively addresses issues of data sparsity

and label imbalance. By combining autoencoder generation

and deep learning classification techniques, this paper

provides a new approach and method for the automation

of ASD diagnosis.
2 Method

Our algorithm primarily operates by learning an autoencoder

that takes MRI images as input. This autoencoder is then used for

reconstruction, and the reconstructed MRI images are fed into a

convolutional neural network, where a classifier determines the

clinical validity of the images. This section analyzes both the

autoencoder model (see Section 2.1) and the classifier model (see

Section 2.2) proposed by our method.
2.1 Autoencoder model architecture

2.1.1 Model architecture
The autoencoder is composed of an encoder and a decoder.

Figure 1 displays the structure of this one-dimensional autoencoder,
tiers in Psychiatry 03
which utilizes minimal encoders, decoders, and hidden layers to

simplify the model while achieving high reconstruction

performance. The autoencoder starts with an input layer, followed

by the encoder, which transforms the input data into feature vectors

through two fully connected layers. Specifically, the encoder

contains two ReLU-activated dense layers with 4 and 2 units,

respectively, which compress the input data into a compact

feature representation. An intermediate fully connected layer is

situated between the encoder and decoder. One fully connected

layer is located between the encoder and decoder (model

hyperparameters optimized using Bayesian hyperparameter

optimization algorithm). The intermediate hidden layer adopts

the settings from the literature (21), and the data serves as input

for the decoder. The decoder mirrors the encoder’s structure,

consisting of two ReLU-activated dense layers with 2 and 4 units,

respectively. The final layer of the decoder features a tanh activation

function and has an output size of (8000000), which corresponds to

the flattened three-dimensional image data. This symmetry between

the encoder and decoder layers facilitates accurate reconstruction of

the original input data.

The overall model adopts a symmetrical structure, with the

output of each layer serving as the input for the next, thereby

facilitating layer-by-layer training and effective learning of data

representations. For training the autoencoder, we utilized the Adam

optimizer, with a learning rate of 0.001 and an epsilon value of 1e-

08. The Adam optimizer is well-suited for training large-scale and

high-dimensional data due to its adaptive learning rate capabilities,

which adjust based on gradient statistics and improve convergence

during the training process.
FIGURE 1

One-dimensional autoencoder architecture.
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2.1.2 Algorithm overview
Assuming the input data is y and the output data is x, the

encoding and decoding process of the autoencoder can be described

as (22):

h1 = se(W1x + b1) (1)

y = sd(W2h1 + b2) (2)

Where W1 and b1 represent the encoding weights and biases,

W2 and b2 represent the decoding weights and biases, se is a non-
linear transformation, and sd is the same non-linear transformation

used during the encoding process.

2.1.3 Loss function
The loss function is calculated using mean squared error loss:

J(W, b) =o (L(x, y)) =o  jj y − x jj22 (3)

Using gradient descent, the backpropagation algorithm updates

parameters to minimize the error function. The update formulas for

the weights W and biases b are as follows, where v is the learning

rate:

W = W − v
∂ J(W, b)
∂W

(4)

b = b − v
∂ J(W, b)

∂ b
(5)

For images, especially medical images that contain detailed

pathological information, it is necessary to extract this

information from the images as a whole. Since autoencoders learn

holistic representations and can effectively extract high-level

abstract features, they have the capability to generate brain MRI

images as needed.
2.2 CNN-based MRI classification
discrimination model architecture

In this study, MRI identification is a binary classification

problem, aimed at distinguishing whether a three-dimensional

MRI belongs to a diseased (label: 1) or healthy (label: 0) category.

An MRI dataset is reshaped into an array Tm×a×b (in this study,

128×128×128), serving as the input for the 3D CNN.

The designed convolutional neural network structure of our

algorithm (partially detailed in Supplementary Materials) consists

of convolutional layers, pooling layers, activation function layers,

and fully connected layers, each performing specific functions. It

begins with initial layers employing 3x3x3 filters: 2 filters in the first

layer and 8 filters in subsequent layers with a stride of 2 for

downsampling. Each convolutional layer uses ReLU activation.

Batch normalization is applied for stability after select

convolutional layers. Average pooling with a 2x2x2 kernel and

stride of 2 follows, reducing spatial dimensions while retaining

important features. Deeper layers increase complexity with 16, 32,

64, and 128 filters, maintaining spatial resolution. All use ReLU
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activation and batch normalization. Output from convolutional

layers is flattened for fully connected layers. Two dense layers follow

with 128 and 64 neurons, using ReLU and tanh activation. Dropout

with a 0.5 rate is applied after each dense layer to prevent

overfitting. The final layer consists of 2 neurons with softmax

activation for binary classification. Adam optimizer minimizes

binary cross-entropy loss, assessing accuracy metrics. The final

output of the 3D CNN is the probability values for the two

classification labels, summing to one.

This study uses the Adam optimizer to optimize the 3D CNN,

with a learning rate set at 0.00001 and includes a learning rate decay

callback function, ReduceLROnPlateau, which dynamically reduces

the learning rate. The initialization strategy follows the settings

described in the referenced literature (23). Post-training, the model

reports performance on the validation set (or new MRI).
3 Results

This section delineates the experimental framework and dataset

used (refer to Section 3.1). We carried out a series of experiments to

assess the efficacy of the proposed method through both qualitative

(Section 3.2) and quantitative analyses (Section 3.3) of the results.

Our testing setup was configured on a Windows 10 system,

employing Python 3.6 and TensorFlow 2.5, with GPU

acceleration provided by an NVIDIA GeForce GTX 1650 graphics

card, which has 4.0GB of GPU memory. The source code and

implementation details are publicly available at (https://github.com/

Lyrae17514/Generation-and-Discrimination-of-Autism-MRI-

Images-Based-on-Autoencoder).
3.1 Data description

The ABIDE I dataset, consisting of data from 17 international

sites and encompassing 1112 subjects, was utilized in this study.

Specifically, we employed data from 871 ABIDE I subjects that

underwent quality checks, aligning with the dataset used by Mostafa

et al. (20). This subset includes 403 subjects diagnosed with Autism

Spectrum Disorder (ASD) and 468 from a typical control group

(24). The subjects ranged from 7 to 64 years in age, and our study

focused exclusively on the T1 dataset.
3.2 Qualitative analysis

3.2.1 Generative performance
evaluation experiment

This experiment aimed to appraise the image reconstruction

capabilities of the autoencoder. We assessed the image reconstruction

efficacy of the autoencoder by inputting images of various sizes and

comparing the output to the original images. Given the inclusion of

critical pathological information within medical images, it is crucial

to enhance the fidelity between the reconstructed and original images

to preserve essential pathological structures. Figure 2A exhibits a

comparative analysis of reconstructed images with dimensions of 643,
frontiersin.org
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1283, and 2003 against the originals, clearly demonstrating the

autoencoder’s ability to accurately replicate details. Figure 2B

further presents various performance metrics associated with the

reconstructed images.

The data for this experiment comprised 3D data sourced from

ANTS. The autoencoder employed mean squared error (MSE) as the

loss function. Given the constraints imposed by the limited

GPU memory capacity, our training methodology had to be

specifically tailored to handle high-dimensional MRI data within

these hardware limitations. The MRI data sets, characterized by their

substantial memory footprint, necessitated a training approach that

accommodates the GPU’s memory constraints. Consequently, the

generator function was designed to dynamically select a single MRI

image from the dataset at a time, resulting in a batch size of 1 for each

training iteration. However, it also poses challenges such as increased

training variability and slower convergence rates. To mitigate these

issues and enhance training efficiency, the model employs the Adam

optimizer, with a learning rate set at 0.001, known for its adaptive

learning rate adjustments, which help in navigating the stochastic

nature of the training process and improving convergence over

extensive epochs. For instance, when generating MRI images of size

2003, the autoencoder can achieve its best SSIM score upon reaching

68000 epochs. When the autoencoder processes a 3D matrix of size

1283, it is flattened into a 1D array of length (2097152) as input. Both

the encoding and decoding phases featured two fully connected

layers, with neuron configurations of 4 and 2 (encoding) and 2 and

4 (decoding) respectively.
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In the comparison between generated image results and real

images (Figure 2), the generated images show no significant

distortions or artifacts, effectively removing noise. This indicates

that the model fits the data well without overfitting. Specifically, this

means that the model demonstrates good adaptability to the

training data. The reconstruction performance is high for images

of various sizes, demonstrating the model’s robustness. Although

some details in the generated images might appear slightly blurry,

the overall quality remains high, likely reflecting the intrinsic

characteristics of the autoencoder. Moreover, high values of

Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio

(PSNR), coupled with low Mean Absolute Error (MAE),

corroborate the autoencoder’s ability to generate high-quality

brain MRI images.
3.2.2 Classification performance
evaluation experiment

The ROC curve is used to evaluate the classification and

detection results. The curve closer to the top-left corner indicates

a higher true positive rate and lower false positive rate, suggesting

better classification ability of the model. The area under the ROC

curve (AUC) is used to measure the performance. The classifier is

validated on the validation set, and the ROC curve is plotted. The

model has an average accuracy of 58.85%, with an accuracy of 63%

in detecting healthy samples. The calculated AUC value is 0.60,

indicating relatively good performance of the binary classifier with
FIGURE 2

Visualization of the reconstructed image performance of the model. (A) Visualization of the generated image results. (B) Image reconstruction
performance of ASD and HC. ASD represents the use of data from patients with ASD, while HC represents the healthy control group.
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some predictive capability. Overall, this classifier can effectively

screen ASD patients and healthy controls to a certain extent.
3.3 Quantitative analysis

In this section, we evaluate the reconstruction effectiveness of

the quantized autoencoder and compare it with other models using

the Structural Similarity Index (SSIM) (25) and Peak Signal-to-

Noise Ratio (PSNR) to assess the generated images. Table 1 presents

the quantitative results of these evaluation metrics, with some

model results referenced from Mostafa (20). The model studied in

this paper has relatively high SSIM scores, indicating that the

distribution of the generated samples closely resembles the

distribution of real data. For the 1282 resolution, the model in

this study achieved excellent SSIM scores, and it also performed well

at a resolution of 2562. The generated images have high SSIM and

PSNR values, as well as low MAE (Mean Absolute Error),

showcasing excellent image quality and accurate pixel matching.

To ensure a fair comparison with Mostafa’s proposed CAE

model, we maintained consistency in data processing, using T1-

weighted MRI slice images of the healthy control group for

autoencoder reconstruction (26). When generating images at sizes

of 2562 and 1282, the autoencoder adjusted the size of the input and

output images and only modified the structure of the intermediate

hidden layer of the autoencoder.

Compared to Mostafa’s proposed CAE model, the autoencoder

proposed in this paper exhibits superior SSIM scores at a size of

1282. When generating larger images at a size of 2562, the PSNR

metric still performs relatively well. The higher SSIM and PSNR

scores, along with the lower MSE, indicate that the generated

images preserve more structural details and have lower noise

levels. This suggests that our autoencoder produces reconstructed

images with higher clarity and quality while preserving the original

information. Therefore, this experiment demonstrates that our

autoencoder model generates images that are closer to the

original images, exhibiting good quality and excellent

generalization capabilities.
4 Discussion

First, this section analyzed the computational complexity of the

proposed method (see section 4.1). Second, the generator

interpretation was discussed in section 4.2. Third, the influence of

optimizers on performance was discussed (see Section 4.3).
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4.1 Computational complexity

The autoencoder proposed in this study is based on a fully

connected neural network structure. The complexity of this model

can be estimated by calculating the number of parameters, which is

proportional to the number of connection weights between the

input and output layers, as well as the number of bias terms. The

time complexity calculation is as follows:

O(Ua) = O o
d

a=1
na−1 · na + na

 !
(6)

Where na-1 and na represent the number of neurons in the (a-
1) and a layers, respectively. Assuming a represents the number of

layers and U represents the number of neurons per layer, the time

complexity of the autoencoder model is as described above.
4.2 Interpretation of autoencoders for
MRI generation

This set of experiments aims to elucidate the performance of

autoencoders in generating MRI images. The generator proficiently

learns the correlations and distribution patterns among various

features from the training dataset, successfully capturing the

essential characteristics of the images and reconstructing them

based on these identified patterns. We visualize color feature

mapping of some brain regions to reflect the feature correlations

between the generated images and the original images.

We train the model using ASD patient data and provide color

mapping of generated image slices and real sample slices to

demonstrate the model’s performance. Both generated and real

sample slices are aligned in the same direction. The resultant

grayscale images are then transformed into color-mapped images,

where different colors denote the intensities of various features.

Figure 3 presents 2D brain MRI feature mapping slices, displaying

partial Brodmann areas. In Figure 3, A represents the color mapping of

the generated image slice, while B represents the color mapping of the

real sample slice, with yellow representing higher intensity and blue

representing lower intensity. The similar color distributions indicate a

high degree of feature correspondence and an enhancement of

information during the generation process. Notably, in parts of

Brodmann areas 7, Brodmann areas 9, and Brodmann areas 18,

there is an increase in feature intensity, signifying enhanced feature

information, suggesting that the autoencoder primarily generates

images by correctly extracting and processing features from these

areas. This result is consistent with partial research findings of

Bhaumik (2) and Donato (3). In summary, the autoencoder model

is capable of accurately extracting and reflecting the features hidden

within MRI images for image generation.
4.3 The influence of optimizer
on performance

This subsection compares different optimization methods in the

autoencoder, including momentum SGD, RMSprop, Adagrad, and
TABLE 1 Comparison of quantitative results.

SSIM↑ PSNR↑ MSE↓

CAE 0.22 0.79 0.21

1282 Ours 0.58 19.42 0.01

2562 Ours 0.62 19.91 0.01
The upward arrow indicates that a higher score is better, meaning the image is closer to the
real image. Conversely, the downward arrow signifies that a lower score is preferable,
indicating that the image error is smaller.
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Adam. Corresponding image have been added to the Supplementary

Materials. In this study, RMSprop and Adam display superior

performance, while Adagrad and momentum SGD are somewhat

less effective. Adagrad and SGD have relatively fixed learning rates.

Fixed learning rates may fail to effectively train models when there are

significant differences in learning rate requirements across layers or

parameters, particularly in complex optimization scenarios, leading to

poor convergence or slow training speeds that impact performance. In

contrast, RMSprop and Adam provide smooth and stable parameter

updates, which help in avoiding drastic fluctuations in learning rates

and thereby facilitate more effective training. RMSprop and Adam

optimizers are generally more suitable for handling complex, non-

convex optimization problems due to their ability to adapt to varying

learning rate requirements, sparse gradients, and complex loss surfaces.

SGD and Adagrad optimization methods did not succeed in achieving

fast training of neural networks with complex structures as anticipated.

The primary reason is likely the different adaptability of these

optimizers in handling specific model gradient updates. In contrast,

RMSprop and Adam, with their adaptive learning rate adjustment

capabilities, typically perform more effectively in dealing with complex

model structures and gradient characteristics.
5 Conclusion and future work

This study proposes a method based on autoencoders for

generating brain magnetic resonance imaging (MRI) images of

patients with Autism Spectrum Disorder (ASD) and non-ASD

individuals, and for discriminating ASD based on the generated

images. Through experimental validation, we found that the

proposed autoencoder model can effectively generate diverse MRI

images of both ASD and non-ASD patients, capturing the structural

differences in the brains of the patients. Additionally, our designed ASD

classifier based on the generated images demonstrates good

performance in the task of ASD discrimination, showing better

robustness and generalizability compared to traditional classification
Frontiers in Psychiatry 07
methods based on original MRI images. These results provide new

insights and approaches for the application of deep learning

technologies in ASD research, with the potential to contribute to the

automation of ASD diagnosis and research. However, generating MRI

images of ASD and non-ASD patients using autoencoders faces certain

limitations, such as restricted image sizes due to the computational

complexity of MRI data, currently preventing the flexible generation of

MRI images in various sizes. Future work may enhance model

performance, expand datasets, and explore additional methods for

medical image analysis based on automated image generation, thereby

promoting early diagnosis and personalized treatment of ASD.

Additionally, while this study assesses the clinical validity of the

generated images using classifiers, future research should integrate

pathophysiology to more deeply analyze the clinical application

potential of the model, thus enhancing its supportive role in

ASD treatment.
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