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Utilizing portable
electroencephalography to
screen for pathology of
Alzheimer’s disease: a
methodological advancement
in diagnosis of
neurodegenerative diseases
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Shoshin Akamine1, Hideki Kanemoto1, Shiho Gotoh1,
Hisaki Omori1,2, Atsuya Hirashima1,2, Yuto Satake1,
Takashi Suehiro1, Shun Takahashi1,3,4,5 and Manabu Ikeda1

1Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan,
2Department of Psychiatry, Esaka Hospital, Osaka, Japan, 3Department of Occupational Therapy,
Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan, 4Clinical
Research and Education Center, Asakayama General Hospital, Osaka, Japan, 5Department of
Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
Background: The current biomarker-supported diagnosis of Alzheimer’s disease

(AD) is hindered by invasiveness and cost issues. This study aimed to address

these challenges by utilizing portable electroencephalography (EEG). We

propose a novel, non-invasive, and cost-effective method for identifying AD,

using a sample of patients with biomarker-verified AD, to facilitate early and

accessible disease screening.

Methods: This study included 35 patients with biomarker-verified AD, confirmed

via cerebrospinal fluid sampling, and 35 age- and sex-balanced healthy

volunteers (HVs). All participants underwent portable EEG recordings, focusing

on 2-minute resting-state EEG epochs with closed eyes state. EEG recordings

were transformed into scalogram images, which were analyzed using “vision

Transformer(ViT),” a cutting-edge deep learning model, to differentiate patients

from HVs.

Results: The application of ViT to the scalogram images derived fromportable EEG

data demonstrated a significant capability to distinguish between patients with

biomarker-verified AD and HVs. The method achieved an accuracy of 73%, with an

area under the receiver operating characteristic curve of 0.80, indicating robust

performance in identifying AD pathology using neurophysiological measures.

Conclusions:Our findings highlight the potential of portable EEG combined with

advanced deep learning techniques as a transformative tool for screening of

biomarker-verified AD. This study not only contributes to the neurophysiological
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understanding of AD but also opens new avenues for the development of

accessible and non-invasive diagnostic methods. The proposed approach

paves the way for future clinical applications, offering a promising solution to

the limitations of advanced diagnostic practices for dementia.
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1 Background

Over 55 million people live with dementia globally, and the

current annual cost associated with dementia is estimated at 1.3

trillion USD. Furthermore, the number of patients and related costs

will continue to increase (1). Dementia has become a serious social

and economic issue throughout the world, and it thus needs to be

urgently addressed.

In 2021, the United States Food and Drug Administration

(FDA) granted accelerated approval to aducanumab, a

monoclonal antibody targeting amyloid beta (Ab) aggregates, and
this is the first approved drug to directly target the core

pathophysiology of Alzheimer’s disease (AD). Thereafter, the

FDA also granted traditional approval to lecanemab-irmb, the

second medication targeting the fundamental pathophysiology of

AD, in 2023. These approvals have initiated a new era in AD

research, early biomarker-supported diagnosis, and biologically

specific treatment (2).

A recent study using positron emission tomography (PET)

showed a positivity rate for Ab aggregates of only 63.8% in

patients previously diagnosed with AD (3). Clinical AD diagnosis

does not always rely on the presence of AD pathology (i.e., AD

biomarker positivity) confirmed via cerebral spinal fluid (CSF)

assays or PET; these should ideally be a prerequisite for beginning

disease-modifying therapy (2). The identification of biomarkers can

be invasive or costly and can only be performed in hospitals with

state-of-the-art equipment (4). These limitations highlight the

necessity of screening assessments that are widely available for

screening in the rapidly increasing population of patients with

dementia. One such tool for identifying biomarkers in clinical

practice without these limitations is electroencephalography (EEG).

EEG signals derive from electromagnetic fields, stemming from

the interactions of cortical neurons at a macroscopic scale (5).

Consequently, EEG is regarded as a prime candidate for

determining functional biomarkers for synaptic dysfunction and

deterioration in dementia-related diseases (6). EEG is a noninvasive

methodology, noted for its affordability, widespread availability,

and sensitivity to the functional status of the brain (7). Recently,

EEG has been utilized as a promising examination to screen for and

assist in the diagnosis of dementia (8), yielding neurophysiological

findings correlated with neurodegenerative diseases (7).
02
Regarding the association between EEG and AD biomarkers,

patients with mild cognitive impairment (MCI) showed reduced

alpha- and beta-frequency oscillations in CSF Ab-positive cases

compared with Ab-negative cases (9). In addition, the same study

showed that slowing of EEG activities were related to clinical

progression in amyloid positive subjects with normal cognition

(9). Another study indicated that abnormal neuronal activity, EEG-

fMRI signal coupling, was associated with cerebral Ab loads (10). In

addition, we previously showed that theta EEG activities in patients

with AD correlated with Ab pathology traits determined using CSF

analysis (11).

In this manner, findings on the relationships between

neurophysiological features and AD biomarkers are accumulating.

However, these studies were performed using clinical or research-

quality EEG equipment, with many electrodes, and hold limitations

in their applicability to the vastly increasing number of patients

with dementia. In this study, we aimed to use a portable EEG system

to identify patients with AD in a sample of patients with biomarker-

verified AD, which could be useful for disease screening.
2 Methods

2.1 Study population

In this study, we recruited patients with probable AD. They visited

the neuropsychological clinic in the psychiatry department of Osaka

University Hospital. All patients underwent baseline assessments

including demographic, cognitive, and neuropsychiatric assessments,

brain structure assessments using magnetic resonance imaging (MRI)

or computed tomography, laboratory measurements (e.g., blood cell

count, blood chemistry measurements, thyroid hormones, vitamins B1,

B12, and folic acid) between April 2021 and July 2023. Based on these

examinations, we excluded patients with physical disorders that could

affect cognition such as endocrine disorders, cerebral structural lesions,

histories of brain injury, or drug/alcohol use disorders. All patients with

suspected AD were diagnosed based using international standard

criteria (12, 13). All diagnoses were performed by certified

neuropsychiatrists through consensus at an expert conference in our

department. In addition, diagnosis was confirmed using a CSF assay for

the presence of the AD biomarker Ab1–42/Ab1–40 (14). This
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procedure is also used to select patients for treatment with lecanemab-

irmb, the first approved disease-modifying drug for AD in Japan. In

this study, we included patients who had undergone inpatient

evaluations of cognitive function in our department and who

underwent both CSF tests and portable EEG measurements as

described below.

Age- and sex- balanced community-dwelling older persons

were included as healthy volunteers (HVs). The inclusion criteria

were: 1) no history of neurological or psychiatric diseases; 2) no

history of severe head injury or alcohol/drug use disorder; and 3) no

impairments in activities of daily living or global cognitive

impairment (Mini-Mental State Examination [MMSE] (15) score

≥ 27) (16). MMSE is widely used as a screening test for cognitive

dysfunction, and can evaluate, such as orientation, verbal memory,

and general attention. All HVs underwent the same portable EEG

measurements as the patient group.

Prior to enrollment, we explained the utilization of their clinical

data for this research to all participants and obtained written

informed consent. This study was approved by the ethical

committee of Osaka University Hospital (approval number:

20312) and registered with the UMIN clinical trial registry

(UMIN 000042903).
2.2 AD biomarkers in CSF samples

CSF samples were collected via lumbar puncture between 10:00

and 12:00 while patients were fasting. The first 1 mL of CSF

obtained from each lumbar puncture was excluded from analysis.

The samples were centrifuged at 430 × g for 5 minutes. The

supernatant was aliquoted and stored at -80°C until analysis.

Concentrations of Ab1–40 and Ab1–42 were measured in

duplicate using ELISA kits (Human Ab1–40 ELISA Kit Wako II

(298–64601), Human Ab1–42 ELISA Kit, High-Sensitive (296–

64401); Fujifilm Wako Pure Chemical Corporation, Osaka, Japan)

following the manufacturer’s instructions. We included patients

with Ab pathology traits determined by a CSF Ab1–42/Ab1–40
ratio lower than 0.0705 (17).
2.3 Portable EEG device

We used a multi-channel patch-type EEG system called

“HARU-1,” which comprises a wireless sensing device and

disposable electrode sheets. This device has received medical

approval from Japan’s Pharmaceuticals and Medical Devices

Agency, having been evaluated for its capability to measure EEG

data using the same standards as traditional clinical EEG

examinations (Certification Number: 302 AFBZX00079000, Class

II, EEG; https://www.info.pmda.go.jp/ygo/pack/651319/

302AFBZX00079000_1_01_02/302AFBZX00079000_1_01_02?

view=body)(available on Feb 14, 2024). The electrode sheets of the

device can be easily attached to the patient’s body, reducing

discomfort on the skin of the forehead. The device is light at only

27 g and adopts a curved shape to fit the forehead. A wireless

communication Bluetooth interface is used for device control. The
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device features a high voltage resolution of up to 24 bits (22 nV/

LSB) and a low input-referred noise of 1 mVpp. It can record multi-

channel EEG signals at a sampling rate of 250 Hz across three

channels (center, left, right). The electrode sheets have a thickness

of less than 50 mm, an elasticity of less than 200%, and a moisture

permeability of 2700 g/m2/day. These sheets are manufactured

using a cost-effective screen-printing process utilizing a

biocompatible gel on an elastic base and silver-based material.

The biocompatibility of conductive and non-conductive gels was

assessed using ISO 10993 standards for skin sensitization, irritation,

and in vitro cytotoxicity (18). Our previous analyzing data obtained

with this portable EEG device demonstrated that characteristics of

neuropsychiatric disorders could be precisely detected (19),

indicating that this EEG system is robust enough for use in

research. For photos of the device itself and people wearing it,

please see the supplementary material in reference (19).
2.4 EEG measurements

We affixed the aforementioned EEG sheet to the study

participants’ forehead. Then, we asked them to close their eyes

and relax and began the EEG recording. When the EEG signals met

quality-control criteria and the hum noise was less than 5 mV, the
actual measurement was started. If the hum noise was found to be

higher than this, the measurement was started after adjusting the

noise to be less than 5 mV by moving the measuring sites. EEG

measurements were conducted in environments other than shielded

rooms, such as outpatient and inpatient rooms, after confirming

that no noise was included as described above. EEG data from 2-

minute resting-state epochs with closed eyes, monitored by the

examinators, were analyzed in this study.
2.5 EEG signal processing and analysis

Based on the previous study that yielded promising results by

converting EEG data to “scalograms” and identifying those data

using “Vision Transformer (ViT)” (20), a deep learning model, we

adopted a similar analysis for the EEG data in this study.

First, EEG data were converted to scalograms (Figure 1). The

input data consisted of EEG signals with a sampling rate of 250 Hz

across three channels. For each participant, segments of 120

seconds were recorded and subsequently segmented into 2-second

epochs. As part of the data preprocessing procedure, a band-pass

filter (4–75 Hz) and a notch filter (60 Hz) (Osaka, Japan, dealt with

60 Hz power line noise) were applied to attenuate power line noise

and enhance the signal quality (21). The preprocessed data were

subjected to continuous wavelet transform to convert them into

scalograms (https://docs.scipy.org/doc/scipy/reference/generated/

scipy.signal.cwt.html) (available on Feb 14, 2024). Then, the

transformed scalograms of each channel were consolidated into a

single composite colored image, with the center channel in red, the

left channel in green, and the right channel in blue. This integration

facilitated the preparation of the images for subsequent analysis

using image-based deep learning models, ensuring efficient
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processing. Through this method, we could simultaneously analyze

information from different channels , thereby gaining

comprehensive insights.

Additionally, in order to grasp the overall trend of EEG activity

of each channel, we examined the power spectrum density of the

AD and HVs groups as in our previous study with this portable

device (19) (Figure 2). The activities of both groups generally

overlapped, with the absence of any biases or marked artifact. In

this study, for the purpose of application to a simple screening test,

the entire 2-minute resting eye-closure recordings of all subjects

were used for analysis, without arbitrary artifact removal that would

require specialized techniques, yielding no missing data. In our

previous study (19) using the same portable EEG, we developed

highly accurate prediction model without artifact rejection. Recent

study that applied deep learning to EEG data had also reported that

artifact rejection did not improve classification performance (22)

and artifacts did not be excluded in the previous study (20) that

aligned with this study.

Next, we used the deep learning model ViT. Recently, the

transformer architecture has emerged as the predominant model

in the field of natural language processing (23). This architecture

enhances the efficiency of model training by enabling parallel

processing of training data. However, the specific design of the

transformer limits its direct applicability in computer vision.
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Addressing this limitation, one study (24) introduced the ViT

model, a transformer variant tailored for computer vision tasks.

According to experimental results, the ViT model not only

demonstrated superior performance compared to leading

convolutional neural network (CNN) models but also offered

greater computational efficiency during training (25). Several

articles have shown highly accurate identification results when

applying ViT to EEG data (20, 26, 27). The ViT model is well-

suited for effectively capturing the long-range correlations present

in EEG signals. The self-attention mechanism of the ViT

architecture allows it to model the complex spatio-temporal

patterns in EEG data more accurately compared to conventional

approaches like CNN, which are limited to learning local features.

The feature of the ViT model to take holistic views of the input

sequence holds an advantage for analyzing the intricate structure of

EEG signals.

The ViT model used in this study was downloaded from https://

github.com/huggingface/pytorch-image-models (available on Feb

14, 2024). The analytical model for ViT is shown in Figure 3. We

prepared model A to E, which learned wavelet-transformed images,

and each trained model was used to discriminate between patients

with AD and HVs by dividing the dataset into five subsets (I to V)

(i.e., 5-fold cross-validation). The ratio of training, validation, and

test data was set at 3:1:1, with the prediction results from Model A
FIGURE 2

Power spectrum density estimated from EEG signals in patients with Alzheimer’s disease and healthy volunteers. Red activities in the figure represent
the power spectrum density, with a 95% confidence interval, of patients with Alzheimer’s disease. Blue activities represent the power spectrum
density of healthy volunteers at each EEG channel. The frequency range covered in this figure is 4–75 Hz, and a notch filter at 60 Hz has
been applied.
B

C

D

A

FIGURE 1

Conversion of EEG data to scalogram. (A) Raw data: Raw EEG data. (B) Filtered Data: EEG data with band-pass filter ranging from 4 to 75 Hz and a
notch filter at 60 Hz. (C) Scalogram: Converted with Continuous Wavelet Transform from filtered data. (D) Scalogram of 3 channels: The same
processing (A–C) was applied to data acquired from three distinct channels, and the resulting scalograms were color-coded and displayed in an
integrated manner.
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using for test data 1 denoted as Pred I A. In order to train ViT, we

did not add a shallow classifier and only performed fine tuning.

Adam was employed as optimizer with a batch size set at 100. The

training process was conducted over 5 epochs and early stopping

was utilized to prevent overfitting. Through the process of

ensembling, a majority vote was applied to the predictions from

Pred I A to Pred I E. Furthermore, an average of 60 epochs (120

seconds) was calculated for each participant, with the majority

result designated as Final Pred I. The aggregation of Final Pred I

through Final Pred V was used to compute the final accuracy and

area under receiver operating characteristic curve (AUC). This

design ensured that the same participants were allocated to the

same fold across all datasets, thereby preventing data leakage. These

EEG analyses were performed using Python 3.8.13. (https://

www.python.org/) (available on Feb 14, 2024).
2.6 Statistical analyses

For demographic data the Student’s t-test was used to compare

ages patients with AD and HVs, the chi-squared test for sex, and the

Mann–Whitney U test for MMSE scores. These statistical analyses

were performed using SPSS software (v26; IBM Corp., Armonk,

NY, USA). The threshold for significance was set at p = .05.
3 Results

3.1 Demographic data analysis

Demographic and clinical information for the both study

groups are summarized in Table 1. We included 35 patients with

biomarker-verified AD who underwent portable EEG recordings

and same number of HVs during this study period. In comparisons

between patient group and HVs, sex (p= .621) and age (p= .821) did

not significantly differ; however, MMSE scores were significantly

lower in the patient group (p<.001). The mean ratio of CSF Ab1–
42/Ab1–40 in patients with biomarker-verified AD was 0.0483

± 0.011.
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3.2 Identifying patients with AD using EEG
scalograms with ViT

Patients with biomarker-verified AD were identified with an

accuracy of 73% and an AUC of 0.80, sensitivity of 88.6%, and

specificity of 57.1%, based on images of EEG scalograms using the

ViT analysis. The receiver operating characteristic curve is shown

in Figure 4.
4 Discussion

This study employed a deep learning algorithm to identifying

patients with biomarker-verified AD form EEG data measured

using a patch-type portable device. To the best of our knowledge,

this is the first study to explore the relationship between restricted-

electrode EEG data and AD pathology. This study provides new

insights into the neurophysiological features of AD pathology.

Several studies applying machine learning algorithms to EEG

data features to identify patients with AD have been performed.

Trambaiolli et al. (28) reported the best accuracy of 91% when

combining several EEG parameters, especially alpha and beta

activities, to discriminate patients with AD from age-matched

HVs based on the feature selection algorithms. Another study

investigated EEG spectral parameters for discriminating between

patients with AD and age- and sex-matched HVs, yielding an

accuracy of 0.67 and an AUC of 0.74 with corrected EEG features
TABLE 1 Demographic and clinical data of participants.

AD HVs p-value

number of subjects 35 35

gender(male/female) 12/23 14/21 0.621

age (years ± SD) 73.0 ± 9.6 72.5 ± 7.0 0.821

MMSE(scores ± SD) 19.5 ± 6.1 29.6 ± 0.7 <0.001
fro
AD, patients with biomarker-verified Alzheimer’s disease.
HVs, Healthy Volunteers.
MMSE, Mini Mental State Examination.
FIGURE 3

Vision transformer analytical model. We prepared model A to E, which learned wavelet-transformed images, and each trained model was used to
discriminate between patients with AD and HVs by dividing the dataset into five subsets (I to V). We used an ensemble model after predictions
(Predicted IA~VE) into final prediction (Final Pred I~V), and combined final predictions.
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(29). A further EEG study applied time-frequency analysis with the

Fourier and wavelet transforms and yielded an accuracy of 83% in

the discrimination between patients with AD and HVs, providing

superior performance in wavelet transforms used in this study (30).

In studies using deep learning models, an applied convolutional

neural network classifier showed a classification accuracy of 88% for

patients with AD vs. HVs (31). In our previous study, a model

leveraging deep learning techniques applied to EEG data

demonstrated an accuracy of 82% in differentiating between HVs

and patients with AD (32). However, these studies included cases of

clinical AD diagnosis and lacked confirmed AD pathology. A

rigorous and large-scale study reported a proportion of cases

previously diagnosed with AD in which AD pathology was

confirmed of 63.8% (3). Considering the prevalence of AD

pathology, the accuracy of these studies might decrease by a

certain degree, potentially aligning with the accuracy level of this

study. In addition, these studies were conducted using 20-lead

standard EEG, which is labor- and time-intensive; thus, the

present study had an advantage in this respect.

There are also studies that have inferred AD pathology from other

modalities, such as brain MRI. By utilizing image characteristics from

brain MRI as input data and applying a machine learning model,

patients with AD pathology were identified with an accuracy of 0.68

(cognitively normal) and 0.74 (subjects with MCI), with AUCs of 0.63

(cognitively normal) and 0.71 (subjects with MCI) using MRI

characteristics and demographic data (33). In another study, the

accuracy of predicting AD pathology using structural MRI data and

machine learning was 0.697, and the AUC was 0.785 (34). While these

discrimination accuracies are consistent with the findings of the current

study, it should be noted that these results were obtained using brain

MRI as input data. From the perspective of applicability in screening
Frontiers in Psychiatry 06
for AD pathology, the portable patch-type EEG system used here is

more advantageous.

EEG measurements have been used clinically for excluding

certain causes of dementia such as epilepsy; however, the system

presented herein could lead to a new use for EEG measurements in

screening for biomarker-verified AD. Recently, disease-modifying

AD drugs have been approved in several countries; however,

screening for suitability of such expensive drugs requires testing

for Ab using the expensive and restrictive PET or highly invasive

spinal tap. Today, Ab imaging technology is inaccessible to the vast

majority of the world’s older adults who are at risk for dementia. We

plan to further develop our deep-learning analysis for screening for

suitability for treatment with disease-modifying AD drugs, taking

advantage of this portable EEG device. This device does not require

specific measurement locations such as shielded rooms and can be

easily measured in a short time, so it is expected to be applied in a

wide range of situations, such as medical checkups or nursing home.

The present results should be cautiously interpreted because of

the study’s relatively small sample size. Additionally, this study

included only cases who underwent inpatient evaluation and CSF

testing, which might have yielded a selection bias. Future validation

using larger outpatient and inpatient samples at multiple

institutions are required to enlarge the generalizability of these

results. The HVs in this study were not tested for AD biomarkers

due to the invasiveness of the sampling method; the possibility

cannot be ruled out that some AD biomarker-positive cases were

inadvertently included in the control group.
5 Conclusions

In this study, we developed a system using a patch-type portable

EEG device and an advanced deep learning algorithm specifically

designed to discern AD pathology. Utilizing the mobility offered by

portable EEG technology, we aim to employ this newly developed

system as a foundational tool for the screening of biomarker-

verified AD in diagnostic practice. This approach not only

represents a significant methodological innovation but also holds

the potential to substantially enhance the efficacy and accessibility

of AD screening protocols.
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FIGURE 4

Performance of the vision transformer analytical model. The receiver
operating characteristic curve for discerning between patients with
biomarker-verified Alzheimer’s disease and healthy volunteers
is shown.
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