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Background and objectives:Major Depressive Disorder (MDD) is one of themost

prevalent and debilitating health conditions worldwide. Previous studies have

reported a link between metabolic dysregulation and MDD. However, evidence

for a causal relationship between blood metabolites and MDD is lacking.

Methods: Using a two-sample bidirectional Mendelian randomization analysis

(MR), we assessed the causal relationship between 1,400 serum metabolites and

Major Depressive Disorder (MDD). The Inverse Variance Weighted method (IVW)

was employed to estimate the causal association between exposures and

outcomes. Additionally, MR-Egger regression, weighted median, simple mode,

and weighted mode methods were used as supplementary approaches for a

comprehensive appraisal of the causality between blood metabolites and MDD.

Pleiotropy and heterogeneity tests were also conducted. Lastly, the relevant

metabolites were subjected to metabolite function analysis, and a reverse MR

was implemented to explore the potential influence of MDD on

these metabolites.

Results: After rigorous screening, we identified 34 known metabolites, 13

unknown metabolites, and 18 metabolite ratios associated with Major

Depressive Disorder (MDD). Among all metabolites, 33 were found to have

positive associations, and 32 had negative associations. The top five

metabolites that increased the risk of MDD were the Arachidonate (20:4n6) to

linoleate (18:2n6) ratio, LysoPE(18:0/0:0), N-acetyl-beta-alanine levels,

Arachidonate (20:4n6) to oleate to vaccenate (18:1) ratio, Glutaminylglutamine,

and Threonine to pyruvate ratio. Conversely, the top five metabolites that

decreased the risk of MDD were N6-Acetyl-L-lysine, Oleoyl-linoleoyl-glycerol

(18:1 to 18:2) [2] to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [2] ratio,

Methionine to phosphate ratio, Pregnanediol 3-O-glucuronide, and 6-

Oxopiperidine-2-carboxylic acid. Metabolite function enrichment was primarily

concentrated in pathways such as Bile Acid Biosynthesis (FDR=0.177),

Glutathione Metabolism (FDR=0.177), Threonine, and 2-Oxobutanoate

Degradation (FDR=0.177). In addition, enrichment was noted in pathways like
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Valine, Leucine, and Isoleucine Biosynthesis (p=0.04), as well as Ascorbate and

Aldarate Metabolism (p=0.04).

Discussion: Within a pool of 1,400 blood metabolites, we identified 34 known

metabolites and 13 unknown metabolites, as well as 18 metabolite ratios

associated with Major Depressive Disorder (MDD). Additionally, three

functionally enriched groups and two metabolic pathways were selected. The

integration of genomics and metabolomics has provided significant insights for

the screening and prevention of MDD.
KEYWORDS

metabolites, major depressive disorder (MDD), Mendelian randomization study,
pathways, metabolomics
1 Introduction

Globally, Major Depressive Disorder (MDD) stands as one of

the most common and incapacitating health concerns. In the past

three decades, the worldwide incidence of MDD has surged by

nearly 50%, impacting over 264 million individuals across various

age groups (1). According to the World Health Organization,

depression ranks as the foremost cause of mental and physical

disability on a global scale and stands as a significant contributor to

the burden of health issues faced worldwide (2). Regarding mental

health challenges, Major Depressive Disorder (MDD) is regarded as

one of the most critical conditions, necessitating immediate and

proactive intervention (3).

Metabolites, which are the substrates and products of

metabolism, not only drive essential cellular activities but also

serve as functional intermediates that can predict or influence the

onset and progression of diseases. In recent years, an increasing

number of studies have been exploring the relationship between

Major Depressive Disorder (MDD) and metabolomics, signaling a

burgeoning interest in this area of research (4). These investigations

have substantiated the effectiveness of metabolomics in unraveling

the complex characteristics of depression, along with the molecular

underpinnings associated with the clinical facets of Major

Depressive Disorder (MDD). Significantly, metabolomics has

illuminated the association between MDD and the gut

microbiome and has further delineated the significance of lipids

in the composition and operation of cellular membranes. The

metabolic profile of Major Depressive Disorder (MDD)

encompasses 124 metabolites, spanning across pathways of energy

and lipid metabolism. The research identified 49 metabolites,

including metabolites involved in the tricarboxylic acid (TCA)

cycle, such as citrate and pyruvate. Notably, levels of citrate were

significantly reduced, whereas pyruvate was markedly increased in

patients with severe depression (5).

It is important to note that there is a paucity of cohort-based

causality studies linking metabolites with Major Depressive
02
Disorder (MDD). Understanding whether disparate abundance

metabolites act as risk factors or protective agents for MDD

would be meaningful for predicting the disease and aiding

diagnosis through specific targeted approaches. Mendelian

randomization (MR) analysis employs single nucleotide

polymorphisms (SNPs), which occur randomly within human

genes, as instrumental variables. This method is akin to the

design of a randomized controlled trial (RCT), which enhances

the randomization of the sample selection. By establishing a

connection between exposure factors and outcome variables

through instrumental variables, this method provides a more

robust demonstration of the causal relationship between them.

Moreover, since metabolic products can be either substances that

influence the onset of a disease or substances that are produced as a

result of the disease, bidirectional MR analysis can more effectively

elucidate the causal direction between metabolic products

and disease.

Therefore, this study collected a relatively complete set of

serum metabolomics data and introduced a Mendelian

Randomization (MR) analysis akin to the design of a

randomized controlled trial (RCT). Through bidirectional MR

validation, we elucidated the causal relationship between Major

Depressive Disorder (MDD) and related metabolites. In this

research, the MR approach utilized metabolite-associated SNPs

as instrumental variables (IVs) to assess the causal effects of

genetic proxy markers for metabolites and their ratios on MDD.

Additionally, we evaluated integrated metabolic pathways to shed

light on their biological mechanisms.
2 Methods

2.1 Study design

The dataset containing all the data from this study is made

available to the public on the database website. Summarized
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statistical data from published genome-wide association studies

(GWAS) have been included. Written informed consent for all

subjects was obtained in separate studies, authorized by the

Institutional Review Boards’ ethics committees. No additional

ethical approval or informed consent is required.

We performed a two-sample Mendelian analysis using

metabolites as exposure and MDD as outcome. Then the 65

metabolites selected were used as outcome, and MDD was used

as exposure for reverse MR Analysis. Finally, the function analysis

of the related metabolites was carried out.

In the current study, we conducted a comprehensive assessment

of the relationship between Major Depressive Disorder (MDD) and

metabolism based on a rigorous Mendelian Randomization (MR)

design, evaluating a total of 1,091 metabolites and 309 metabolite

ratios, encompassing 1,400 metabolic correlates. The clinical

diagnosis of Major Depressive Disorder (MDD) relies on the use

of the Patient Health Questionnaire-9 (PHQ-9). Kroenke et al (6)

outlined the initial development of the PHQ-9 and proposed cutoff

scores indicative of varying levels of depression severity, which were

validated through the observation of disparities in health-related

quality of life across adjacent severity categories. Consequently, the

researchers employed 5-point intervals to delineate score ranges

associated with varying levels of depression severity, with scores

falling within the range of 20–27 indicative of severe depression (7).

Scientific MR studies must scrutinize three critical assumptions:

A) The genetic instrumental variables must be strongly associated

with the exposure of interest; B) The genetic instrumental variables

should be independent of the outcome and not related to any

known or unknown confounding factors; C) The effect of the

instrumental variables on the outcome should be exclusively

mediated through the exposure of interest. In summary, a

bidirectional analytic strategy was employed to select genetic

single nucleotide polymorphisms (SNPs) with significance to both

1,400 human serum metabolites and Major Depressive Disorder

(MDD). To prevent sample overlap, the metabolite and MDD

genetic information selected in this study was derived from

separate GWAS datasets.The schematic illustration of this

bidirectional MR study is shown in Figure 1.
Frontiers in Psychiatry 03
2.2 Data sources

We conducted a series of large-scale Genome-Wide Association

Studies (GWAS), which included metabolomic data of 1,091

metabolites and 309 metabolite ratios from a cohort of 8,299

individuals belonging to the Canadian Longitudinal Study on

Aging (CLSA).

Chen et al. have obtained a comprehensive genome-wide

association summary dataset for 1,091 metabolites and 309

metabolite ratios included in this study. This dataset is publicly

accessible from the GWAS server (http://metabolomics.helmholtz-

muenchen.de/gwas/). The service platform has gathered a relatively

comprehensive set of human serum metabolomic data. The GWAS

analysis included 1,091 metabolites and 309 metabolite ratios from

8,299 individuals, which are part of the Canadian Longitudinal

Study on Aging (CLSA) cohort. Among the 1,091 plasma

metabolites analyzed, 850 have known characteristics associated

with eight super-pathways, namely lipids, amino acids, xenobiotics,

nucleotides, cofactors and vitamins, carbohydrates, peptides, and

energy. The remaining 241 were categorized as unknown or

‘partially’ characterized molecules. The current study features 96

metabolites that had not been tested in previous representative

large-scale metabolomics GWASs. Detailed cohort characteristics

and metabolite information can be found in Supplementary Table 1.

The summary data for Major Depressive Disorder come from

the Integrated Epidemiology Unit (IEU) (https://gwas.mrcieu.

ac.uk/) Open GWAS project. GWAS ID is ieu-b-102 (8). In this

GWAS meta-analysis, the aggregate data comprise of 170,756 cases

of Major Depressive Disorder (MDD) and 329,443 control subjects,

yielding a total of 8,447,813 SNPs. We extracted the SNP

information by analyzing the VCF format files shared through

the platform.
2.3 Instrumental variable selection

In this MR (Mendelian Randomization) analysis, the selection of

IVs (Instrumental Variables) was based on three core assumptions.
B
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A
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FIGURE 1

The schematic diagram of the bidirectional MR study.
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Firstly, for each metabolite, we set a genome-wide significance

threshold p < 1 × 10^−5 for the selection of strongly associated

SNPs. Following the extraction of significant SNPs for each

metabolite, we performed linkage disequilibrium analysis. Linkage

disequilibrium was deemed present if the linkage disequilibrium

coefficient (r^2) was less than 0.1 and the distance between SNPs fell

within a 500-kilobase (kb) radius (9). Moreover, to mitigate the

potential bias due to weak instrumentality, the F-statistic for each

SNP was computed. SNPs exhibiting an F-statistic lower than 10 were

deemed weak instruments and were subjected to further scrutiny (10).
2.4 Sensitivity analysis

The standard Inverse Variance Weighted (IVW) method (a

random-effects model) (11) is the primary evaluative approach for

investigating the causal relationship between metabolites and Major

Depressive Disorder (MDD) in this analysis, encompassing both

forward and reverse MR analyses. MR-Egger and the Weighted

Median (WM) provide secondary methods of evaluation. When the

instrumental variables satisfy all three core assumptions, the IVW

method can estimate the causal effects of exposure with greater

precision and is considered the most robust method for Mendelian

Randomization. However, the analysis may yield inaccurate results if

some of the instrumental variables do not adhere to the instrumental

variable assumptions. Consequently, we conducted the following

sensitivity analyses: 1) We performed Cochran’s Q test via the

IVW and MR-Egger methods to detect potential violations of

assumptions through heterogeneity in the correlations between

individual IVs; 2) We implemented the MR-Egger intercept to

estimate pleiotropy and ensure that genetic variations are

independently associated with metabolites and MDD; 3) Additional

analyses such as Weighted Median and Mode-based Estimation were

used to enhance the reliability and stability of our hypothesis testing;

4) Individual SNP analyses and leave-one-out diagnostics were

carried out to evaluate the likelihood of the observed associations

for individual SNPs. MR analysis may breach causality assumptions

under the premise of genetic correlation between exposure and study

outcomes. While SNPs associated with MDD were excluded during

IV selection, SNPs without known associations might also influence

the incidence of MDD. Linkage Disequilibrium Score (LDSC)

regression can assess pleiotropy by utilizing SNP-based chi-square

statistics. Therefore, to ensure that the causal relationship is not

confounded by coherence between exposure and outcome, we

implemented LDSC to corroborate the genetic correlation between

differential abundance of serum metabolites and MDD.
2.5 Statistical analysis

All MR analyses were carried out using the “TwoSampleMR”

package within R (version 4.2.1). LDSC was conducted via the

“ldsc” package, with a p-value of less than 0.05 considered to be

statistically significant. Odds ratios (OR) were employed to estimate
Frontiers in Psychiatry 04
the magnitude and direction of the metabolic impact alongside their

corresponding 95% confidence intervals (CIs).
2.6 Verification of genetic correlation
and direction

Under the assumption of genetic correlation between exposures

and study outcomes, MR analysis could violate the principles of

causation. Although SNPs associated with MDD were excluded

when selecting instrumental variables (IVs), non-associated SNPs

might also influence the occurrence of MDD. Linkage

disequilibrium score (LDSC) regression can calculate pleiotropy

by invoking SNP-based chi-square statistics. Therefore, to ensure

the causal inference is not confounded by the coherence between

exposure and outcome, LDSC was employed to verify the genetic

correlation between the differential abundance of serummetabolites

and MDD.
2.7 Metabolic pathway analysis

Metabolic pathways were estimated using the web-based

MetaboAnalyst 6.0 (https://www.Metaboanalyst.ca/). The Pathway

Analysis and Enrichment Analysis modules were utilized to identify

clusters of metabolites or super-pathways potentially associated

with metabolic processes and their potential links to MDD. The

human metabolome database (HMDB) and the Kyoto Encyclopedia

of Genes and Genomes (KEGG) were used as reference databases.

The significance level for pathways was set at 0.05.
3 Result

3.1 Step 1: The impact of 1400 serum
metabolites on MDD

Due to the genome-wide significance threshold set at p <

1×10^-5 for selecting SNPs with strong associations, a total of

645 serum metabolites and metabolite ratios were chosen. All

featured F-statistics values greater than 10, suggesting that a weak

instrument bias is unlikely to be significant. All metabolic analyses

employed the Inverse Variance Weighted (IVW) approach as the

main method, with no evidence of heterogeneity or weak

instruments. From the primary outcomes, 96 metabolites were

significantly associated (with IVW p < 0.05). After screening for

pleiotropy, 65 metabolites remained significantly associated (with

IVW p < 0.05 and Pleiotropy p > 0.05), including 35 metabolites

and 17 metabolite ratios.

Of the 13 metabolites, the chemical properties are unknown,

while the remaining 35 identified metabolites fall into several

categories including: Lipids, Carboxylic acids, Organooxygen

compounds, amino acids, Keto acids, Naphthalenes, Purine

nucleotides, Organic acids, Glycerophospholipids, Quinic acid,
frontiersin.org
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Fatty acids, Steroids, and Naphthalenes, among others. Notably,

lipids are the most frequently occurring category, accounting for

60% of these identified substances. Within the group of 65

metabolites and metabolite ratios, 32 are positively associated

with MDD, while 33 show a negative association with the

condition. The IVW forest plot for the 65 significantly associated

metabolites is presented in Figure 2. Alternate MR analyses, Q-tests,

and sensitivity analysis results for the 65 known metabolites can be

found in Table 1. All instrumental variables (IVs) passed the

sensitivity tests (p > 0.05).

Among the 34 identified metabolites, we found that N6-acetyllysine

levels have the most significant negative correlation with MDD (IVW

OR = 0.96; 95% CI = 0.92–0.99; P = 0.0015), followed by Pregnanediol-

3-glucuronide levels (IVW OR = 0.97; 95% CI = 0.96–0.99; P = 0.002);

6-oxopiperidine-2-carboxylate levels (IVW OR = 0.97; 95% CI = 0.95–

0.99; P = 0.003); 2-linoleoylglycerol (18:2) levels (IVW OR = 0.96; 95%

CI = 0.94–0.99; P = 0.003); Docosatrienoate (22:3n3) levels (IVWOR =

0.97; 95% CI = 0.95–0.99; P = 0.003); 1-linoleoyl-gpc (18:2) levels (IVW

OR = 0.96; 95% CI = 0.94–0.99; P = 0.005); Quinate levels (IVW OR =

0.96; 95% CI = 0.93–0.99; P = 0.007); Adenosine 5’-diphosphate (ADP)

levels (IVW OR = 0.97; 95% CI = 0.95–0.99; P = 0.007); and

Taurodeoxycholate levels (IVWOR= 0.97; 95%CI = 0.95–1; P = 0.032).

The most significantly positive correlation with MDD was

observed in the levels of 1-stearoyl-GPE (18:0) (IVW OR = 1.03;
Frontiers in Psychiatry 05
95% CI = 1.01–1.05; P = 0.003); followed by N-acetyl-beta-alanine

levels (IVW OR = 1.03; 95% CI = 1.01–1.06; P = 0.003); Glutamine

levels (IVW OR = 1.03; 95% CI = 1.01–1.05; P = 0.005);

Methylsuccinate levels (IVW OR = 1.03; 95% CI = 1.01–1.05; P =

0.007); Linoleoyl-arachidonoyl-glycerol (18:2/20:4) [1] levels (IVW

OR = 1.03; 95% CI = 1.01–1.05; P = 0.013); and 1-palmitoyl-2-

arachidonoyl-gpc (16:0/20:4n6) levels (IVW OR = 1.02; 95% CI =

1–1.04; P = 0.016).

In terms of metabolite ratios, the most significant positive

correlation with MDD was observed in the ratio of Arachidonate

(20:4n6) to Linoleate (18:2n6) (IVW OR = 1.03; 95% CI = 1.01–

1.05; P = 0.001); the most significant negative correlation with

MDD was found in the ratio of Oleoyl-linoleoyl-glycerol (18:1 to

18:2) [2] to Linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [2] (IVW

OR = 0.97; 95% CI = 0.96–0.99; P = 0.002).

In summary, MR estimates from IVW, WM, and MR-Egger

regression for 34 metabolites and 18 metabolite ratios showed

consistent direction and magnitude, supporting robustness in the

causal inference, except for Alpha-hydroxyisocaproate levels

(IVW OR = 0.97; 95% CI = 0.93–1; P = 0.042; heterogeneity Q

value = 34.53; P = 0.032); 1-arachidonoyl-gpc (20:4n6) levels (IVW

OR = 1.02; 95% CI = 1–1.04; P = 0.041; heterogeneity Q value =

39.39; P = 0.018); 1-stearoyl-2-linoleoyl-gpc (18:0/18:2) levels (IVW

OR = 0.97; 95% CI = 0.94–1; P = 0.037; heterogeneity Q value =
FIGURE 2

IVW forest maps of 65 significantly related metabolites.
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TABLE 1 Two MR Models estimated causality between 65 metabolites and their ratio and major depressive disorder, and tested for heterogeneity and level pleiotropy.

Heterogeneity Pleiotropy

lue P intercept P

14.36 0.641

14.46 0.698 0.00 0.756

33.89 0.027

34.53 0.032 0.00 0.548

6.81 0.986

7.10 0.989 0.00 0.598

21.25 0.323

21.48 0.370 0.00 0.657

23.20 0.279

23.63 0.311 0.00 0.549

41.79 0.168

41.92 0.196 0.00 0.754

21.48 0.256

21.48 0.311 0.00 0.957

31.32 0.217

36.17 0.112 0.01 0.055

37.47 0.021

39.39 0.018 0.00 0.300

30.21 0.353

31.17 0.357 0.00 0.353

29.75 0.028

29.76 0.040 0.00 0.951
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CLASS
Metabolite name

and number
Method SNP(n) pval OR 95%CI

Qva

Lipids
1-stearoyl-2-arachidonoyl-
GPI (18:0/20:4) levels

MR Egger 19 0.220 1.03 0.99–1.07

GCST90199649 Inverse variance weighted 19 0.026 1.02 1–1.04

Lipids
Alpha-
hydroxyisocaproate levels

MR Egger 22 0.820 0.99 0.91–1.08

GCST90199658 Inverse variance weighted 22 0.042 0.97 0.93–1

Lipids
2-linoleoylglycerol
(18:2) levels

MR Egger 19 0.096 0.95 0.9–1.01

GCST90199685 Inverse variance weighted 19 0.003 0.96 0.94–0.99

Lipids
Docosatrienoate
(22:3n3) levels

MR Egger 21 0.096 0.96 0.92–1

GCST90199710 Inverse variance weighted 21 0.003 0.97 0.95–0.99

Lipids 1-linoleoyl-gpc (18:2) levels MR Egger 22 0.088 0.95 0.89–1.01

GCST90199742 Inverse variance weighted 22 0.005 0.96 0.94–0.99

Lipids 1-stearoyl-GPE (18:0) levels MR Egger 36 0.422 1.02 0.97–1.08

GCST90199772 Inverse variance weighted 36 0.003 1.03 1.01–1.05

Lipids Malonylcarnitine levels MR Egger 20 0.472 1.02 0.96–1.09

GCST90199776 Inverse variance weighted 20 0.035 1.03 1–1.05

Lipids
2-hydroxy-3-
methylvalerate levels

MR Egger 28 0.011 0.92 0.87–0.98

GCST90199786 Inverse variance weighted 28 0.034 0.97 0.95–1

Lipids
1-arachidonoyl-gpc
(20:4n6) levels

MR Egger 24 0.043 1.03 1–1.06

GCST90199788 Inverse variance weighted 24 0.041 1.02 1–1.04

Lipids
Pregnanediol-3-
glucuronide levels

MR Egger 30 0.037 0.96 0.92–1

GCST90199917 Inverse variance weighted 30 0.002 0.97 0.96–0.99

Lipids
1-stearoyl-2-linoleoyl-gpc
(18:0/18:2) levels

MR Egger 19 0.359 0.97 0.9–1.04

GCST90200037 Inverse variance weighted 19 0.037 0.97 0.94–1
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TABLE 1 Continued

Heterogeneity Pleiotropy

alue P intercept P

21.53 0.308

22.93 0.292 -0.01 0.280

22.26 0.101

23.40 0.103 0.00 0.395

38.52 0.111

38.92 0.128 0.00 0.588

25.82 0.310

27.23 0.294 0.00 0.274

15.91 0.319

17.62 0.283 0.00 0.240

16.44 0.226

17.11 0.250 0.00 0.479

20.76 0.411

21.14 0.450 0.00 0.553

14.42 0.637

15.54 0.625 0.00 0.305

11.42 0.783

15.91 0.53 -0.01 0.05

10.01 0.866

10.06 0.901 0 0.829
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CLASS
Metabolite name

and number
Method SNP(n) pval OR 95%CI

Q

Lipids
1-palmitoyl-2-
docosahexaenoyl-gpc (16:0/
22:6) levels

MR Egger 21 0.091 1.07 0.99–1.14

GCST90200043 Inverse variance weighted 21 0.029 1.03 1–1.05

Lipids
1-palmitoyl-2-arachidonoyl-
GPE (16:0/20:4) levels

MR Egger 17 0.645 1.01 0.97–1.05

GCST90200054 Inverse variance weighted 17 0.025 1.03 1–1.05

Lipids
1-(1-enyl-palmitoyl)-2-
palmitoleoyl-GPC (P-16:0/
16:1) levels

MR Egger 31 0.146 1.03 0.99–1.07

GCST90200070 Inverse variance weighted 31 0.038 1.02 1–1.04

Lipids
1-oleoyl-2-linoleoyl-GPE
(18:1/18:2) levels

MR Egger 25 0.037 0.97 0.94–1

GCST90200082 Inverse variance weighted 25 0.021 0.98 0.97–1

Lipids
1-linoleoyl-2-linolenoyl-
GPC (18:2/18:3) levels

MR Egger 16 0.046 0.94 0.89–0.99

GCST90200095 Inverse variance weighted 16 0.017 0.97 0.94–0.99

Lipids
Linoleoyl-arachidonoyl-
glycerol (18:2/20:4)
[1] levels

MR Egger 15 0.077 1.04 1–1.08

GCST90200103 Inverse variance weighted 15 0.013 1.03 1.01–1.05

Lipids
Glycosyl-N-tricosanoyl-
sphingadienine (d18:2/
23:0) levels

MR Egger 22 0.563 0.98 0.94–1.04

GCST90200114 Inverse variance weighted 22 0.007 0.97 0.95–0.99

Lipids Taurodeoxycholate levels MR Egger 19 0.977 1.00 0.94–1.06

GCST90200334 Inverse variance weighted 19 0.032 0.97 0.95–1

Lipids Methylsuccinate levels MR Egger 18 0.004 1.05 1.02–1.09

GCST90200352 Inverse variance weighted 18 0.007 1.03 1.01–1.05

Lipids Cholesterol levels MR Egger 18 0.167 0.96 0.91–1.01

GCST90200368 Inverse variance weighted 18 0.011 0.96 0.94–0.99
v
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TABLE 1 Continued

Heterogeneity Pleiotropy

e P intercept P

46.92 0.007

46.93 0.01 0 0.955

17.56 0.417

18.99 0.392 0.00 0.256

18.02 0.454

18.95 0.460 0.00 0.349

24.80 0.053

25.08 0.068 0.00 0.690

27.22 0.129

27.22 0.164 0.00 0.967

18.29 0.568

20.07 0.517 0.00 0.198

13.91 0.930

14.00 0.947 0.00 0.761

22.3 0.442

23.11 0.454 0 0.379

21.38 0.261

21.60 0.305 0.00 0.668

7.51 0.822

7.62 0.867 0 0.746

12.45 0.570

12.67 0.628 0.00 0.649

14.03 0.868

14.31 0.890 0.00 0.606

14.18 0.717
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CLASS
Metabolite name

and number
Method SNP(n) pval OR 95%CI

Qva

Lipids
1-palmitoyl-2-arachidonoyl-
gpc (16:0/20:4n6) levels

MR Egger 28 0.115 1.02 1–1.05

GCST90200692 Inverse variance weighted 28 0.016 1.02 1–1.04

Amino acids N-acetylglutamate levels MR Egger 19 0.977 1.00 0.94–1.07

GCST90199637 Inverse variance weighted 19 0.007 0.96 0.94–0.99

Amino acids N-acetylhistidine levels MR Egger 20 0.039 0.98 0.96–1

GCST90199735 Inverse variance weighted 20 0.024 0.98 0.97–1

Amino acids N6-acetyllysine levels MR Egger 17 0.031 0.96 0.92–0.99

GCST90199826 Inverse variance weighted 17 0.002 0.96 0.94–0.99

Amino acids
6-oxopiperidine-2-
carboxylate levels

MR Egger 22 0.075 0.97 0.93–1

GCST90199949 Inverse variance weighted 22 0.003 0.97 0.95–0.99

Amino acids 5-oxoproline levels MR Egger 22 0.014 0.97 0.95–0.99

GCST90200280 Inverse variance weighted 22 0.013 0.98 0.96–1

Amino acids
Gamma-
glutamyltyrosine levels

MR Egger 25 0.492 1.02 0.97–1.07

GCST90200295 Inverse variance weighted 25 0.040 1.02 1–1.05

Amino acids Glutamine levels MR Egger 24 0.045 1.05 1–1.09

GCST90200419 Inverse variance weighted 24 0.005 1.03 1.01–1.05

Keto acids 2-oxoarginine levels MR Egger 20 0.699 0.98 0.91–1.07

GCST90199903 Inverse variance weighted 20 0.015 0.97 0.94–0.99

Keto acids Alpha-ketobutyrate levels MR Egger 14 0.224 0.96 0.89–1.02

GCST90200438 Inverse variance weighted 14 0.034 0.97 0.94–1

Quinic acid Quinate levels MR Egger 16 0.359 0.97 0.92–1.03

GCST90199645 Inverse variance weighted 16 0.007 0.96 0.93–0.99

Carboxylic acids N-acetyl-beta-alanine levels MR Egger 23 0.059 1.04 1–1.09

GCST90199866 Inverse variance weighted 23 0.003 1.03 1.01–1.06

Naphthalenes 2-naphthol sulfate levels MR Egger 20 0.061 0.94 0.89–1
lu
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TABLE 1 Continued

Heterogeneity Pleiotropy

value P intercept P

15.65 0.680 0.00 0.241

22.69 0.304

23.26 0.33 0 0.487

14.22 0.86

14.24 0.893 0 0.888

25.37 0.063

25.47 0.085 0 0.811

20.07 0.329

23.31 0.224 0 0.105

8.18 0.88

9.73 0.837 0 0.234

9.33 0.952

9.83 0.957 0 0.49

11.82 0.543

11.85 0.619 0 0.867

14.85 0.732

15.41 0.753 0 0.464
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CLASS
Metabolite name

and number
Method SNP(n) pval OR 95%CI

Q

GCST90200213 Inverse variance weighted 20 0.045 0.97 0.95–1

Purine nucleotides
Adenosine 5’-diphosphate
(ADP) levels

MR Egger 22 0.106 0.96 0.91–1.01

GCST90200355 Inverse variance weighted 22 0.007 0.97 0.95–0.99

Ratio

Adenosine 5’-diphosphate
(ADP) to Adenosine 5’-
monophosphate
(AMP) ratio

MR Egger 23 0.411 0.98 0.94–1.03

GCST90200728 Inverse variance weighted 23 0.015 0.98 0.96–1

Ratio
Arachidonate (20:4n6) to
oleate to vaccenate
(18:1) ratio

MR Egger 18 0.071 1.03 1–1.07

GCST90200740 Inverse variance weighted 18 0.004 1.03 1.01–1.05

Ratio

Oleoyl-linoleoyl-glycerol
(18:1 to 18:2) [2] to
linoleoyl-arachidonoyl-
glycerol (18:2 to 20:4)
[2] ratio

MR Egger 20 0.003 0.96 0.93–0.98

GCST90200795 Inverse variance weighted 20 0.002 0.97 0.96–0.99

Ratio
Adenosine 5’-
monophosphate (AMP) to
glutamine ratio

MR Egger 16 0.056 1.07 1–1.14

GCST90200848 Inverse variance weighted 16 0.041 1.03 1–1.06

Ratio
Adenosine 5’-
monophosphate (AMP) to
asparagine ratio

MR Egger 20 0.085 1.06 1–1.13

GCST90200859 Inverse variance weighted 20 0.004 1.04 1.01–1.07

Ratio
Adenosine 5’-
monophosphate (AMP) to
serine ratio

MR Egger 15 0.350 1.04 0.96–1.11

GCST90200860 Inverse variance weighted 15 0.046 1.03 1–1.06

Ratio Phosphate to serine ratio MR Egger 21 0.160 1.05 0.98–1.11

GCST90200863 Inverse variance weighted 21 0.041 1.02 1–1.05
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TABLE 1 Continued

Heterogeneity Pleiotropy

e P intercept P

11.95 0.449

12.27 0.506 0 0.586

13.9 0.674

16.3 0.572 -0.01 0.14

17.16 0.876

17.61 0.889 0 0.506

20.07 0.329

20.09 0.389 0 0.896

18.23 0.507

18.29 0.568 0 0.809

29.15 0.141

29.52 0.164 0 0.602

24.95 0.126

25.08 0.158 0 0.761

23.01 0.149

23.96 0.156 0 0.412

22.88 0.408

23.12 0.454 0 0.639

52.33 0.001

53.99 0.001 0 0.391

(Continued)

D
o
n
g
e
t
al.

10
.3
3
8
9
/fp

syt.2
0
2
4
.13

9
15

3
5

Fro
n
tie

rs
in

P
sych

iatry
fro

n
tie

rsin
.o
rg

10
CLASS
Metabolite name

and number
Method SNP(n) pval OR 95%CI

Qval

Ratio
Methionine to
phosphate ratio

MR Egger 14 0.364 0.97 0.9–1.04

GCST90200864 Inverse variance weighted 14 0.002 0.95 0.92–0.98

Ratio
Adenosine 5’-
monophosphate (AMP) to
isoleucine ratio

MR Egger 19 0.041 1.09 1.01–1.17

GCST90200867 Inverse variance weighted 19 0.039 1.03 1–1.06

Ratio
Phenylpyruvate to
citrate ratio

MR Egger 27 0.118 0.96 0.91–1.01

GCST90200885 Inverse variance weighted 27 0.017 0.97 0.95–1

Ratio
Cortisol to
taurocholate ratio

MR Egger 20 0.364 0.98 0.93–1.03

GCST90200890 Inverse variance weighted 20 0.040 0.97 0.95–1

Ratio
Alpha-ketoglutarate to
proline ratio

MR Egger 21 0.313 0.97 0.91–1.03

GCST90200933 Inverse variance weighted 21 0.050 0.98 0.95–1

Ratio
Phosphate to 5-
oxoproline ratio

MR Egger 24 0.194 1.02 0.99–1.05

GCST90200968 Inverse variance weighted 24 0.010 1.03 1.01–1.05

Ratio
Arachidonate (20:4n6) to
linoleate (18:2n6) ratio

MR Egger 20 0.041 1.04 1–1.07

GCST90200979 Inverse variance weighted 20 0.001 1.03 1.01–1.05

Ratio
Benzoate to linoleoyl-
arachidonoyl-glycerol (18:2
to 20:4) [2] ratio

MR Egger 19 0.067 0.96 0.91–1

GCST90200990 Inverse variance weighted 19 0.011 0.97 0.95–0.99

Ratio Threonine to pyruvate ratio MR Egger 24 0.459 1.02 0.97–1.08

GCST90201009 Inverse variance weighted 24 0.005 1.03 1.01–1.06

Ratio
Androsterone glucuronide
to etiocholanolone
glucuronide ratio

MR Egger 26 0.045 1.04 1–1.08

GCST90201013 Inverse variance weighted 26 0.028 1.03 1–1.05
u
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TABLE 1 Continued

Heterogeneity Pleiotropy

Qvalue P intercept P

41.08 0.053

41.12 0.067 0 0.867

32.99 0.162

34.08 0.164 0 0.361

28.18 0.08

28.19 0.105 0 0.919

9.6 0.476

9.71 0.556 0 0.74

9.63 0.649

9.71 0.717 0 0.778

13.77 0.966

13.77 0.976 0 0.979

11.07 0.681

11.6 0.709 0 0.477

9.68 0.72

10.19 0.748 0 0.488

25.37 0.28

26.86 0.262 0 0.269

8.14 0.701

8.18 0.771 0 0.837

25.65 0.081

25.82 0.104 0 0.743

18.39 0.861

18.39 0.891 0 0.98

22.61 0.206

22.72 0.25 0 0.777
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Metabolite name

and number
Method SNP(n) pval OR 95%CI

Unknown X-11470 levels MR Egger 30 0.177 1.02 0.99–1.05

GCST90200470 Inverse variance weighted 30 0.019 1.02 1–1.04

Unknown X-11444 levels MR Egger 28 0.013 1.04 1.01–1.07

GCST90200474 Inverse variance weighted 28 0.002 1.03 1.01–1.05

Unknown X-12410 levels MR Egger 21 0.201 0.97 0.92–1.02

GCST90200480 Inverse variance weighted 21 0.013 0.97 0.95–0.99

Unknown X-12740 levels MR Egger 12 0.394 1.04 0.96–1.12

GCST90200497 Inverse variance weighted 12 0.001 1.05 1.02–1.08

Unknown X-13728 levels MR Egger 14 0.459 1.02 0.96–1.09

GCST90200522 Inverse variance weighted 14 0.034 1.03 1–1.07

Unknown X-18901 levels MR Egger 27 0.111 1.04 0.99–1.08

GCST90200559 Inverse variance weighted 27 0.003 1.04 1.01–1.06

Unknown X-18935 levels MR Egger 16 0.939 1 0.94–1.07

GCST90200573 Inverse variance weighted 16 0.030 1.03 1–1.05

Unknown X-21283 levels MR Egger 15 0.046 0.97 0.95–1

GCST90200575 Inverse variance weighted 15 0.015 0.98 0.96–1

Unknown X-24556 levels MR Egger 24 0.800 0.99 0.95–1.04

GCST90200628 Inverse variance weighted 24 0.003 0.97 0.95–0.99

Unknown X-24307 levels MR Egger 13 0.509 1.03 0.95–1.12

GCST90200632 Inverse variance weighted 13 0.027 1.04 1–1.07

Unknown X-24951 levels MR Egger 19 0.151 1.06 0.98–1.15

GCST90200643 Inverse variance weighted 19 0.006 1.05 1.01–1.08

Unknown X-24565 levels MR Egger 28 0.177 0.98 0.95–1.01

GCST90200645 Inverse variance weighted 28 0.006 0.98 0.96–0.99

Unknown X-25422 levels MR Egger 20 0.105 1.05 0.99–1.11

GCST90200661 Inverse variance weighted 20 0.001 1.04 1.02–1.07
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29.76; P = 0.040); 1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6)

levels (IVW OR = 1.02; 95% CI = 1–1.04; P = 0.016; heterogeneity

Q value = 46.93; P = 0.01); and the Androsterone glucuronide to

etiocholanolone glucuronide ratio (IVW OR = 1.03; 95% CI = 1–

1.05; P = 0.028; heterogeneity Q value = 53.99; P = 0.001).

Heterogeneity was not detected in the p-values of the Cochran Q

test for the remaining metabolites and metabolite ratios (Table 1;

Supplementary Tables 1, 2). The MR-Egger intercept did not

indicate the presence of pleiotropy (Table 1; Supplementary

Tables 1, 2). Furthermore, a Leave-One-Out (LOO) analysis did

not identify any highly influential SNPs that could bias the

combined effect estimates (Supplementary Table 3). Therefore,

these 34 metabolites and 18 metabolite ratios have been identified

as potential candidate metabolomic markers involved in the

pathogenesis of major depressive disorder (MDD) and warrant

further analysis, with particular focus on the levels of N6-

acetyllysine and 1-stearoyl-GPE (18:0).
3.2 Step 2: The impact of MDD on the
inverse MR Of 65 metabolites and
metabolite ratios

Given a genome-wide significance threshold of p < 1 × 10^−5,

fifty significant SNPs were extracted to serve as instrumental

variables (IVs) for major depressive disorder (MDD)

(Supplementary Table 4). The analysis utilized 65 serum

metabolites and metabolite ratios as outcomes. Moreover, the F-

statistics were all well above 10, suggesting that a bias from weak

instruments is unlikely to be significant. The Inverse Variance

Weighted (IVW) method was employed as the primary

estimation approach for MDD. Of the principal findings, only

one metabolite, X-12740 levels, was identified as significantly

associated (IVW OR = 1.21; 95% CI = 1.00–1.47; P = 0.045;

heterogeneity Q value = 27.79; P = 0.980); however, since this

metabolite is unidentified, it lacks research significance.

Consequently, it is evident that the influence of the 34

metabolites and 18 metabolite ratios on MDD is singular.
3.3 Step 3: Metabolic pathway analysis

The 34 metabolites significantly associated with MDD were

inputted into the MetaboAnalyst 6.0 platform to identify various

potential metabolic pathways involved in the pathogenesis and

immunology of MDD. Among them, Bile Acid Biosynthesis

(FDR = 0.177), Glutathione Metabolism (FDR = 0.177), and

Threonine and 2-Oxobutanoate Degradation (FDR = 0.177)

demonstrated notable functional enrichment (Figure 3).

Additionally, the pathways of Valine, Leucine and Isoleucine

Biosynthesis (p = 0.04), and Ascorbate and Aldarate Metabolism

(p = 0.04) were even more significant (Table 2, Figure 4). The

metabolic mechanisms formed by these metabolites may be related

to the pathogenesis affected by MDD. Figure 3 illustrates the

Enrichment Overview(top 25). Table 2 and Figure 4 show the top

ten enrichment pathways.
Frontiers in Psychiatry 12
Figure 4 is a figure in Table 2, with Impact as the horizontal

coordinate and -LOG10(p) as the vertical coordinate. The pathway

marked in the figure above is the significant pathway (Raw

p&lt; 0.05).
4 Discussion

Our research findings confirm a causal relationship between 34

metabolites and 18 metabolite ratios with Major Depressive

Disorder (MDD). Specifically, increased levels of 13 metabolites

including 1-stearoyl-2-arachidonoyl-GPI (18:0/20:4), 1-stearoyl-

GPE (18:0), Malonylcarnitine, 1-arachidonoyl-gpc (20:4n6), 1-

palmitoyl-2-docosahexaenoyl-gpc (16:0/22:6), 1-palmitoyl-2-

arachidonoyl-GPE (16:0/20:4), 1-(1-enyl-palmitoyl)-2-

palmitoleoyl-GPC (P-16:0/16:1), Linoleoyl-arachidonoyl-glycerol

(18:2/20:4), Methylsuccinate, 1-palmitoyl-2-arachidonoyl-gpc

(16:0/20:4n6), Gamma-glutamyltyrosine, Glutamine, N-acetyl-

beta-alanine and an increase in 7 metabolite ratios including

Arachidonate (20:4n6) to oleate to vaccenate (18:1) ratio,

Adenosine 5’-monophosphate (AMP) to glutamine ratio, AMP to

asparagine ratio, AMP to serine ratio, Phosphate to serine ratio,

AMP to isoleucine ratio, Phosphate to 5-oxoproline ratio,

Arachidonate (20:4n6) to linoleate (18:2n6) ratio, and Threonine

to pyruvate ratio, Androsterone glucuronide to etiocholanolone

glucuronide ratio, are associated with adverse effects on MDD.

Conversely, the elevation of 22 other metabolites including

Alpha-hydroxyisocaproate , 2- l inoleoylglycerol (18:2) ,

Docosatrienoate (22:3n3), 1-linoleoyl-gpc (18:2), 2-hydroxy-3-

methylvalerate, Pregnanediol-3-glucuronide, 1-stearoyl-2-

linoleoyl-gpc (18:0/18:2), 1-oleoyl-2-linoleoyl-GPE (18:1/18:2), 1-

linoleoyl-2-linolenoyl-GPC (18:2/18:3), Glycosyl-N-tricosanoyl-

sphingadienine (d18:2/23:0), Taurodeoxycholate, Cholesterol, N-

acetylglutamate, N-acetylhistidine, N6-acetyllysine, 6-

oxopiperidine-2-carboxylate, 5-oxoproline, 2-oxoarginine, Alpha-

ketobutyrate, Quinate, 2-naphthol sulfate, Adenosine 5’-

diphosphate (ADP), along with an increase in 7 additional

metabolite ratios, including ADP to AMP ratio, Oleoyl-linoleoyl-

glycerol (18:1 to 18:2) [2] to linoleoyl-arachidonoyl-glycerol (18:2 to

20:4) [2] ratio, Methionine to phosphate ratio, Phenylpyruvate to

citrate ratio, Cortisol to taurocholate ratio, Alpha-ketoglutarate

to proline ratio, Benzoate to linoleoyl-arachidonoyl-glycerol (18:2

to 20:4) [2] ratio, serve a protective role in the onset of MDD.

Among the findings, the blood metabolite N6-acetyllysine displayed

the most significant correlation with Major Depressive Disorder

(MDD). Additionally, our research identified that three functionally

enriched pathways: Bile Acid Biosynthesis (FDR = 0.177),

Glutathione Metabolism (FDR = 0.177), and Threonine and 2-

Oxobutanoate Degradation (FDR = 0.177), along with two

metabolic pathways: Valine, Leucine and Isoleucine Biosynthesis

(p = 0.04), and Ascorbate and Aldarate Metabolism (p = 0.04), play

a crucial role in the progression of MDD.

Major Depressive Disorder (MDD) is a significant factor

impacting people’s health and affects the entire lifespan of

individuals. It is associated with a plethora of debilitating

symptoms beyond mood dysregulation, ranging from cognitive
frontiersin.org
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and motor dysfunctions to autonomic nervous symptoms, as well as

an increased risk of inflammation, immune system disruption,

cardiovascular diseases, and heightened mortality. While most

antidepressant medications target the monoaminergic pathways,

mounting evidence suggests a more intricate interplay involving

multiple pathways, reflecting extensive metabolic alterations,

including those in energy and lipid metabolism. Changes in

lipids, such as triglycerides, low and very-low-density lipoproteins

(LDLs and VLDLs), high-density lipoproteins (HDLs),

phospha t i dy l cho l in e , l y sophospha t i dy l cho l in e , and

sphingomyelins, have been observed. A recent study involving
Frontiers in Psychiatry 13
5,283 MDD patients and 10,145 controls has indicated that

individuals with MDD have reduced levels of HDLs and elevated

levels of VLDLs and triglycerides. This indicates that metabolites,

particularly lipids, play a crucial role in the onset and progression

of MDD (5). To our knowledge, this is the first study utilizing a

Mendelian Randomization (MR) approach in order to evaluate

the causal relationship between 1,400 blood metabolites and

metabolite ratios and the risk of Major Depressive Disorder (MDD).
4.1 Adverse reactions of metabolites
to MDD

After excluding unknown metabolites and metabolite ratios, 13

metabolites were found to have adverse effects on Major Depressive

Disorder (MDD), including: 1-stearoyl-GPE (18:0), N-acetyl-beta-

alanine, Glutamine, Methylsuccinate, Linoleoyl-arachidonoyl-

glycerol (18:2/20:4), 1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6),

1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4), 1-stearoyl-2-

arachidonoyl-GPI (18:0/20:4), 1-palmitoyl-2-docosahexaenoyl-gpc

(16:0/22:6), Malonylcarnitine, 1-(1-enyl-palmitoyl)-2-palmitoleoyl-

GPC (P-16:0/16:1), Gamma-glutamyltyrosine, and 1-arachidonoyl-

gpc (20:4n6). 1-stearoyl-GPE (18:0), also known as LysoPE(18:0/0:0),

is a type of lysophospholipid. Lysophosphatidylcholines (lysoPCs)

and lysophosphatidylethanolamines (lysoPEs) are categorized as

glycerophospholipids, which are the metabolic products of cell

membranes. Research indicates that lysoPCs and lysoPEs can be

interconverted by the action of phospholipase A2 and

phosphatidylethanolamine N-methyltransferase. Furthermore,

LysoPC(0:0/18:0) may serve as a sensitive potential biomarker for

hepatocyte death induced by chronic exposure to chlorpyrifos in

Wistar rats (12, 13). Strikingly, the findings of Zhang et al. revealed a

negative correlation between lysoPE (0:0/18:0) and the increased

expression of genes related to Hmgcs1, Acat2, and Apoa4. This

interaction suggests that lysoPE (0:0/18:0) may disrupt metabolic

pathways, including the synthesis and degradation of ketone bodies,

fat digestion and absorption, butanoate metabolism, and the
FIGURE 3

The enrichment overview (top 25).
TABLE 2 MR Enrichment pathway top ten table.

Pathway Total Expected Hits Raw p FDR -LOG10(p) Impact

Valine, leucine and isoleucine biosynthesis 8 0.040635 1 0.040007 1 1.3979 0

Ascorbate and aldarate metabolism 9 0.045714 1 0.044908 1 1.3477 0

Arginine biosynthesis 14 0.071111 1 0.069087 1 1.1606 0

D-Amino acid metabolism 15 0.07619 1 0.073857 1 1.1316 0

Glycosylphosphatidylinositol (GPI)-
anchor biosynthesis

15 0.07619 1 0.073857 1 1.1316 0.00639

Pentose and glucuronate interconversions 19 0.096508 1 0.092728 1 1.0328 0.10843

Propanoate metabolism 22 0.11175 1 0.10666 1 0.972 0.04103

Glutathione metabolism 28 0.14222 1 0.13396 1 0.87302 0.00709

Glycine, serine and threonine metabolism 33 0.16762 1 0.15615 1 0.80646 0

Cysteine and methionine metabolism 33 0.16762 1 0.15615 1 0.80646 0.05983
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degradation of the branched-chain amino acids valine, leucine, and

isoleucine, following exposure to PFOS. Consequently, they

postulated that reduced liver levels of lysoPE (0:0/18:0) in offspring

exposed to PFOS could potentially elevate hepatotoxicity (14).

Linoleoyl-arachidonoyl-glycerol (18:2/20:4), also known as PC(18:2

(9Z ,12Z) /20 :4 (5Z ,8Z ,11Z ,14Z) ) , and 1-pa lmi toy l -2 -

docosahexaenoyl-gpc (16:0/22:6), referred to as PC(38:6), are types

of phosphatidylcholines that are closely associated with breast cancer,

cervical cancer, ulcerative colitis, and atherosclerosis. Studies have

uncovered a relationship between the gut microbiota-dependent

metabolism of dietary phosphatidylcholine and the pathogenesis of

cardiovascular diseases (15). 1-palmitoyl-2-arachidonoyl-gpc (16:0/

20:4n6), also known as PC(16:0/20:4(5Z,8Z,11Z,14Z)), along with 1-

arachidonoyl-gpc (20:4n6), are currently under-researched. 1-

palmitoyl-2-arachidonoyl-GPE (16:0/20:4)(PE(16:0/20:4

(5Z,8Z,11Z,14Z))) is a phosphatidylethanolamine that has recently

been recognized for its significant role in mammalian health

following its association with diseases such as Alzheimer’s,

Parkinson’s, non-alcoholic liver disease, and the virulence of certain

pathogens through the discovery of its metabolic importance (16). 1-

stearoyl-2-arachidonoyl-GPI (18:0/20:4), also known as PI(18:0/20:4

(5Z,8Z,11Z,14Z)), is a phosphatidylinositol, which is an essential lipid

playing dual roles as a crucial membrane component and as a

participant in fundamental metabolic processes. Phosphoinositides

(PI) comprise only a small fraction of the total cellular phospholipid

content, yet they have a significant role in the development and

progression of cancer. In various types of cancer, specific

phosphoinositides such as phosphatidylinositol 3,4,5-trisphosphate

[PtdIns(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PtdIns

(4,5)P2] are critically involved in the regulation of survival,

proliferation, invasion, and growth of cancer cells (17).

Furthermore, they are closely associated with conditions such as

Alzheimer’s disease, epileptic seizures, and Parkinson’s disease (18).
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N-Acetyl-beta-alanine, also known as 3-(acetylamino)

propionic acid, falls into the category of organic compounds

known as carboxylic acids. It is an endogenous b amino acid that

is metabolized into acetate and b alanine by the enzyme N-acetyl-b
alanine dehydrogenase. b-alanine serves as an intermediate

molecule between GABA (gamma-aminobutyric acid) and

glycine, exhibiting a mechanism of action that is very similar to

these neurotransmitters. It is considered to be an inhibitory

neurotransmitter. Studies have shown that metabolomic analysis

of the prefrontal cortex in mice indicates an upregulation of N-

acetyl-beta-alanine during wakefulness compared to sleep,

suggesting a potential link with sleep regulation (19). It is well-

established that there is a close correlation between sleep and major

depressive disorder. Studies support the notion that an early

bedtime is associated with a protective effect against the risk of

developing major depressive disorder (20, 21).

Therefore, whether N-acetyl-beta-alanine could be a metabolic

product associated with the link between sleep and major depressive

disorder (MDD) merits further investigation. Glutaminylglutamine,

which belongs to the class of organic compounds known as

dipeptides, as well as Methylsuccinic, Malonylcarnitine, and

gamma-Glutamyltyrosine, have been minimally studied in

relation to MDD.
4.2 Positive effects of metabolites on MDD

After excluding unknown metabolites and their ratios, there are

22 metabolites identified that have an adverse impact on Major

Depressive Disorder (MDD), including: N6-Acetyl-L-lysine,

Pregnanediol 3-O-glucuronide, 6-Oxopiperidine-2-carboxylic

acid, MG(0:0/18:2(9Z,12Z)/0:0), Docosatrienoic acid, LysoPC

(18:2/0:0), Quinic acid, ADP, SM(d18:2(4E,14Z)/23:0), N-Acetyl-

L-glutamic acid, Cholesterol, Pyroglutamic acid, 2-Oxoarginine, PC

(18:2(9Z,12Z)/18:3(6Z,9Z,12Z)), PE(18:1(9Z)/18:2(9Z,12Z)), N-

Acetylhistidine, Taurodeoxycholic acid, 2-Ketobutyric acid,

(+/-)-Ethyl 2-hydroxy-3-methylvalerate, PC(18:0/18:2(9Z,12Z)),

Hydroxyisocaproic acid, and 2-Naphthol sulfate.

Existing research has discovered that in overweight and obese

COVID-19 patients, levels of N6-acetyl-L-lysine and p-cresol are

elevated. Lysine acetylation is an emerging post-translational

pathway primarily induced by obesity, which has been proven to

modulate the enzymatic activity involved in fatty acid and glucose

metabolism. This mechanism involves the transfer of an acetyl

group from acetyl coenzyme A (acetyl-CoA), which is a key

mediator and metabolic regulator of protein acetylation, targeting

the amino groups of lysine (22). Existing research has discovered

that disruption in lysine degradation may play a role in the

development of early cardiac hypertrophy. Metabolites such as

N6-acetyl-L-lysine might serve as potential predictive and

therapeutic targets for subclinical myocardial cell hypertrophy

(23). The primary metabolic product of progesterone is

pregnanediol. The excretion of pregnanediol in urine can be used

as an indicator to evaluate luteal function. Pregnanediol 3-O-

glucuronide is a natural metabolite of pregnanediol, produced by
FIGURE 4

Image of the first ten bubbles in MR Enrichment pathway.
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the action of UDP-glucuronyltransferase in the liver. A

metabolomic study has indicated that the levels of pregnanediol

3-O-glucuronide are significantly reduced in the placental

metabolome of women with spontaneous preterm birth (24). 2-

Linoleoylglycerol (18:2) has been identified as being associated with

colorectal cancer (25). LysoPC (18:2/0:0) and 1-linoleoyl-gpc (18:2)

are considered to be candidate diagnostic biomarkers for Hunner’s

type interstitial cystitis (26). Additionally, they may represent

potential therapeutic targets for patients hospitalized with mild

traumatic brain injury (27). Studies have found that dicaffeoylquinic

acids (diCQAs) reduce depression-like behaviors in mice treated

with corticosterone (CORT), including memory loss. The potential

mechanism of diCQAs’ antidepressant effects may involve the

inhibition of monoamine oxidase types A and B (MAO-A and

MAO-B) activities in neurons and astrocytes, leading to a decrease

in the production of reactive oxygen species (ROS) in the brain (28).

This is consistent with our findings that quinic acid acts as a

protective factor against Major Depressive Disorder (MDD).

Adenosine 5’-diphosphate (ADP) is a vital organic compound in

metabolism and is crucial for the flow of energy within living cells.

Adenosine 5’-(a,b methylene)diphosphate (APCP), an ecto-5’-

nucleotidase (e5NT) inhibitor, was administered through

intraventricular injection to explore the regulatory effects of e5NT

on nucleoside levels and the behavioral changes induced by acute

restraint stress in mice.

Liu and colleagues have posited that inhibiting ecto-5’-

nucleotidase (e5NT) could potentially alleviate anxious behaviors

in mice. Consequently, targeting e5NT might represent a promising

therapeutic strategy for the management of anxiety in murine

models (29). Research indicates that the ratio between non-high-

density lipoprotein cholesterol and high-density lipoprotein

cholesterol is significantly correlated with an increased risk of

depression among adults in the United States (30). The Reverse

Cholesterol Transport (RCT) system constitutes a vital

detoxification pathway that facilitates the clearance of free

cholesterol from the body, thereby preventing the development of

atherosclerosis. It also protects against lipid peroxidation, the

oxidation of low-density lipoprotein (LDL) and high-density

lipoprotein (HDL) cholesterol, as well as inflammatory responses.

Current evidence suggests that dysfunction within the HDL-PON1-

ApoA-LCAT complex is closely associated with the pathogenesis of

affective disorders, the recurrence of Major Depressive Disorder

(MDD) and Bipolar Disorder (BD), suicidal behaviors, and the

severity of depression. Interestingly, in approximately 30% of

patients experiencing severe Major Depressive Episodes (MDE),

higher Hamilton Depression Rating Scale (HAMD) scores have also

been linked with elevated levels of triglycerides, total cholesterol,

and LDL cholesterol (31).
4.3 Metabolic pathway analysis

Bile acids, synthesized predominantly in the liver through the

enzymatic oxidation of cholesterol, are essential for the digestion

and absorption of lipids and fat-soluble vitamins. Emerging

research has uncovered further physiological roles for bile acids
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that extend beyond their digestive function. These include the

modulation of energy homeostasis, regulation of glucose

metabolism, and influence on immune system responses. The

mechanism underlying these diverse effects involves the activation

of bile acid receptors, particularly the Farnesoid X receptor (FXR)

and the G protein-coupled bile acid receptor 5 (TGR5). In recent

years, studies have begun to examine the potential link between bile

acid biosynthesis and mood regulation, particularly in relation to

major depression. Some research suggests that bile acids may

indirectly impact mood and cognitive functions by affecting the

composition of the gut microbiota, communication along the gut-

brain axis, and the release of hormones and metabolites. The gut

microbiome is considered a potential key factor influencing brain

function and emotional regulation, with bile acids being one of the

elements that regulate the balance of gut flora (32, 33).

The antioxidant glutathione (GSH), tripeptidic in nature, plays

a pivotal role in numerous biological processes. As the most

abundant non-protein thiol antioxidant within cells, it primarily

functions to neutralize reactive oxygen species (ROS) and

peroxides, thereby shielding cells from the damaging effects of

oxidative stress. Oxidative stress is thought to potentially play a

role in mental illnesses, especially in major depression. Some studies

have indicated that there may be an increase in oxidative stress

among individuals with depression, and GSH, as a key antioxidant,

could have its levels and metabolism affected in this context. Low

levels of GSHmay lead to a reduced capacity for antioxidant defense

in the brain, potentially damaging neurons, disrupting the balance

of neurotransmitters, and consequently, might be associated with

the development of depressive symptoms (34). Furthermore, some

studies have shown that a decline in glutathione levels may be

connected with functional impairments in specific brain regions,

such as the prefrontal cortex, which is a key area associated with

emotion regulation and cognitive functions. In addition,

inflammation has been linked to depression, and GSH plays a

role in regulating inflammatory responses (35).

However, further research is needed to elucidate the precise

mechanisms of GSH metabolism and how it may directly or

indirectly affect the onset, progression, and treatment of

depression. This could include investigating whether

supplementing GSH or enhancing the activity of its metabolic

pathways could serve as potential therapeutic approaches for

depression. This aligns with the findings of our current research.

To date, there is no direct evidence or widely recognized studies

linking the metabolism of threonine and 2-oxobutanoate directly

with major depression. However, the connection between metabolic

pathways and mental health conditions is an area continuously

explored in psychopathology and neurobiology, which includes the

influence of amino acid metabolic pathways on emotion regulation

and brain function.

Threonine is an essential amino acid that plays a role in protein

synthesis as a building block and also participates in key metabolic

pathways such as the threonine-methionine cycle and the glycine-

serine cycle. Additionally, threonine can be transformed into

glycine and serine and is associated with one-carbon metabolism,

which involves neurotransmitter synthesis and methylation

reactions (36).
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2-Oxobutanoate is an intermediate product in the degradation

pathways of certain amino acids such as isoleucine, lysine,

methionine, and threonine. Through metabolic reactions, it can

ultimately be converted into succinyl-CoA, which then enters the

tricarboxylic acid cycle (TCA cycle), a critical pathway for cellular

energy production (37).

Valine, leucine, and isoleucine are three branched-chain amino

acids (BCAAs) which have been implicated in the pathogenesis of

various mental disorders, including major depressive disorder

(MDD), according to some studies. Research suggests that

patients with depression might exhibit alterations in BCAAs

levels in their blood compared to the healthy population, and

these changes could reflect on their mood, cognitive function, and

overall mental state. BCAAs serve as precursors for crucial

neurotransmitters in the brain, can compete with tryptophan and

tyrosine for the same transport system across the blood-brain

barrier, and are also involved in energy metabolism, potentially

exerting a significant impact on brain function, particularly in

response to stress and during the regulation of emotions (38, 39).

Ascorbate metabolism and aldarate metabolism involve the

biochemical pathways and respective metabolites of vitamin C

(ascorbate) within the human body (40). Ascorbic acid,

commonly known as vitamin C, is a potent antioxidant that helps

neutralize free radicals and reduce oxidative stress. Oxidative stress

is believed to play a critical role in the onset and progression of

depression. Vitamin C is involved in the synthesis of various

neurotransmitters, such as dopamine and serotonin, which are

directly linked to mood regulation, depression, and other

psychological disorders. The connection between inflammation

and depression is increasingly recognized, and vitamin C

possesses anti-inflammatory properties. Vitamin C has

demonstrated neuroprotective effects in some studies, potentially

aiding in the prevention of neurodegenerative diseases, which may

be associated with maintaining cognitive function and emotional

health (41). However, at present, there is limited research on its

association with Major Depressive Disorder (MDD), which

warrants further investigation.

Depression may be linked to a variety of factors, including

genetics, environment, psychosocial elements, and the neurobiology

of the brain. Abnormalities in certain metabolic pathways may lead

to or be associated with changes in neurotransmitter balance, which

in turn affect mood. For instance, disruptions in methylation

reactions can impact gene expression and neurotransmitter

synthesis, while aberrations in the energy metabolism implicated

in the tricarboxylic acid (TCA) cycle may affect the function of the

nervous system (42). Therefore, these metabolic pathways are

closely related to Major Depressive Disorder (MDD) and warrant

further in-depth research.
4.4 Advantages and limitations

This study boasts several advantages. Firstly, using GWAS data,

our Mendelian Randomization (MR) analysis provides new insights

into potential causal mediators for 1,400 metabolites and Major

Depressive Disorder (MDD). Secondly, the multiple cohort setup
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based on original GWAS data enables us to make effective causal

inferences within a large population scale, yielding high statistical

power. Lastly, by integrating the relevant metabolites into

MetaboAnalyst 6.0 for analysis, we are able to comprehensively

evaluate the functional enrichment and metabolic pathways of these

metabolites. This can further aid in informing the prioritization of

drug targets and the development of clinical trials.

However, our study is not without its limitations. First, our MR

study is based on summary data from GWAS, while psychiatric

disorders are primarily caused by brain pathologies. Further

research is required to analyze changes in metabolites within the

cerebrospinal fluid to identify other promising biomarkers and drug

targets for psychiatric conditions. Second, our study was

predominantly conducted in individuals of European descent,

reducing population stratification bias yet limiting the

extrapolation of our findings across different ethnicities.

Additional research in non-European populations is necessary to

confirm our findings. Lastly, there may be participant overlap

between GWAS cohorts, potentially leading to weak instrument

bias. Although F-statistics suggest that there is no instrument bias in

our MR study, further MR research based on independent cohorts

with no participant overlap is needed to better understand the role

of blood metabolites in the etiology of psychiatric diseases.
5 Conclusion

In summary, this MR study has determined that out of 1,400

blood metabolites analyzed, we have identified 34 known

metabolites and 13 unknown metabolites, as well as 18 metabolite

ratios, that are associated with Major Depressive Disorder (MDD).

Additionally, we have highlighted 3 functionally enriched groups

and 2 metabolic pathways. These findings provide preliminary

evidence on the impact of blood metabolite dysregulation on the

risk of MDD. The integration of genomics and metabolomics offers

significant insights for the screening and prevention of MDD.

This study identified specific metabolites associated with

increased or decreased risk of major depression. For example,

N6-acetyllysine levels and the levels of 1-stearoyl-GPE (18: 0).

This is crucial because these metabolites can be used as

biomarkers for early detection or development risk of major

depression. In clinical practice, having reliable biomarkers can

significantly improve the screening process and carry out early

intervention, which is of great significance for the treatment of this

disease. The rich data of metabolic pathways (such as bile acid

biosynthesis, glutathione metabolism) enhance the understanding

of the pathophysiological mechanism behind MDD. This deeper

understanding may lead to the development of new therapeutic

targets. For example, interventions aimed at altering specific

metabolic pathways may help prevent or alleviate symptoms of

major depression. In addition, this study also paves the way for

more personalized treatment interventions. Understanding

individual metabolic characteristics can enable clinicians to tailor

treatment plans based on the patient ‘s specific metabolic disorders,

thereby potentially improving the therapeutic effect and minimizing

unnecessary side effects.
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