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Introduction: Alcohol consumption can induce a neuroinflammatory response

and contribute to the progression of neurodegeneration. However, its association

with Parkinson’s disease (PD), the second most common neurodegenerative

disorder, remains undetermined. Recent studies suggest that the glycoprotein

non-metastatic melanoma protein B (GPNMB) is a potential biomarker for PD. We

evaluated the association of rs199347, a variant of the GPNMB gene, with alcohol

consumption and methylation upstream of GPNMB.

Methods:We retrieved genetic and DNAmethylation data obtained from participants

enrolled in the Taiwan Biobank (TWB) between 2008 and 2016. After excluding

individuals with incomplete or missing information about potential PD risk factors, we

included 1,357 participants in our final analyses. We used multiple linear regression to

assess the association of GPNMB rs199347 and chronic alcohol consumption (and

other potential risk factors) with GPNMB cg17274742 methylation.

Results: There was no difference between the distribution of GPNMB rs199347

genotypes between chronic alcohol consumers and the other study participants.

A significant interaction was observed between the GPNMB rs199347 variant and

alcohol consumption (p = 0.0102) concerning cg17274742 methylation.

Compared to non-chronic alcohol consumers with the AA genotype, alcohol

drinkers with the rs199347 GG genotype had significantly lower levels

(hypomethylation) of cg17274742 (p = 0.0187).

Conclusion: Alcohol consumption among individuals with the rs199347 GG

genotype was associated with lower levels of cg17274742 methylation, which

could increase expression of the GPNMB gene, an important neuroinflammatory-

related risk gene for PD.
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Introduction

Parkinson’s disease (PD) is the second most common

neurodegenerative disorder, affecting >1% of the worldwide

population ≥65 years of age, and is characterized primarily by

slow movement, tremors, and rigidity (1, 2). The etiology of PD

remains unknown, although it is believed to result from a

combination of genetic, environmental, and behavioral factors by

progressive loss of dopaminergic neurons in the substantia nigra

and accumulation of a-synuclein within Lewy bodies (3–5).

Pathophysiologically, PD has been associated with a-synuclein
misfolding and aggregation, mitochondrial dysfunction,

impairment of protein clearance, neuroinflammation, and

oxidative stress (6–8). Epigenetic modifications, which can

connect environment or behavior factors with the genetic changes

underlying disease (9, 10), have been shown to modulate the

immune systems of patients with PD (11–22).

Glycoprotein non-metastatic melanoma protein B (GPNMB), a

type I transmembrane protein involved in immune cell maturation

and activation (23), has been shown to be a promising biomarker of

PD risk (24–27). GPNMB is highly expressed in macrophages and

microglia, which play a significant role in neuroinflammation, and

was shown to be upregulated in disease-associated microglia in

neurodegenerative animal models (28, 29). A prominent single-

nucleotide polymorphism (SNP) of GPNMB, rs199347, plays a

significant role in modulating systemic immune response,

especially neuroinflammation (21–26, 30). The rs199347 variant

genotype and minor allele involves a guanine instead of the

reference alanine (31) and has been identified as highly associated

with PD risk (24). Recently, GPNMB was shown to promote the

toxic aggregation of the alpha-synuclein protein in substantia nigra,

which is believed to contribute to neurodegeneration, and could be

a potential target for PD treatment (24, 32). Furthermore, recent

proteomic analyses of cerebrospinal fluid have identified GPNMB

as a primary causal protein in PD emphasizing its role in the

disease’s heterogeneity and causality (33). Notably, studies

involving animal models have demonstrated that overexpression

of GPNMB can mitigate degeneration of dopaminergic neurons and

provide anti-neuroinflammatory benefits (34, 35).The differences

among the rs199347 genotypes (AA, AG, and GG) are significantly

associated with GPNMB expression in the brain as well as whole

blood (24, 25, 27, 36–39). Moreover, large, integrated GWAS on

methylation data from brain samples of patients with PD found that

the association between GPNMB and PD could be regulated by

DNA methylation (25, 27, 39). Indeed, hypomethylation at

cg17274742, which is proximal to the 7p15 chromosomal region

in which GPNMB is located, is associated with increased GPNMB

expression in PD patients (25, 27).

Alcohol consumption can affect epigenetic modification and

gene expression (40–42), and associated DNA methylation changes

have been observed in both the peripheral and central nervous

systems (43, 44). Chronic alcohol consumption can trigger

neuroinflammation resulting in central nervous system injury and

possibly neurodegeneration (45–48). High alcohol consumption has

been shown to increase GPNMB levels (49, 50) suggesting an
Frontiers in Psychiatry 02
involvement with PD. However, the connection between alcohol

drinking and PD remains poorly understood, and epidemiological

studies show contradictory data (51–55). Whether PD is caused by

chronic alcohol consumption remains unclear (53–56), although

chronic alcohol consumption has been found to drive biological

mechanisms with significant changes to DNAmethylation in serum

and brain tissues (40, 41, 43, 44).

To date, no study has evaluated the role of alcohol intake on the

expression of GPNMB, and specifically the PD-associated GPNMB

SNP rs199347, and DNA methylation. Identifying methylation

patterns associated with alcohol consumption and GPNMB

expression could help elucidate the influence of alcohol

consumption on the risk of PD.
Methods

Participants and data source

Data were obtained from the Taiwan Biobank (TWB), an

ongoing prospective cohort study of more than 150,000

participants. The TWB contains demographic and whole-genome

sequencing data of Taiwanese (99% Han Chinese) without cancer

aged 20 to 70 years, with lifestyle information captured through

individual interviews (57, 58).

We enrolled all 2,352 individuals aged 20–70 years in the TWB

with DNA methylation data. Using previously published

epidemiology studies (59–63), we developed a list of potential risk

factors for PD as variables for consideration: sex, age, body mass

index, cigarette smoking, alcohol drinking, exercise, coffee drinking,

uric acid levels, and hypertension. We excluded 995 individuals

with incomplete or missing information, and the remaining 1,357

participants with complete information were included in our

final analysis.

This study was approved by the Institutional Review Board of

Chung Shan Medical University Hospital (CS1–20009).
DNA methylation assessment

The TWB assessed DNA methylation from whole blood using

the Infinium MethylationEPIC BeadChip Kit (Illumina Inc, San

Diego, CA, USA) (64–66). Cell-type heterogeneity was adjusted

using the Reference-Free Adjustment for Cell-Type composition

(ReFACTor) method (67). Methylation levels were quantified using

beta values (0–1), which roughly correspond to the percent

methylation at a particular site.
Genetic variant assessment

Genotyping was performed at Academia Sinica in Taiwan using

a customized Axiom Genome-Wide Array Plate (Affymetrix, Santa

Clara, CA, USA), and SNP information was obtained after

imputation methods (68). All SNPs with minor allele frequency

(MAF) <1% were excluded.
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Covariate analysis

Chronic alcohol consumption was defined as drinking more than

150 ml of alcohol-containing beverage(s) per week for ≥6 months

prior to enrollment in the TWB. Body mass index (BMI) was

calculated (kg/m2) and categorized as underweight (BMI < 18.5),

normal weight (18.5 ≤ BMI < 24), overweight (24 ≤ BMI < 27), and

obese (BMI ≥ 27). Current cigarette smokers were those who smoked

continuously for ≥6 months, and former smokers were those who

previously smoked but quit for ≥6months. Participants who exercised

were those reporting a regular habit of exercising ≥30 min each three

times per week. Hypertension was classified by patients self-reporting

a diagnosis to a physician.
Statistical analysis

We used multiple linear regression to evaluate the association of

GPNMB rs199347 and alcohol drinking with GPNMB cg17274742

methylation, as well as the interaction betweenGPNMB rs199347 and

alcohol drinking. The differences between variables were calculated

using a t-test for continuous variables and a chi-square test for

categorical variables. Statistical significance was defined as a < 0.05.

All analyses were conducted using PLINK version 1.9 beta (69) and

SAS version 9.4 (SAS Institute Inc, Cary, NC, USA).
Results

Overall, 1,357 participants comprising 648 men and 709 women

were included in the study (Table 1). The mean GPNMB cg17274742

methylation levels (beta values) for individuals with chronic alcohol

consumption was 0.9484 ± 0.0009 (mean ± standard error), compared

to 0.9484 ± 0.0003 for those who did not chronically consume alcohol.

For the non-chronic group, the number (percentage) of participants

with the GPNMB rs199347 AA, AG, and GG genotypes was 633

(51.72%), 511 (41.75%), 80 (6.54%), respectively. For the chronic

alcohol-drinking group, the number (percentage) with the GPNMB

rs199347 AA, AG, and GG genotypes were 66 (49.62%), 53 (39.85%),

and 14 (10.53%), respectively. The methylation levels and genotype

distribution did not differ significantly between the chronic alcohol

consumers and the other study participants.

The GPNMB rs199347 variant and alcohol consumption was not

significantly associated with the methylation of cg17274742 (Table 2).

However, men had significantly lower levels of cg17274742 methylation

compared to women (b = −0.00302, p = 0.0169), while hypertensive

patients had significantly higher levels of cg17274742 methylation

compared to non-hypertensive patients (b = 0.00208, p = 0.0171).

GPNMB rs199347 variant and alcohol drinking had a significant

interaction (p = 0.0102) with the methylation of cg17274742

(Table 3). After stratifying by alcohol consumption, rs199347 was

not significantly associated with the methylation of cg17274742 in the

control group. However, compared to the rs199347 AA genotype, the

GG genotype was significantly associated with lower levels of

methylation at cg17274742 (b = −0.00635, p = 0.0366).
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After combining the rs199347 genotypes and alcohol consumption

(Table 4), cg17274742 was significantly hypomethylated

among chronic alcohol drinkers with the rs199347 GG genotype

compared to the control group with the AA genotype (b= −0.00654,

p = 0.0187).
TABLE 1 Demographic characteristics of the study participants.

Control
group

(n = 1,224)

Chronic
alcohol

consumers
(n = 133)

p-Value

Beta value of
cg17274742
methylation (mean
± SE)

0.9484
± 0.000319

0.9484
± 0.000935

0.9739

GPNMB rs199347
(n, %)

0.2272

AA 633 (51.72) 66 (49.62)

AG 511 (41.75) 53 (39.85)

GG 80 (6.54) 14 (10.53)

Sex (n, %) <0.0001

Female 693 (56.62) 16 (12.03)

Male 531 (43.38) 117 (87.97)

Age (years) 49.1 ± 0.3 51.6 ± 0.9 0.0127

Body mass index
(n, %)

<0.0001

Normal weight 611 (49.92) 41 (30.83)

Underweight 37 (3.02) 1 (0.75)

Overweight 339 (27.70) 57 (42.86)

Obesity 237 (19.36) 34 (25.56)

Cigarette smoking
(n, %)

<0.0001

Never 978 (79.90) 50 (37.59)

Former 147 (12.01) 43 (32.33)

Current 99 (8.09) 40 (30.08)

Exercise (n, %) 0.9680

No 688 (56.21) 75 (56.39)

Yes 536 (43.79) 58 (43.61)

Coffee intake (n, %) 0.0152

No 793 (64.79) 72 (54.14)

Yes 431 (35.21) 61 (45.86)

Uric acid level (mg/dl) 5.4238 ± 0.0396 6.4609 ± 0.1343 <0.0001

Hypertension (n, %) 0.0060

No 1078 (88.07) 106 (79.70)

Yes 146 (11.93) 27 (20.30)
fro
Continuous data are displayed as mean ± standard error (SE) and categorical data as
numbers (percentages).
Bold values means p value <0.05.
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Discussion

Using data from a large, national prospective cohort study, we

identified an association between cg17274742 methylation status,

the GPNMB rs199347 polymorphism, and alcohol consumption.

Our findings suggest that carriers of the rs199347 GG genotype and

those who chronically consume alcohol have significantly more

cg17274742 hypomethylation, which may result in increased

GPNMB expression. This is the first study to find a relationship

between a specific GPNMB polymorphism and alcohol-associated

methylation changes suggesting that a lifestyle change, particularly

a reduction in alcohol consumption for carriers of the rs199347 GG

genotype, could reduce GPNMB expression, which is highly

correlated with the risk of PD.

Recent studies highlight the importance and benefits of

involving diverse and multiethnic populations in genetic studies

(70, 71), including more accurately representing the risks of

genetically associated diseases in different populations (72). Most

published GWAS and methylomic studies involving the GPNMB

rs199347 variant were conducted in majority-white study
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populations (36–39, 73, 74). Our study uses information obtained

from the Taiwan Biobank (TWB), the largest biobank in East Asia

with dense SNP array data, and leverages its high-coverage whole-

genome sequencing and DNA methylation data in a population of

Han Chinese (58). Notably, the rs199347 genotype frequencies

observed in our study (A = 0.72, G = 0.28) are roughly equivalent

to those reported by the Allele Frequency Aggregator Project in East

Asia (A = 0.716, G = 0.283), which is different from the frequencies

reported in white individuals (A = 0.59, G = 0.41) (31). While the

TWB provides a robust dataset for understanding genetic

associations in the Han Chinese population, it is crucial to discuss

the generalizability of our findings beyond this group. The genetic

and lifestyle diversity across different populations may impact the

observed associations. Therefore, further studies are needed to

explore how genetic differences between populations might

influence the relationship between the GPNMB rs199347 variant,

alcohol consumption, and Parkinson’s disease risk. Addressing

these potential impacts would enhance the broader applicability

of our findings and contribute to a more comprehensive

understanding of genetic risk factors across diverse populations.

A novel integrative approach has been developed to align

expression quantitative trait loci (eQTL) with genome-wide

association study (GWAS) signals in Parkinson’s disease (PD),

utilizing an updated PD GWAS dataset. This strategy highlighted

the methylation site cg17274742 within the GPNMB gene, a site of

interest for Coloc analysis, which investigates common causal variants

shared between eQTL and GWAS data. Methylation at this specific

locus not only affects gene expression but also influences splicing

activities at the GPNMB/NUPL2 locus facilitated by robust protein–

protein interactions. These interactions may connect to genes

associated with either Mendelian or sporadic forms of PD (25). The

presence of PD-associated variants at this methylation site reveals

critical molecular pathways influencing the pathogenesis of PD,

thereby emphasizing the significant role of both genetic and

epigenetic factors in its development. In our study, we found that

males had more cg17274742 hypomethylation, which may increase

GPNMB expression. After correcting for age, the prevalence of PD in

men is approximately 1.4 times higher than that in women (75),

although a 2014 meta-analysis suggests that this difference is evident

only in the 50- to 59-year age group (59). Additionally, we found that

hypertension was associated with cg17274742 hypermethylation,

which could decrease GPNMB expression and potentially reduce PD

risk (24, 36). Published evidence connecting hypertension and PD

diagnosis is contradictory (76–81), and different effects of

hypertension have been observed in white versus Asian populations

(76–79). Moreover, some antihypertensive medications may

contribute to PD risk; inhibitors of the renin–angiotensin–

aldosterone system may delay proinflammatory effects, and alpha-1-

adrenergic receptor antagonists can enhance glycolysis and could

reduce PD risk (82–87).

Chronic alcohol consumption can damage the central nervous

system (45), and a recent translational study suggests a strong

correlation between alcohol use disorder and the inflammatory

response in the brain (45). Chronic alcohol consumption can trigger

pro-inflammatory cytokines by activating peripheral macrophages and

microglia in the central nervous system, which may alter the
TABLE 2 Association of rs199347 and alcohol consumption with
cg17274742 methylation.

b p-Value

GPNMB rs199347 (ref: AA)

AG 0.00067276 0.2425

GG 0.00047793 0.6683

Chronic alcohol consumption (ref: no)

Yes −0.00042063 0.6713

Sex (ref: female)

Male −0.00302 0.0169

Age (years) 0.00005373 0.1891

Body mass index (ref: normal weight)

Underweight −0.00305 0.0742

Overweight 0.00046711 0.4880

Obesity −0.00052500 0.5004

Cigarette smoking (ref: never)

Former 0.00002321 0.9788

Current −0.00005172 0.9594

Exercise (ref: no)

Yes −0.00105 0.0839

Coffee intake (ref: no)

Yes 0.00044856 0.4366

Uric acid level (mg/dl) 0.00011273 0.6367

Hypertension (ref: no)

Yes 0.00208 0.0171
b, beta coefficient.
Bold values means p value <0.05.
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neuroinflammatory state in the brain (46, 47). Previous studies have

noted the importance of different biological processes and functions of

GPNMB, including cell differentiation and development, inflammation

and immune response, progression, and neurodegeneration

deterioration (23). Additionally, the Genotype-Tissue Expression

(GTEx) project has identified that the GPNMB rs199347 variant

significantly influences gene expression in various brain tissues,

including the basal ganglia, cerebellum, and frontal cortex (88, 89).

These regions are closely linked to neural mechanisms, particularly the

dopaminergic pathways, which are crucial in the pathophysiology of

PD (3, 6). The impact of this variant on these brain regions underscores

its potential role in the clinical manifestations of PD. Our finding

suggests that lifestyle changes, particularly a reduction in alcohol

consumption for carriers of the rs199347 GG genotype, could

modulate GPNMB expression, thereby identifying a potentially

modifiable risk factor in Parkinson’s disease.

Our study was limited by the uncertainty around the amount of

alcohol consumption. The TWB survey quantifies alcohol

consumption in milliliters (ml), not milligrams (mg), and is therefore

difficult to standardize across the study population. Additionally, data

on alcohol consumption were self-reported and are subject to recall
Frontiers in Psychiatry 05
bias. Another limitation of our investigation concerns our inability to

comprehensively account for all potential confounding variables,

including dietary habits, lifestyle choices, and environmental

exposures. Nevertheless, we mitigated this by controlling for a range

of well-documented risk and protective factors, such as age, body mass

index (BMI), smoking status, alcohol consumption, coffee intake,

serum uric acid levels, and hypertension, all of which have been

extensively studied in PD epidemiological research.

Ultimately, our results provide insight into the genetic and

lifestyle factors associated with GPNMB expression, which is a

potential biomarker and therapeutic target of PD. Future

experiments using animal models or human cell lines to examine

the underlying mechanisms behind this potential neuroinflammatory

association in the central nervous system are warranted.
Conclusion

In summary, we found that having the GG genotype of GPNMB

rs199347 with drinking habits decreases GPNMB methylation

among Taiwan Biobank participants. These results provide
TABLE 3 Association of rs199347 with methylation of cg17274742 stratified by alcohol consumption.

Control group
(n = 1,224)

Chronic alcohol consumers
(n = 133)

b p-Value b p-Value

GPNMB rs199347 (ref: AA)

AG 0.00081125 0.1804 -0.00152 0.4276

GG 0.00186 0.1236 -0.00635 0.0366

Sex (ref: female)

Male −0.00258 0.0497 −0.01076 0.0488

Age (years) 0.00006865 0.1141 −0.00007678 0.5481

Body mass index (ref: normal weight)

Underweight −0.00338 0.0513 0.01736 0.1111

Overweight 0.00031558 0.6586 0.00313 0.1606

Obesity −0.00065127 0.4299 0.00065871 0.7934

Cigarette smoking (ref: never)

Former −0.00025122 0.7933 0.00356 0.1233

Current −0.00008491 0.9409 0.00169 0.4856

Exercise (ref: no)

Yes −0.00107 0.0967 −0.00296 0.1258

Coffee intake (ref: no)

Yes 0.00034271 0.5748 0.00266 0.1489

Uric acid level (mg/dl) 0.00017402 0.4992 0.0000587 0.9315

Hypertension (ref: no)

Yes 0.00258 0.0061 −0.00044093 0.8616
Interaction (rs199347 * Alcohol consumption) p-value = 0.0102.
b, beta coefficient.
Bold values means p value <0.05.
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information on the genetic and lifestyle factors that contribute to

the expression, which is a PD potential biomarker and therapeutic

target of PD, and could be used as a reference for experimental,

longitudinal, or intervention studies evaluating the disease and its

associated variables and mechanisms.
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TABLE 4 Cg17274742 methylation based on rs199347 and
alcohol consumption.

b p-Value

GPNMB rs199347 and alcohol
consumption (ref: AA and
non-chronic alcohol
consumers/control)

AG and control 0.00080588 0.1813

GG and control 0.0018 0.1343
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AG and chronic alcohol consumer 0.00039023 0.7921
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Overweight 0.00048126 0.4739

Obesity −0.00061427 0.4298

Cigarette Smoking (ref: never)

Former 0.00003035 0.9722

Current −0.0001492 0.8831

Exercise (ref: no)

Yes −0.0011 0.0698

Coffee Intake (ref: no)

Yes 0.00046963 0.4143

Uric acid level (mg/dl) 0.00016297 0.4950

Hypertension (ref: no)

Yes 0.00219 0.0119
b, beta coefficient.
Bold values means p value <0.05.
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8. Tanaka M, Szabó Á, Vécsei L, Giménez-Llort L. Emerging translational research
in neurological and psychiatric diseases: from in vitro to in vivo models. Int J Mol Sci.
(2023) 24:15739. doi: 10.3390/ijms242115739

9. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat
Rev Genet. (2007) 8:253–62. doi: 10.1038/nrg2045
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