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Introduction: The COVID-19 pandemic has exacerbated mental health

challenges, particularly depression among college students. Detecting at-risk

students early is crucial but remains challenging, particularly in developing

countries. Utilizing data-driven predictive models presents a viable solution to

address this pressing need.

Aims: 1) To develop and compare machine learning (ML) models for predicting

depression in Argentinean students during the pandemic. 2) To assess the

performance of classification and regression models using appropriate metrics.

3) To identify key features driving depression prediction.

Methods: A longitudinal dataset (N = 1492 college students) captured T1 and T2

measurements during the Argentinean COVID-19 quarantine. ML models,

including linear logistic regression classifiers/ridge regression (LogReg/RR),

random forest classifiers/regressors, and support vector machines/regressors

(SVM/SVR), are employed. Assessed features encompass depression and anxiety

scores (at T1), mental disorder/suicidal behavior history, quarantine sub-period

information, sex, and age. For classification, models’ performance on test data is

evaluated using Area Under the Precision-Recall Curve (AUPRC), Area Under the

Receiver Operating Characteristic curve, Balanced Accuracy, F1 score, and Brier

loss. For regression, R-squared (R2), Mean Absolute Error, and Mean Squared

Error are assessed. Univariate analyses are conducted to assess the predictive

strength of each individual feature with respect to the target variable. The

performance of multi- vs univariate models is compared using the mean

AUPRC score for classifiers and the R2 score for regressors.

Results: The highest performance is achieved by SVM and LogReg (e.g., AUPRC:

0.76, 95% CI: 0.69, 0.81) and SVR and RR models (e.g., R2 for SVR and RR: 0.56,
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95% CI: 0.45, 0.64 and 0.45, 0.63, respectively). Univariate models, particularly

LogReg and SVM using depression (AUPRC: 0.72, 95% CI: 0.64, 0.79) or anxiety

scores (AUPRC: 0.71, 95% CI: 0.64, 0.78) and RR using depression scores (R2:

0.48, 95% CI: 0.39, 0.57) exhibit performance levels close to those of the

multivariate models, which include all features.

Discussion: These findings highlight the relevance of pre-existing depression and

anxiety conditions in predicting depression during quarantine, underscoring their

comorbidity. ML models, particularly SVM/SVR and LogReg/RR, demonstrate

potential in the timely detection of at-risk students. However, further studies are

needed before clinical implementation.
KEYWORDS

depression prediction, COVID-19 pandemic, machine learning, classification,
regression, college students, longitudinal survey, Argentina
Introduction

The COVID-19 pandemic has presented significant global

challenges to mental health, particularly among college students.

The sudden transition to remote learning, social isolation,

and economic instability has exacerbated mental health

issues, with depression becoming a prevalent concern for

this population (1, 2). Depression can negatively impact

academic performance, social relationships, and overall quality

of life. Therefore, early identification of depression and its risk

factors is crucial for timely interventions and prevention of

further negative outcomes. However, identifying individuals who

may be at risk of developing depression remains a significant

challenge in this field.

The literature consistently identifies key psychological and

demographic variables linked to or predicting depression. Anxiety

often emerges as a predictor for depression (3, 4), notably among

college students (5). Moreover, histories of diagnosed mental

disorders (6) and suicidal behavior (7) closely correlate with

college student depression. While sex (8) and age (9) differences

in depression are well-documented, sex-based variations in

depression may display age-specific trends (10). Amid COVID-19

lockdowns, mental health, particularly depression, was anticipated

to deteriorate with extended measures, impacting well-being during

and after implementation (11). Yet, achieving a comprehensive

integration of these factors into accurate predictive models for

depression remains incomplete and challenging.

Existing literature on depression has extensively analyzed

variability between groups and within individuals (e.g., 12).

Mixed-effects modeling (MEM), or hierarchical linear modeling,

is a widely used statistical approach that allows for the estimation of

both fixed and random effects, accounting for variability between

groups and within individuals. MEM has a major strength in its

ability to identify individual and group-level effects, as well as
02
interactions between them, which is particularly relevant in fields

like psychology where individual differences are of interest.

However, MEM is primarily designed for inference rather than

prediction, and offers limited flexibility for the handling of high-

dimensional data, compromising their predictive accuracy

compared to machine learning (ML) models. ML models are

well-suited for prediction tasks, handling complex relationships

between variables, and relying less on strong data assumptions (13–

16). MEM, in particular, relies on assumptions about predictor-

response relationships (i.e., linearity), normality, and independence

of residuals, which can impact their predictive accuracy for new

data. Conversely, ML is a data-driven approach that uses algorithms

to identify patterns in the data for prediction. However, ML models

require extensive data for training and can be prone to overfitting

with too complex models or small datasets. Therefore, while ML has

emerged as an alternative or complementary approach to

traditional statistics in mental health research, it is an open

challenge to leverage ML for predicting individuals at risk

for depression.

In the field of mental health assessment and ML applications,

the challenge of diagnosis prediction can be tackled using a dual

methodology, encompassing both classification and regression

approaches. In the context of binary classification, the goal is to

categorize individuals into two groups: those with depression and

those without. This approach yields a straightforward

determination of depression presence, aiding in identifying

individuals requiring additional evaluation. Conversely, in the

context of regression, the aim is to estimate or forecast numerical

depression scores. This approach offers a continuous prediction of

depression severity, affording a deeper insight into the condition

and potentially enabling personalized treatment strategies.

In a prior study, we utilized MEM to investigate the

aforementioned key psychological and demographic factors linked

to or predictive of depression in college students during Argentina’s
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COVID-19 pandemic quarantine, which was one of the most

rigorous and extended lockdowns globally (17). In the current

study, we seek to reassess the same dataset using ML algorithms

to evaluate their potential as an alternative or complementary

technique to MEM for predicting depression diagnosis. Through

this, we hope to enhance predictive precision and effectively identify

individuals with depression, while gaining deeper insights into the

intricate interplay of factors contributing to depression during

pandemics. Furthermore, we expect to determine whether the key

factors commonly acknowledged as depression predictors remain as

significant input features when utilizing ML algorithms for data

analysis, in contrast to other widely used statistical methodologies

in psychology. The objectives of this study are: 1) To develop and

compare various ML models, including linear logistic regression

classifiers/ridge regression, random forest classifiers/regressors, and

support vector machines/support vector regression models, to

predict depression in college students during the pandemic based

on psychological inventory scores, basic clinical information,

quarantine sub-period information, and demographics as features.

2) To assess the performance of classification and regression models

using appropriate metrics. 3) To identify the key features that drive

the prediction of depression by applying univariate methods.

A recent review following the PRISMA guidelines identified

only 33 peer-reviewed studies in the domain of utilizing ML

algorithms for predicting mental health diagnoses, with only 31%

specifically focusing on depression/anxiety disorders. Additionally,

most studies have been conducted on clinical samples, primarily

consisting of adults or older patients (18). It is worth noting that

many of these studies rely on unavailable facilities and resources for

diagnosis, particularly in developing countries, such as MRI or

blood samples. Therefore, one novel aspect of this study is its focus

on exploring the potential of ML algorithms to identify risk factors

for depression, during a pandemic, in a large longitudinal sample of

quarantined and apparently healthy college students from a

developing country. By doing so, it aims to provide further

insights into this important area of research by enhancing the

understanding of key determinants in depression detection and

may have significant implications for the development of more

effective screening tools and interventions for depression in college

students during pandemics.
Materials and methods

Research design and dataset

This study employs a longitudinal dataset featuring two-repeated

measurements in college students during the Argentinean COVID-19

quarantine period. The first measurement (T1) was taken across

various quarantine sub-periods, each characterized by varying levels

of restrictions, and spanning up to 106 days. The follow-up

measurement (T2) occurred one month later (as depicted in

Supplementary Figure S1).
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The choice of this longitudinal research design arises from its

inherent capability to capture dynamic changes over time, a crucial

aspect when investigating the effects of a rapidly evolving event like

the COVID-19 pandemic. This approach transcends mere cross-

sectional snapshots, providing a more thorough understanding of

the intricate interplay between psychological states and external

factors amid a quarantine. By incorporating two measurements at

distinct time points, it becomes possible to discern short-term

fluctuations and potential enduring effects. The T1 measurement

establishes a baseline and assesses the immediate effects of

quarantine sub-periods lasting up to 106 days. The T2

measurement, conducted a month later, offers insights into the

persistence or evolution of mental health patterns, shedding light on

potential longer-term consequences. This temporal depth captures

nuances that a single-time assessment might overlook, providing a

more nuanced portrayal of the challenges college students faced

during this unprecedented period.

The dataset comprises responses from 1492 college students

who completed an online survey during the mandatory restrictive

quarantine. It encompasses assessments of depression, anxiety-trait,

basic clinical information, demographics, and quarantine sub-

periods. This dataset corresponds to the one utilized in our

previous study (17). Further information on the research design

and data collection can be found there and in López Steinmetz (19).
Input features

The prediction models were developed using the following

input features: age, sex (female, male), history of diagnosed

mental disorder (absent, present), history of suicidal attempt and/

or ideation (absent, present), depression scores from T1 using the

Argentinean validation (20) of the Beck Depression Inventory

(BDI) (21), anxiety-trait scores from T1 using the Spanish version

of the State-Trait Anxiety Inventory (22), and three quarantine sub-

periods to which participants’ responses were chronologically

assigned. These sub-periods were categorized according to

decreasing levels of COVID-related restrictions over the 106-day

duration, and participants were classified into one of three

quarantine sub-periods based on the date of their response for

measurement T1 (Supplementary Figure S1).
Target variable

The target variable, depression, was assessed using the

Argentinean validation (20) of the BDI (21). For the classification

task, depression scores from T2 were labeled as either according to

the absence or presence of clinically relevant levels of depression,

respectively. The standardized cut-off score of >20, indicative of

depression presence in non-clinical populations (23), was

employed. For the regression task, raw depression scores were

used as a continuous variable.
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Software

The analysis was performed using Python software (version

3.11.1) and relevant libraries, including scikit-learn (24), pandas

(25), and numpy (26), among others.
Data analysis

Preprocessing
The dataset does not contain missing data. Before performing

classification and regression tasks, the data were randomly divided

into a training (75%) and a test (25%) set. In the classification task,

the proportion of negative to positive labels was maintained in both

sets. Categorical variables were encoded using a one-hot schema.

Each variable was transformed into as many binary 0/1 variables as

there were different values. Continuous features such as depression

and anxiety scores from T1 and age were scaled using a quantile

transformation, specifically, we used the QuantileTransformer

method (24) setting the output distribution as normal, to reduce

skewness and to enhance model performance. Principal component

analysis (PCA) was applied for dimensionality reduction. PCA was

set to retain the number of components essential to account for 95%

of the variance present in the original data. Consequently, a total of 3

components were retained. Both feature scaling and dimensionality

reduction were fitted on the training set and subsequently applied to

both sets. The target variable in the regression task was scaled using

the same quantile transform function.
Hyperparameter tuning in the classification and
regression tasks

Both in the classification task and in the regression task

hyperparameter tuning was conducted using the GridSearchCV

function of the scikit-learn library (24) on the training set for each

model. Stratified 10-fold cross-validation, which is typically used

when dealing with imbalanced datasets, was applied for robust

evaluation during hyperparameter tuning, that is, the training data

were split into ten stratified subsets, where in each fold one of the

subsets served as an inner validation set and nine as an inner

training set. Three ML models for the classification task and three

ML models for the regression task with different hyperparameter

choices were optimized on each inner training set and tested on

each inner validation set. In the classification task, the Average

Precision (AP) score was used as the evaluation metric to select

model hyperparameters within the inner cross-validation. For the

regression task, the R-squared (R2) score was employed as the

evaluation metric for hyperparameter selection within the inner

cross-validation process. The state of the random number generator

was set to 0 for reproducibility in all cases. The final model for each

ML model was then trained on the entire training set using the

selected hyperparameters. This comprehensive approach aimed to

enhance the performance and robustness of the models in both

classification and regression tasks.
Frontiers in Psychiatry 04
Classification models
For the classification task, three ML algorithms are employed:

Linear logistic regression classifier (LogReg) (13), random forest

(RF) classifier (27), and support vector machine (SVM) (28).

LogReg models are designed for predicting probabilities of K

classes or categories in the classification problem via linear

functions of input features x, ensuring they sum to one and stay

within a valid probability range of [0, 1]. The model is expressed in

terms of K − 1 log-odds or logit transformations and uses the last

class as the denominator in the odds-ratios, with a special simplicity

in binary classification scenarios (13). RF is an ensemble learning

method that builds multiple decision trees by randomly sampling

with replacement from the training data. Each tree is grown by

recursively selecting random feature subsets and identifying optimal

split points. For classification, the final output is determined by the

majority vote of individual tree predictions during prediction. Thus,

the model output is an ensemble of trees that collectively make

predictions. Hyperparameters include the number of trees in the

forest, the maximum depth of the trees, and the minimum number

of samples required to split a node (13). The SVM algorithm

classifies data by transforming each data point into a k-

dimensional feature space, where k >> n and n is the number of

features. It identifies a hyperplane that maximizes the margin

between classes, minimizing classification errors. The margin is

the distance between the decision hyperplane and the nearest

instance of each class (29).

These algorithms were chosen due to their well-established

competitive performance in classification tasks and adaptability to

diverse scenarios. For instance, Uddin et al. (29) provide a

comprehensive overview of the relative performance of different

supervised ML algorithms for disease prediction, including LogReg,

RF, and SVM. Their findings, despite variations in frequency and

performance, underscore the potential of these algorithmic families

in disease prediction.

Certain model hyperparameters were fixed for each algorithm

while others were optimized using cross-validation. For the LogReg

algorithm, an intercept term, which represents the log-odds of the

baseline class, was included in the model by the default setting of

scikit-learn. The parameter class_weight was set as balanced to adjust

the weights assigned to classes during the training process. This

indicates that the algorithm automatically adjusts the weights of the

classes inversely proportional to their frequencies. The maximum

number of iterations taken for the solver to converge was set to 500.

Solver here refers to the optimization algorithm used to find the

optimal values for the coefficients of the linear logistic regression

model. L2-norm regularization was applied to prevent overfitting and

improve the generalization of the model. Regularization involves

adding a penalty term to the loss function, and in L2-norm

regularization, the penalty is proportional to the square of the

magnitudes of the coefficients. The regularization parameter C was

set to values 0.0001, 0.001, 0.01, 0.1, 1, 10, and 1000. The optimal

hyperparameter as identified using cross-validation is C = 0.1.

For the RF classifier, several model hyperparameters were tuned.

The number of features to consider for the best split (‘max_features’)
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was set to the square root of the total number of features. The

function to measure the quality of a split (‘criterion’) was configured

to use the Gini diversity index. The Gini index is employed by each

decision tree in the RF ensemble as the measure for determining

optimal split points during the training process. The number of trees

(‘n_estimators’) was set to values 50, 100, 500, and 1000. The

maximum depth of the tree (‘max_depth’) was set to values 5, 10,

and 15. The minimum number of samples required to split an

internal node (‘min_samples_split’) was set to values 2, 5, and 8.

The minimum number of samples required to be at a leaf node

(‘min_samples_leaf’) was set to values 1, 2, and 3. For tree building, a

bootstrap method was used, involving sampling with replacement

instead of using the whole training set to build trees. The optimal

combination of hyperparameters as identified using cross-validation

are n_estimators: 100, max_depth: 5, min_samples_split: 5, and

min_samples_leaf: 2.

For the SVM algorithm, the parameter class_weight was set as

balanced. Two variants of the SVM algorithm were tested. The first

one used a non-linear radial basis function (rbf) kernel with kernel

width gamma (kernel: rbf). Tested hyperparameter values included:

C: 0.01, 0.1, 1, 10, 100, 500, 1000; gamma: 0.00001, 0.0001, 0.001,

0.01, 0.1, 1, 10. The second variant used a parameterless linear

kernel. Tested hyperparameter values for this choice included: C:

0.01, 0.1, 1, 10, 100, 500, 1000; kernel: linear. The optimal

combination of hyperparameters as identified using cross-

validation are C: 1000, gamma: 1e-05, kernel: rbf.

Results of the hyperparameter tuning and grid search for each

classifier can be found in the Supplementary Material (Supplementary

Tables S1–S3, Supplementary Figures S2, S3).

Benchmarking was conducted using dummy models

representing baseline references. Baseline models serve as the null

hypothesis, simulating scenarios where models possess minimal

knowledge about individual sample labels, essentially reflecting the

label distribution in the training data at best. These models are

instrumental for assessing whether a sophisticated model’s

performance surpasses the “null” or “chance” level, providing a

benchmark to evaluate the effectiveness of advanced algorithms.

Baseline models consisted of a uniform random baseline

(randomly assigning class labels with equal probability, i.e., 50%

for each class, without considering any input features), a most

frequent baseline (it assigns the majority class label to all instances),

and a stratified random baseline (which randomly assigns labels

proportionally to their relative frequency in the training data) (14).

Regression models
For the regression task, three ML algorithms are utilized: Ridge

regression (RR) (13), RF regressor (27), and support vector regressor

(SVR) (28). RR, often referred to as L2-norm regularized least-

squares regression, adds a regularization term to the standard

linear regression objective function. In RR, the objective function to

be minimized is the sum of the squared differences between the

observed and predicted values (least squares term), and a penalty

term that discourages overly complex models by adding the L2-norm

of the coefficients multiplied by a regularization parameter (alpha).
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The regularization term penalizes large coefficients, preventing

overfitting and promoting a more stable and generalizable model.

The strength of this penalty is controlled by the hyperparameter

alpha (13). RF constructs multiple decision trees by bootstrapping the

data and introducing randomness in variable selection at each node.

The final prediction is an aggregation of predictions from all

individual trees. For regression, the final output is determined by

the average of individual tree predictions during prediction (13). SVR

uses the principles of SVM for regression tasks. Similar to the latter,

SVR introduces the concept of a margin. In SVR, the margin

represents a range of values within which errors are tolerable. SVR

aims to fit the function f(x) in such a way that the differences between

the predicted values and the actual values (errors) fall within the

specified margin. SVR minimizes the errors while staying within the

margin. The loss function penalizes deviations from the actual values

but allows for a certain amount of error within the margin. To

prevent overfitting, SVR includes a regularization term controlled by

the parameter C, which is a user-defined hyperparameter. The

regularization term controls the smoothness of the learned

function (13).

Certain model hyperparameters were fixed for each algorithm

while others were optimized using cross-validation. For the RR

algorithm the regularization strength parameter, denoted as alpha,

was set to values 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, and 1000. The

optimal model’s alpha as identified using cross-validation is 100.

For the RF regressor, several model hyperparameters were

tuned. The number of features to consider for the best split

(‘max_features’) was set to 1, as empirically justified in Geurts

et al. (30). The function to measure the quality of a split (‘criterion’)

was configured to use the mean squared error. The number of trees

(‘n_estimators’) was set to values 50, 100, 500, and 1000. The

maximum depth of the tree (‘max_depth’) was set to values 5, 10,

and 15. The minimum number of samples required to split an

internal node (‘min_samples_split’) was set to values 2, 5, and 8.

The minimum number of samples required to be at a leaf node

(‘min_samples_leaf’) was set to values 1, 2, and 3. For tree building,

a bootstrap method was used, involving sampling with replacement

instead of using the whole training set to build trees. The optimal

combination of hyperparameters as identified using cross-

validation are n_estimators: 50, max_depth: 5, min_samples_split:

8, and min_samples_leaf: 3.

For the SVR training, the shrinking trick described by (31) was

employed. Shrinking attempts to reduce the optimization problem by

removing the elements that have already been bound. Two variants of

the SVR algorithm were tested. The first one used a rbf kernel and the

hyperparameters C, epsilon, and gamma are varied. The tested values

included: C: 0.01, 0.1, 1, 10, 100, 500, 1000; epsilon: 0.001, 0.01, 0.1, 1;

gamma: 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10; kernel: rbf. The second

variant used a linear kernel and only the hyperparameters C and

epsilon are varied. The hyperparameter values for this choice

included: C: 0.01, 0.1, 1, 10, 100, 500, 1000; epsilon: 0.001, 0.01, 0.1,

1; kernel: linear. The optimal hyperparameters combination as

identified using cross-validation are C: 500, epsilon: 0.1, gamma:

0.00001, kernel: rbf.
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Results of the hyperparameter tuning and grid search for each

regressor can be found in the Supplementary Materials

(Supplementary Tables S4, S5, Supplementary Figures S4, S5).

Similar to the classification models, dummy models were

included as benchmark references for regression tasks. These

models encompassed a randomly shuffled baseline (predicting the

target variable by randomly shuffling actual target values), a mean

and a median baseline (predicting the arithmetic average and the

median value of the target variable, respectively, for all instances,

without considering any input features or patterns) (14).

Evaluation of classification model performance
The performance of the classification models on test data was

assessed using five metrics: Area Under the Precision-Recall Curve

(AUPRC), Area Under the Receiver Operating Characteristic curve

(AUROC), Balanced Accuracy, F1 score, and Brier loss. These

metrics all range from 0 to 1, where 0 indicates worst and 1

indicates best performance. An exception is Brier loss, for which

0 indicates perfect model performance and uncertainty calibration,

while a loss of 1 indicates the worst performance.

Precision measures a classifier’s ability to avoid incorrectly

labeling negative examples as positives, while Recall (also known

as “sensitivity” or “true positive rate”) measures its ability to identify

all positive examples correctly as positives (32). The AUPRC

represents the tradeoff between Precision and Recall over all

possible classifier thresholds as quantified by the area under the

Precision curve integrated over all Recall values. The AUROC

represents the tradeoff between Recall and the true negative

rate (also known as “specificity”, 33, 34). The Balanced

Accuracy score calculates the average of sensitivity (true positive

rate) and specificity and it is used to ensure that the model’s

performance on imbalanced datasets is not overestimated. The

F1 score is the harmonic mean of Precision and Recall

scores (32). The Brier loss is calculated as the mean squared

difference between the predicted probability and the true binary

label (35). It measures whether the probabilities provided by the

model are well-calibrated. These predicted probabilities are derived

from the model’s internal mechanisms, which assess the input

features and generate probability estimates for each instance in

the dataset.

Evaluation of regression model performance
To assess the performance of the regression models on test data,

three key metrics were employed: R2, Mean Absolute Error (MAE),

and Mean Squared Error (MSE). The R2 score measures the

proportion of variance in the target variable explained by the

model and is calculated as 1 minus the ratio of the model’s MSE

to that of a mean baseline model. The R2 score is a coefficient of

determination and, theoretically, it can range from -∞ to 1, where 1

indicates perfect prediction, 0 indicates no improvement over the

mean model, and values less than 0 indicate poorer performance

than the baseline (16, 36). MSE and MAE represent the average

squared and absolute differences between predicted and actual

scores, respectively, and are used to assess the model’s prediction

accuracy (16, 36). For both MSE and MAE, lower values signify

better model performance.
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Bootstrapping with replacement
To enhance the reliability of performance evaluation,

bootstrapping with replacement was utilized. Specifically, we

resampled the test set 100 times with replacement to create

distributions of performance estimates. Each resampled sample

had the same dimensions as the original sample, and mean

performance estimates with 95% confidence intervals (CI) were

derived using this method (37).

Feature importance analysis: comparing multi-
vs. univariate models for depression prediction

Feature importance analysis was conducted to assess the predictive

strength of each individual feature with respect to the target variable,

depression. For this analysis, all ML algorithms previously employed

for the classification (LogReg, RF, and SVM classifiers) and regression

(RR, RF regressor, and SVR) tasks were applied to single features.

Using different algorithms can provide a more comprehensive view of

feature importance. The purpose of this analysis was to determine the

extent to which individual features are predictive of depression.

Here, the performance of multivariate models, which

incorporate all features simultaneously, is compared with that of

univariate models, each including a single feature. The metrics used

for this comparative analysis are the mean AUPRC score (with 95%

CI) for classifiers and the mean R2 score (with 95% CI) for

regressors. In this assessment, each multivariate model, whether

for classification or regression tasks, serves as a benchmark. This

enables an evaluation of whether the collective impact of features

enhances prediction accuracy.
Ethical considerations

This study was approved by the Ethics Committee of the

Psychological Research Institute, Universidad Nacional de

Córdoba (CEIIPsi-UNC-CONICET; comite.etica. i ipsi@

psicologia.unc.edu.ar), 14/02/20–23/03/20. During data collection,

participants’ names were not requested. However, email addresses

were obtained solely for survey submission during the follow-up

measurement, after which they were promptly deleted from the

database. Only the principal researcher had access to the survey

system and the raw dataset. The privacy and confidentiality of

participants’ data were ensured, and informed consent was obtained

from all participants before their participation. Guidelines and

regulations regarding the use of human subjects in research were

also followed. Additionally, the current study utilized the dataset

that is available in open access.
Results

Classification models: identifying
depression presence

The performance of ML classifiers for predicting depression in

college students during the COVID-19 pandemic is evaluated

across five metrics and compared to the metrics of dummy
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López Steinmetz et al. 10.3389/fpsyt.2024.1376784
baseline models. The baseline models serve as sanity checks for

evaluating the performance of the ML classifiers.

Figure 1 summarizes the performance metrics for both the

trained and tested ML models and the tested baseline models. As

expected and across all metrics, the ML models during the test

phase achieve a superior predictive ability using the provided input

features compared to random chance.
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The SVM classifier is on par with or outperforms both alternative

classifiers, attaining the highest AUPRC score of 0.76 (95% CI: 0.69,

0.81) and the lowest Brier score loss of 0.15 (0.14, 0.17). The LogReg

classifier closely follows, displaying an identical AUPRC score of 0.76

(0.69, 0.81) and a slightly higher Brier score loss of 0.16 (0.14, 0.18).

The RF classifier generally achieves lower performance than

SVM and LogReg, attaining an AUPRC score of 0.73 (0.66, 0.80)
B

C D

E

A

FIGURE 1

Performance of machine learning classifiers on the training and test sets as well as of baseline classifiers on the test set. The bar charts depict the
performance of machine learning classifiers (linear logistic regression, random forest classifier, and support vector machine) on the training set and
the test set and of baseline classifiers (uniform random, most frequent, and stratified random) on the test set using five performance metrics:
(A) AUPRC, (B) AUROC, (C) Balanced accuracy, (D) Brier loss, and (E) F1. Light blue bars represent performance scores on the training set, while blue
bars with error bars represent mean test set scores with 95% confidence intervals. To ensure that higher values consistently indicate better
performance across all methods, the Brier loss is plotted as 1-Brier. AUPRC, Area Under the Precision-Recall Curve; AUROC, Area Under the
Receiver Operating Characteristic Curve; LR, Linear logistic regression; RF, Random forest classifier; SVM, Support vector machine; UNI BL, Uniform
random baseline; MFREQ BL, Most frequent baseline; STRAT BL, Stratified random baseline.
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and a Brier score loss of 0.16 (0.15, 0.18). RF also shows some

evidence of overfitting, as indicated by a higher drop in AUPRC

performance (from 0.86 on the training set to 0.73 on the test set)

compared to both alternative classifiers. Refer to Figure 1 and Table

S6 for a visualization of these and the remaining performance

metrics (i.e., AUROC, Balanced accuracy, and F1 scores) employed

in this study for each ML classifier.

Refer to Figure 2 for the Precision-Recall Curves and Receiver-

Operating Characteristic depicting depression prediction. This

plot aids in comparing models’ ability to distinguish between

positive and negative classes (Depressed and Non-Depressed,

respectively) at different clinically relevant operating points such

as high sensitivity and high specificity). Confusion matrices for
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each ML classifier are displayed in the Supplementary File

(Supplementary Figure S6).
Regression models: quantifying
depression severity

The performance of ML regressors in predicting depression

among college students during the COVID-19 pandemic is

evaluated across three key metrics and compared to the results of

these metrics on dummy baseline models. The baseline models

serve as benchmarks for evaluating the performance of the

ML regressors.
B

A

FIGURE 2

Classifier performance comparison: Precision-Recall Curves and Receiver-Operating Characteristic Curves for depression prediction. These curves
characterize the predictive performance of trained models (linear logistic regression, random forest classifier, and support vector machine) and
dummy classifiers (uniform random, most frequent, and stratified random baselines) for depression prediction for varying classifier thresholds, where
the positive class indicates depression presence. (A) Precision-Recall Curve (PRC) displays how precision changes with different recall levels for
various models/baselines. (B) Receiver-Operating Characteristic (ROC) curves illustrate the balance between true positive rate (sensitivity) and false
positive rate (1-specificity) as probability thresholds change. Each curve depicts how sensitivity changes with different specificity levels for different
models/baselines. SVM, Support vector machine. AP: Precision-Recall curve values (the Precision-Recall curve display in scikit-learn uses the term
“average precision” (AP) to refer to the area under the precision-recall curve). AUC, Area Under the Receiver Operating Characteristic values.
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Figure 3 provides an overview of the performance metrics for

both the trained and tested ML models, along with the tested

baseline models. As expected, the tested ML models consistently

demonstrate superior predictive capabilities using the provided

input features compared to random chance, as evidenced by

all metrics.

SVR and RR achieve the highest R2 score of 0.56 (95% CI: SVR:

0.45, 0.64 and RR: 0.45, 0.63). This R2 value indicates that the

models can account for approximately 56% of the variability in the

target variable. The RF regressor achieves a lower R2 value of 0.50

(0.40, 0.59).

The RF regressor also exhibits inferior MAE and MSE

performance on the test set compared to the SVR and RR models.

Both the MAE and MSE metrics for the RR algorithm mirror the

SVR’s performance, underscoring their comparable predictive
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capabilities (Figure 3, Supplementary Table S7). The correlations

between actual and predicted values for each ML algorithm in the

test set are depicted in the Supplementary File (Supplementary

Figure S7).
Evaluation of feature importance:
comparison of multivariate to
univariate models

Comparison of multivariate to univariate models
in the classification task

In the classification task for predicting depression presence, the

multivariate model generally outperforms univariate models, except

for a small difference in favor of the RF classifier using depression
B

C

A

FIGURE 3

Performance comparison of machine learning regressors on the training and test sets and baselines on the test set. The bar charts compare the
performance of machine learning regressors (ridge regression, random forest regressor, and support vector regressor) on the training set and the
test set and of baseline regressors (randomly shuffled baseline, mean baseline, and median baseline) on the test set using three performance
metrics: (A) R-squared, (B) Mean Absolute Error, (C) Mean Squared Error. Light blue bars represent performance scores on the training set, while
blue bars with error bars represent mean test set scores with 95% confidence intervals. R2, R-squared; RR, Ridge Regression; RF, Random Forest
Regressor; SVR, Support Vector Regressor; RAND SHUFF, Randomly Shuffled Baseline; MEAN, Mean Baseline; MDN, Median Baseline.
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scores (at T1) as a single feature (AUPRC multivariate RF classifier:

0.73, 95% CI: 0.66, 0.80; AUPRC univariate RF classifier: 0.74, 95%

CI: 0.68, 0.79) (Figure 4, Supplementary Table S8). However, it’s

crucial to note that the multivariate model for the RF classifier

shows some signs of overfitting compared to both multivariate

alternative classifiers (Figure 1).

Univariate classifiers, in particular LogReg and SVM using

depression (at T1) or anxiety scores as single features, exhibit

comparative performance levels (in terms of mean test AUPRC)

that are close to those of the corresponding multivariate model that

include all features. On the other hand, all other univariate models

perform significantly worse, with mean AUPRC scores slightly

above chance-level performance. Importantly, this trend is

consistent across the three ML algorithms tested (Figure 4,

Supplementary Table S8).

Comparison of multivariate to univariate models
in the regression task

In the regression task for predicting depression scores, the

multivariate model consistently outperforms all univariate models.

Notably, when considering all univariate models, depression (at T1)

and anxiety scores emerge as the most predictive single features,

achieving the highest performance levels (mean R2 scores),

particularly when using the RR algorithm. It is noteworthy that

univariate models excluding both depression (at T1) and anxiety

scores exhibit performance levels slightly above (e.g., suicidal

behavior history) or comparable (e.g., quarantine sub-period) to
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chance-level. Importantly, this pattern is consistent across the three

ML algorithms. Contrary to the results on the comparison between

multivariate classifiers’ performance, when comparing univariate

models’ performance, RF models perform better than SVR models

(Figure 5, Supplementary Table S9).
Discussion

This study leveraged a longitudinal dataset for the prediction of

depression among college students amidst the challenging backdrop

of the COVID-19 pandemic, allowing for the examination of

evolving mental health patterns over time. The results indicate a

gain in predictive efficacy of multivariate ML algorithms as

compared to their univariate counterparts.

As previously mentioned, the dataset analyzed using ML in this

study underwent scrutiny through MEM in a prior study (17). In

that study, variables such as sex (female), age (younger), mental

disorder history (presence), and suicidal behavior history (presence)

were identified as having significant main effects on depression.

However, following Cohen’s conventions for effect sizes (ES; 38),

these effects were deemed small for sex (ES = 0.09), age (ES = 0.09),

and mental disorder history (ES = 0.17), while being of medium

magnitude for suicidal behavior history (ES = 0.34) (17).

Notwithstanding, the outcomes of that prior MEM study align

with existing literature, underscoring that variables associated with

adverse mental health effects after and during the COVID-19
B

C

A

FIGURE 4

Mean AUPRC scores for multivariate versus univariate machine learning models predicting depression in the classification task. Linear logistic
regression, random forest, and support vector machine classifiers were trained either as multivariate models (encompassing all features) or univariate
models (each incorporating just a single feature). Error bars represent 95% confidence intervals. AUPRC, Average Precision-Recall Curve; All,
Multivariate model with all features included; Univariate models: DEP, Depression scores measured at time 1 as the single feature; ANX, Anxiety
scores as the single feature; SUBP, Quarantine sub-periods as the single feature; Sex, Biological sex as the single feature; Age, Age as the single
feature; MDH, Mental disorder history as the single feature; SH, Suicidal behavior history as the single feature.
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pandemic encompass baseline depression, female sex, younger age,

the presence of mental disorders, and student status, among others

(39, 40). In the current study, the application of ML models enabled

the exploration of various features’ predictive potential, aligning

with those examined in the previous study (17). Notably, anxiety, a

feature included in this ML-based approach but absent in the

previous study, was revealed as one of the most relevant features,

alongside depression at T1, for identifying depression presence and

quantifying depression severity. The significance of anxiety as a

predictor of depression underscores the interconnectedness of these

mental health conditions. It aligns with existing literature that

emphasizes the comorbidity and shared features between anxiety

and depression (41–43) particularly in college students during

COVID-19 (44, 45). As for depression at T1, these findings

suggest that depressive symptoms persist over time during

COVID-19. This aligns with research conducted in college

students (46) and general populations in developed countries (47)
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and Argentina (48), demonstrating the enduring nature of

depression symptoms amid the pandemic.

As for the ML algorithms’ performance in this study, both SVM/

SVR and LogReg/RR demonstrated the best results in both

classification and regression tasks. SVM has consistently been

identified as a high-performing algorithm in predicting depression

among students (see, e.g., 49–51). However, RF also emerged as the

top-performing algorithm in some studies (see, e.g., 50–52), which

contrasts with the present findings where it displayed some signs of

overfitting and exhibited comparative lower performance. The

observed overfitting in the RF algorithm in both classification and

regression tasks within this study can be attributed to various factors.

Although RFs are renowned for their adaptability and capacity to

discern intricate data relationships, this characteristic may lead to

overfitting, particularly if the model’s complexity surpasses the

dataset’s requirements. The profusion of decision trees and their

interactions may contribute to an overfitted model. Additionally, the
B

C

A

FIGURE 5

Comparative analysis of mean R-squared scores for multivariate versus univariate machine learning models predicting depression in the regression
task. Bar plot illustrating the comparison of mean R2 scores for various machine learning models (ordinary least-squares regression, random forest
regressor, and support vector regressor) in the regression task of predicting depression. The models evaluated include multivariate models
(encompassing all features) and univariate models (each incorporating a single feature). The bar plots include error bars representing 95% confidence
intervals and using markers to highlight data points. All: Multivariate model with all features included; Univariate models: DEP, Depression scores
measured at time 1 as the single feature; ANX, Anxiety scores as the single feature; SUBP, Quarantine sub-periods as the single feature; Sex,
Biological sex as the single feature; Age, Age as the single feature; MDH, Mental disorder history as the single feature; SH, Suicidal behavior history as
the single feature.
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hyperparameters of the RF play pivotal roles. In this study, a set of

hyperparameters was explored, including the number of trees, the

maximum depth of the tree, the minimum number of samples

required to split an internal node, and the minimum number of

samples required to be at a leaf node. For tree building, a bootstrap

method involving sampling with replacement was used. Likewise, RFs

automatically perform feature selection by considering a subset of

features at each split. While advantageous, this process can lead to

overfitting if the model emphasizes noise or irrelevant features.

However, as demonstrated in this study, an examination of multi-

versus univariate models revealed two dominant features (depression

at T1 and anxiety), with the remaining features exhibiting limited

significance. Just like SVM/SVR and LogReg/RR models, RF multi-

and univariate models also captured these key features. As for the

discrepancies in algorithm performance between different studies,

these may be ascribed to several factors. To mention some of them,

the diverse array of features integrated into the models can

significantly impact performance when comparing studies.

Additionally, variations in study designs, predominantly the

widespread use of a cross-sectional design in studies analyzing

questionnaire-collected data, further contribute to these differences.

Depression assessment methods, relying on self-reported and

clinician-administered questionnaires, exhibit inherent limitations

(53). However, it is crucial to emphasize that, particularly in

developing countries, accessing potent features capable of

identifying biomarkers, such as those related to neuroimaging (54),

is often impeded by their high cost. Consequently, there is a pressing

need to identify reliable and cost-effective predictors to develop risk

prediction models capable of enhancing clinical decision-making in

depression diagnosis and care. This study represents a first

exploratory step toward addressing this goal.

In addition, addressing the challenge of interpretability in ML

models is crucial for their effective deployment. This challenge is

particularly pronounced in the transparency of decision-making

processes within advanced models, often referred to as “black-boxes”

(55). Notably, complex models like RF, which leverage numerous

decision trees in a non-linear interaction, exacerbate the difficulty in

comprehending underlying mechanisms (27). In contrast, linear models

such as logistic regression and RR are frequently considered to be easier

to interpret due to their transparent mathematical formulations (56).

Nevertheless, even the interpretation of multivariate linear models and

decision trees can be highly misleading (57–59). Moreover, additional

challenges persist in high-dimensional datasets (60). For these reasons,

we here resort to univariate analyses to unanimously clarify the aptitude

of individual features for prediction (57). In this study, while multivariate

ML models encompassing all features demonstrate robust performance

in both classification and regression tasks, particularly with LogReg/RR

and SVM/SVR, a closer examination reveals a reliance on two key

features: depression (at T1) and anxiety. The relevance of these variables

in identifying depression aligns with existing literature (3–5, 39).

However, this study’s outcomes also emphasize the limited

significance of certain variables, encompassing quarantine

duration and restrictiveness (referred to as quarantine sub-

periods), sex, age, mental disorder history, and suicidal behavior

history, not only in identifying depression presence (i.e.,
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classification task) but particularly in quantifying depression

severity (i.e., regression task). This departure from the established

psychological literature, which traditionally links these variables to

depression prediction and diagnosis both before and during

pandemics (e.g., 6–9, 11, 61), is noteworthy. Nevertheless, it is

also worth noting that some recent research, such as a systematic

review and meta-analysis, found no significant association between

sex and depression among undergraduates (62). Likewise, it is

important to consider that much of the established psychological

literature is derived from studies analyzing samples in developed

countries, often leading to underrepresentation from developing

southern countries. Consequently, the role and impact of these

variables in predicting depression can vary across different contexts

and populations. Overall, the presented findings suggest that, when

considered in isolation, these variables may not reliably predict

depression within this population. This underscores the need for a

more holistic approach to depression prediction, emphasizing the

intricate interplay of multiple factors. Additionally, there is a call for

further studies to explore additional factors that may be linked with

depression prediction, particularly in samples from developing

southern countries.

The observed disparities among these current ML-based results,

prior MEM analysis, and existing literature bear implications for

translational research, as well as for health decision-makers and

policymakers striving to improve mental health, particularly to offer

scalable and effective evidence-based interventions addressing

depression (63). Reliable predictors and prediction models are

crucial for effective mental health interventions, particularly those

targeting depression prevention (64). While internal validation

provides strong support for the performance of the models tested

in this study, it is imperative to underscore the necessity for

additional external validation and replication studies to solidify

the implications of these findings. The prevailing landscape of

developing clinical prediction models related to mental disorders

calls for more rigorous validation procedures. The current studies in

this field often exhibit a deficiency in both external and internal

validation (63), emphasizing a critical weakness that needs to be

addressed in future research.

Especially in the post-COVID-19 era, there is a growing

imperative to leverage advanced technologies like ML algorithms

and artificial intelligence to enhance the precision of depression

screening among college students. This, in turn, can enable

proactive prevention efforts and contribute significantly to

improving mental health outcomes (65). However, the

applicability of ML algorithms to depression prediction and the

development of evidence-based tools also entails ethical challenges.

These include optimizing predictions across diverse datasets,

ensuring data protection and privacy, assessing feasibility in

clinical practice, addressing issues of fairness, accountability, and

transparency, as well as identifying and mitigating potential biases

of ML models. Many of these challenges have not yet been fully

addressed or solved by research studies (66–68). Likewise, as

discussed above, the non-trivial interpretability and explainability

of ML algorithms is a well-recognized problem. Furthermore,

potential future application of these findings, such as widespread
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depression screening using ML and automatic diagnosis of

disorders, raise additional questions. These include whether

clinicians need to confirm diagnoses and eventually communicate

them to individuals. Thus, the involvement of these algorithms in

diagnosis decision-making has to be accompanied by ethical

reflection (67).

This study comprises a valuable exploration of using ML

models to predict depression among college students during the

COVID-19 quarantine. However, the interpretation of these results

is subject to certain limitations. The focus on a specific population

and cultural context limits the generalizability and applicability of

the developed ML models. Future studies should endeavor to

incorporate data from diverse demographics and cultural

backgrounds. Additionally, potential biases introduced by the

data collection process, which are discussed elsewhere (17),

should also be considered. Moreover, the limitations of the ML

models, as acknowledged above, should be considered.

In conclusion, this study not only advances our understanding

of depression prediction in college students from a developing

country using ML algorithms but also highlights the need for

further exploration and validation of predictive models in diverse

populations. Future research should aim to refine models, consider

additional psychological and socio-environmental factors, and

enhance external validation to ensure the broad applicability of

these findings. For instance, further studies should include larger

and more diverse datasets, incorporating the features analyzed in

this study as well as other potentially relevant ones. Specifically,

future studies may involve additional psychological measurements,

such as capturing somatic symptoms of coronavirus-related anxiety,

and analyze specific mental disorder diagnoses instead of examining

a general category of mental disorder background, as done in this

study. Additionally, a comparison with another similar cohort

should be conducted as part of future work. Moreover, future

research should focus on improving the interpretability of

multivariate models. As suggested in this study, comparing

multivariate and univariate models may help elucidate the

interpretability of the former. This way, the implementation of

scalable and effective interventions for diagnosing depression may

become more attainable. This initial research study serves to explore

the viability of data-driven algorithms in detecting depression

among college students. While this study reveals interesting

correlations, these findings do not necessarily imply immediate

practical consequences. To thoroughly understand and establish

causal relationships between anxiety and depression, or to develop

evidence-based tools, further investigation is needed. In the future,

models similar to those presented in this study may be employed for

online pre-screening of students for depression at home.
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