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Depression proteomic
profiling in adolescents with
transcriptome analyses in
independent cohorts
Aleksandr V. Sokolov †, Muataz S. Lafta †, Didi O. T. Nordberg,
Jörgen Jonsson and Helgi B. Schiöth*

Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University,
Uppsala, Sweden
Introduction: Depression is a major global burden with unclear pathophysiology

and poor treatment outcomes. Diagnosis of depression continues to rely

primarily on behavioral rather than biological methods. Investigating tools that

might aid in diagnosing and treating early-onset depression is essential for

improving the prognosis of the disease course. While there is increasing

evidence of possible biomarkers in adult depression, studies investigating this

subject in adolescents are lacking.

Methods: In the current study, we analyzed protein levels in 461 adolescents

assessed for depression using the Development and Well-Being Assessment

(DAWBA) questionnaire as part of the domestic Psychiatric Health in Adolescent

Study conducted in Uppsala, Sweden. We used the Proseek Multiplex Neuro

Exploratory panel with Proximity Extension Assay technology provided by Olink

Bioscience, followed by transcriptome analyses for the genes corresponding to

the significant proteins, using four publicly available cohorts.

Results: We identified a total of seven proteins showing different levels between

DAWBA risk groups at nominal significance, including RBKS, CRADD, ASGR1,

HMOX2, PPP3R1, CD63, and PMVK. Transcriptomic analyses for these genes

showed nominally significant replication of PPP3R1 in two of four cohorts

including whole blood and prefrontal cortex, while ASGR1 and CD63 were

replicated in only one cohort.

Discussion: Our study on adolescent depression revealed protein-level and

transcriptomic differences, particularly in PPP3R1, pointing to the involvement

of the calcineurin pathway in depression. Our findings regarding PPP3R1 also

support the role of the prefrontal cortex in depression and reinforce the

significance of investigating prefrontal cortex-related mechanisms in depression.
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Highlights
Fron
• 92 proteins were analyzed in blood from adolescents

assessed for depression using DAWBA score.

• Seven proteins showing different levels between DAWBA

risk groups were identified.

• Transcriptomic analyses showed nominally significant

replication of PPP3R1, ASGR1 and CD63.

• Platelets may be a peripheral key player mirroring the

condition of neurons in the CNS.
Introduction

Depression is a prominent global cause of disability with a

lifetime prevalence approaching 20% (1, 2). It can manifest at any

stage of life, with the most common period for the first episode

typically spanning from adolescence to middle age (1). In its most

severe form, depression may lead to suicide attempts, making it one

of the leading causes of death among adolescents in Europe (3). It

appears to be a multifactorial disease arising from a combination of

genetic or metabolic predisposition and environmental factors such

as stressful life events and other stressors (4). Currently, the

diagnosis of depression relies on clinical assessment, which

includes evaluating depressive symptoms like low mood, reduced

self-esteem, inappropriate guilt, thoughts of death and suicide,

decreased concentration, loss of interest or pleasure in once

enjoyable activities, and disturbances in sleep and appetite.

Treatment typically involves antidepressant medication, although

its efficacy is generally considered mild to moderate (5), with up to

60% of patients experience resistance to treatment (6). Despite

major efforts to uncover the pathophysiological mechanisms of

depression by analyzing data from genome-wide association studies

(7) and RNA gene expression studies (8, 9), our understanding

remains limited.

Recent technological advances, particularly within proteomic-

based platforms, are providing new insights for better comprehension

of depression, going beyond what conventional targeted methods can

offer. With the advent of cutting-edge proteomic and transcriptomic

techniques allowing simultaneous quantitative assessment of a wide

spectrum of proteins or mRNA transcripts, it is now possible to

explore not only the functions of individual proteins but also the roles

of biochemical pathways and associated metabolites. Proteins serve as

the ultimate products of RNA and DNA, often serving as the

functional and modifiable units in disease mechanisms.

Consequently, proteome analyses hold the potential to elucidate the

pathophysiological mechanisms of depression and to identify

potential biomarkers for diagnosis, treatment, and monitoring of

disease progression. Studies aimed at discovering objective blood-

based biomarkers in the fields of psychiatry, neurology, and

neuropsychiatry have experienced exponential growth (10–12).

However, due to both methodological and clinical challenges

associated with psychiatric conditions, such as their inherent
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complexity and heterogeneous presentation, clinical efficacy

remains extremely limited (13–15).

Most studies on risk factors for depression have primarily focused

on the adult population. While various biological mechanisms have

been explored, no biomarker has been definitively identified or

validated for assessing the risk or presence of depression in

adolescence and young adulthood (16–20). This is important given

that approximately half of depression diagnoses in adults stem from

onset in adolescence. Considering the high incidence of depression

during the early decades of life and its chronicity throughout life,

adolescence presents a unique opportunity to develop effective

prevention strategies and alleviate the burden associated with it

(21). Furthermore, more research on depression involving youth

populations is essential for understanding the natural progression of

the disease and identifying factors that may underlie the commonly

observed differences in treatment outcomes between adults and

children (22). Additionally, developing biomarkers that could

predict antidepressant response in the young population would

contribute to creating more personalized and effective treatments

for young people, a key step in improving the prognosis of depression

across the lifespan (23).

In this study, we aimed to analyze protein levels in 461

adolescents assessed for depression as part of the domestic

Psychiatric Health in Adolescent Study (PSY cohort) conducted in

Uppsala, Sweden, using the Proseek Multiplex Neuro Exploratory

panel with Proximity Extension Assay (PEA) technology provided by

Olink Bioscience. Subsequently, we conducted transcriptome

analyses for the genes corresponding to the significant proteins,

using publicly available cohorts, in order to identify differentially

expressed transcripts between depressed individuals and controls.
Materials and methods

Ethics declarations

This study uses samples from four human sample cohorts other than

PSY published prior to the current study. The PSY cohort was conducted

in Uppsala, Sweden and approved by the Regional Ethics Committee of

Uppsala. All participants gave their written informed consent for

participation in the study. Data from the other four cohorts GSE53987,

GSE98793, GSE46743, and GSE64930 was deposited in the Gene

Expression Omnibus (GEO) portal in the pseudo-anonymized form.

The studies deposited in GEO were approved by corresponding regional

ethical committees as detailed in the previous publications (24–27).
PSY subjects

The PSY cohort consists of two phases, including the

recruitment phase and the follow-up after approximately one

year. The objective of the study was to investigate associations

between whole blood biomarkers and different psychiatric

phenotypes among school students aged on average between 15-

21 years. The phenotypic characterization of the individuals was
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performed during the visit. Participants self-reported their

medications, whereas weight and height were measured. The

depressive status of participants was evaluated with a computer-

based DAWBA questionnaire (28, 29). The depression band of the

questionnaire was used for psychiatric assessment. This band is a

numeric score ranging from 0 to 5, where each number corresponds

to a probability that an individual has depression: 0 (<0.1%), 1

(~0.5%), 2 (~3%), 3 (~15%), 4 (~50%), and 5 (>70%). We stratified

the cohort into high depression risk and low depression risk groups

based on the DAWBA score, and individuals with scores 4 and 5

were classified as being depressed. In total, 461 participants

successfully completed the DAWBA assessment and had available

whole blood and were therefore included in the current study.

Among these participants, 334 clearly indicated medications taken,

whereas 127 did not fill in the information.
Proximity extension assay

Protein levels from the 461 participants were assessed using

Olink Neuro Exploratory Panel involving 92 proteins (Neuro

Exploratory Panel of Olink Proteomics AB, Uppsala Sweden) in

two batches. The Neuro Exploratory panel was specifically selected

due to the exploratory nature of the current study. This panel was

deemed suitable because it offers a broad range of neurological

biomarkers, allowing for a proteomic exploration of potential

pathways. The Olink methodology has been extensively described

in the user manual on the company’s website. Briefly, a mixture of 1

µL of EDTA-containing plasma and a 3-µL incubation mix was

incubated overnight at 8°C. Then a 96-mL extension mix with PEA

enzyme and PCR reagents was added and incubated at room

temperature for 5 min. Afterwards, an extension reaction in a

thermal cycler was performed followed by 17 cycles of DNA

amplification. During these steps, 92 oligonucleotide-labeled pairs

of antibodies were allowed to bind to their respective target protein

in the sample. Once the antibody probes bound to the targeted

protein and the attached DNA oligonucleotides were in close

proximity, the oligonucleotides hybridized and were extended by

enzymatic polymerization. The oligonucleotide templates were then

amplified and quantified using real-time polymerase chain reaction.

Protein levels are expressed as Normalized Protein Expression

(NPX) values on log2-scale (30). The assay procedures were

performed at Affinity Proteomics Uppsala SciLifeLab in Sweden.
Transcriptome validation cohorts

The validation of the results from the PSY cohort was

performed utilizing a publicly-available transcriptome cohort with

post-mortem brain tissues (GSE53987) and three cohorts with the

whole blood (GSE98793, GSE46743, and GSE64930). The cohort

GSE53987 comprises post-mortem brain sample data for major

depressive disorder (MDD), schizophrenia, bipolar disorder, and

controls. Descriptions of sample collection and preparation are

provided in the original publication (27). Transcriptome data from

three brain tissues was available and included the associative
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striatum, hippocampus, and prefrontal cortex (Brodmann area

46) for each of the disorders and controls. We compared

transcriptome profiles of MDD patients (n = 16 – 17) versus

controls (n = 18 – 19) separately for each of the three brain tissues.

The cohort GSE98793 included 192 participants and is a part of

GlaxoSmithKline–High-Throughput Disease-specific target

Identification Program. The sample includes 64 individuals with

MDD, 64 participants with comorbid MDD and anxiety, and 64

healthy controls. Dataset includes covariables on age, sex, diagnoses

(anxiety and MDD), as well as a batch covariable. Please refer to the

initial publication for detailed descriptions (26).

The cohort GSE46743 is a part of a large-scale study conducted at

the Max Planck Institute of Psychiatry, Munich, Germany. The study

objective was to investigate transcriptome reaction to stress in the

context of depression. The study investigated whole blood

transcriptome profiles before and after exposure to dexamethasone

and involved 160 male subjects. Data on age and BMI was collected

during the study. Transcriptome profiling was performed

with Illumina HumanHT-12 expression beadchip. Further

information could be found elsewhere (24). In the present work, we

used transcriptome profiles before exposure to dexamethasone

to compare the baseline expression in depression patients

versus controls.

Lastly, the cohort GSE64930 had a similar design to GSE46743

and investigated transcriptome reaction to stress in the context of

depression. This cohort has a partial overlap consisting of 79

participants with GSE46743. However, it included both female

and male participants (n=289) (25). The initial deposited

phenotypic data contains information only on participant’s sex.

Data on age, BMI, RNA integrity number, and Hamilton

Depression Rating Scale (HAM-D) scores, as well as three

surrogate variables to adjust for cell heterogeneity, was provided

by the study investigator after a request. Similar to GSE46743, we

used the data before dexamethasone exposure to compare

expression in depressed participants versus controls. In total, 286

participants were amenable for analysis as three samples did not

have information on RNA integrity and were excluded.
Data preprocessing

Transcriptome data preparation and analysis were performed in

the R programming language environment (version 4.2.0). Data for

GSE98793 and GSE53987 was available in the form of raw CEL files.

The R package affy was used to perform background correction,

normalization, and summarization (31). The initial array images

were inspected for potential visual artifacts. The initial data had

substantial variation due to batching. Data preparation was

performed in the expresso framework (affy), where all data

curation steps are done sequentially. The background was

corrected with a robust multi-array average method. The resulting

log2-transformed values were quantile normalized and probe-wise

correction was based exclusively on the perfect match intensities

(“pmonly”). The resulting expression values were obtained with the

“medianpolish” procedure. The final correction for batching was

performed with the function ComBat from the R package sva (32).
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The batch correction was performed with covariates and included

subject group, anxiety status, gender, and age to preserve

corresponding biological effects.

In the cohorts GSE46743 and GSE64930, we used already

preprocessed filtered data. Expression values corrected for

background that passed through variance stabilization and

normalization (VSN) procedure were downloaded directly from

the GEO from the corresponding records.

Data for the PSY cohort comes in the form of analyzable

normalized NPX values. We performed additional correction for

the batch effect (plate) using the function ComBat from the R

package sva. The batch correction was performed with covariates

that included DAWBA risk group, age, sex, as well as the

antidepressant intake (binary). The antidepressant covariate was

only included for the samples subject to differential expression

analysis adjusted for antidepressant intake.
Statistical analysis and data visualization

Linear regression models (R implementation) were used to

investigate associations between protein/transcript expression and

the depression status in all cohorts. The choice of model covariates

was based on the available data and biological relevance. In each

model, the level of protein/transcript was regressed against the

depression status or DAWBA risk group (binary) adjusted for

covariates. In the PSY cohort, the covariates included age

(numeric) and sex (binary). In the analysis adjusted for

antidepressant intake, the antidepressant covariate (binary) was

added. The analysis adjusted for antidepressant intake was

performed as a “complete case” and all participants that did not

report the data on antidepressant intake were excluded. In the

GSE53987 cohort, the covariates were sex (binary), ethnic

background (binary), age (numeric), tissue pH (numeric), post-

mortem interval (numeric), and RNA integrity number (numeric).

In the GSE53987 cohort, the covariates included anxiety

comorbidity (binary), sex (binary), age (numeric). In the

GSE46743 cohort, the only covariate included was age (numeric)

as all participants were male. Lastly, sex (binary), age (numeric),

RNA integrity number (numeric), and three surrogate variables

(numeric) were used as covariates in GSE64930 cohort. A two-tailed

nominal p < 0.05 was considered significant and only results

reproduced in at least one cohort were deemed as relevant. The

Bonferroni-adjusted p-values were calculated along the nominal

statistics. Data was visualized using custom R scripts with R

packages ggplot2 and visNetwork.
Results

Demographic data

The demographic details of the participants in the PSY cohort

are presented in Table 1. The initial dataset included 461

participants, of whom 138 had available proteomic data from

recruitment, and 353 had proteomic data from the follow-up.
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After conducting quality control steps in connection with the

proteomic analysis, five samples from the screening and four

samples from the recall had quality control warnings and were

subsequently removed from the analyses. Out of the 461

participants, 61 were in the high-risk DAWBA group, of which

the majority (91.8%) were females. The age was similar in both the

high and low-risk DAWBA groups (mean age 16.67 vs. 17.26 years).

While five participants in the high-risk DAWBA group reported

taking antidepressants, only nine participants reported taking

antidepressants in the low-risk DAWBA group. Thus, 121

participants (> 30%) did not answer the drug intake question in

the low-risk DAWBA group.

The demographic details of the participants in each of the four

publicly available transcriptome validation cohorts are presented

in Supplementary Tables S1–4. Each cohort was stratified into two

groups based on depression diagnosis, depressed or non-

depressed (see methods). The cohort GSE53987 was nearly

identical in all characteristics between the depressed and non-

depressed groups (Supplementary Table S1). In GSE98793, there

was no difference between groups except for a relatively higher

proportion of females than males (75% vs. 25%) in both the

depressed and non-depressed groups (Supplementary Table S2).

In the GSE46743 cohort, the mean age of participants was

relatively higher in the depressed group (48.39 vs. 40.18) than in

the non-depressed group (Supplementary Table S3). Lastly, for the

GSE64930 cohort, there was a higher proportion of males than

females (64.3% vs. 35.7%) in the depressed group and (71.9% vs.

28.1%) in the non-depressed group, while the mean age was higher

in the depressed group (48.06 vs. 38.55) than in the non-depressed

group (Supplementary Table S4).
TABLE 1 PSY cohort.

PSY

Initial dataset includes 461 participants (138 from the recruitment and 353 the
follow-up)

Participants with missing data excluded: 0 (for the base model*)
Participants with missing data excluded: 127 (adjusted for antidepressants)

Resulting number of participants: 461 (base model)
Resulting number of participants: 334 (adjusted for antidepressants)

DAWBA risk group
Control: 400 (100%)
Depressed: 0 (0%)

Control: 0 (0%)
Depressed: 61 (100%)

Gender
Male: 104 (26%)
Female: 296 (74%)

Male: 5 (8.2%)
Female: 56 (91.8%)

Age
17.26 ± 1.27

Min: 15, Max: 21
16.67 ± 1.35

Min: 15, Max: 20

Antidepressants

No: 270 (67.5%)
Yes: 9 (2.2%)

Not reported: 121 (30.2%)

No: 50 (82%)
Yes: 5 (8.2%)

Not reported: 6 (9.8%)
This table provides demographic characteristics for the PSY cohort. Base model* indicates the
analysis non-adjusted for antidepressant intake. The analysis with antidepressants was
performed as a “complete case” and all participants that did not report data on
antidepressant intake were excluded. Categorical variables are shown as counts with their
associated percent (in relation to a subgroup). Numerical variables are shown as mean ±
standard deviation, as well as minimal and maximal values below. DAWBA, Development
and Well-Being Assessment.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1372106
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Sokolov et al. 10.3389/fpsyt.2024.1372106
Differential expression (proteome) analyses
in PSY cohort

Out of the 92 protein biomarkers measured using the Proseek

Multiplex Neuro Exploratory panel, only 43 proteins were

detected in more than 75% of blood samples. Therefore, 49

proteins were excluded from the analysis. We conducted linear

regression models, adjusted for age and sex, and both with and

without adjustment for antidepressants, to investigate the

differences in protein levels between high-risk and low-risk

DAWBA participants. Five proteins (RBKS, CRADD, ASGR1,

HMOX2, and PPP3R1) showed different levels between

DAWBA risk groups at a nominal significance in the linear

models non-adjusted for antidepressants (Supplementary Table

S5). After adjustment for antidepressants, only three of these

proteins (RBKS, CRADD, and PPP3R1) showed nominally

significant differences in levels (Supplementary Table S6). The

estimated effect sizes of proteins in the depressant-adjusted

analysis were slightly larger than in the non-adjusted models for

antidepressant intake. A summary of the main results obtained in

the PSY cohort and their replications in the transcriptome cohorts

is shown in Figure 1.
Frontiers in Psychiatry 05
Transcriptome analyses in independent
validation cohorts

Transcriptome analyses were conducted for the genes

corresponding to the nominally significant proteins using four

publicly available cohorts to investigate differentially expressed

transcripts. Our differential expression analyses of gene-related

probes showed nominal upregulation in depression for PPP3R1,

which was replicated in both GSE53987 (prefrontal cortex)

(Supplementary Table S7) and GSE64930 (whole blood)

(Supplementary Table S8), consistent with the upregulation

observed in the PSY cohort. No transcripts were differentially

expressed in the hippocampus or associative striatum in

GSE53987 (Supplementary Table S7). A summary of the

expression levels of PPP3R1 at the proteomic level in the PSY

cohort and the transcriptomic level in GSE53987 and GSE64930 is

shown in Figure 2, while Supplementary Figure S1 displays

PPP3R1 expression across cohorts for better visualization of

effect sizes. Moreover, we also observed nominal significance for

ASGR1 and Bonferroni-adjusted significance for CD63, both of

which were upregulated in depressed cases in GSE98793, aligning

with the direction of upregulation observed in the PSY cohort
FIGURE 1

Results graph. This figure shows the main results obtained in the PSY cohort and their replications in the transcriptome cohorts. Red nodes indicate
differentially expressed genes, blue nodes indicate probes or plasma proteins, orange nodes indicate the analyses. Arrows indicate relationships
between the nodes. Brick-red edges indicate upregulation of the protein/probe in depression, whereas green edges indicate respective
downregulation. Gray edges show relationships between gene names and probes. The thickness of the red and green edges edges is proportional to
the sizes of b-coefficients in the linear models.
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(Supplementary Table S9). Lastly, PMVK and RBKS were

nominally significant in GSE46743, but the directions did not

match with the PSY cohort (Supplementary Table S10).
Discussion

In this exploratory study, the Olink Neuro Exploratory panel

was used to analyze the expression levels of 92 proteins among

adolescents based on their DAWBA risk in the PSY cohort, followed

by transcriptome analyses in independent cohorts. As a result, we

identified a total of seven proteins showing different levels between

DAWBA risk groups at nominal significance, whether adjusted or

non-adjusted for antidepressant use, including RBKS, CRADD,

ASGR1, HMOX2, PPP3R1, CD63, PMVK. Transcriptomic

analyses for these genes showed nominally significant replication

of PPP3R1 in two of four cohorts, while ASGR1 and CD63 were

replicated in only one cohort.

One protein that drew particular attention due to its differential

expression is PPP3R1, as it showed nominal significance both

before and after adjustment for antidepressant use, and it was the

only protein with consistent directions of change in two

transcriptome cohorts. PPP3R1 is a 19 kDa calcium-binding

regulatory subunit of the calcium-dependent protein phosphatase,

also known as calcineurin. Abundantly expressed in human brain

neuronal cell cytosol, PPP3R1 plays a critical role in the calcineurin

signaling pathway (33, 34). Studies have observed that mice with a

PPP3R1 mutation, eliminating calcineurin activity in somatic cells,

exhibited structural defects in anterior neural structures (35). There

is increasing evidence suggesting that calcineurin signaling is

implicated in the pathophysiology of depression and its

treatment. The association between calcineurin activity and
Frontiers in Psychiatry 06
psychiatric disorders is based on clinical observations that the

rates of anxiety and depression increase in patients treated

chronically with the calcineurin inhibitor cyclosporine-A to

prevent rejection after organ transplantation (36). Preclinical

studies reveal depressive-like behavior induction in mice through

amygdala calcineurin inhibition (37). Additionally, chronic stress in

rats, a model for depression research, reduces calcineurin activity in

the hippocampal CA3 region (38). Notably, calcineurin has also

been found to have direct antidepressant-like effects, as the

inhibition of calcineurin in the prefrontal cortex of rats induces

depressive-like behavior (39). These findings taken together support

the role of calcineurin in the pathophysiology of depression.

PPP3R1 was replicated in two transcriptomic cohorts,

GSE53987 [prefrontal cortex (PFC)] and GSE64930 (whole

blood). The differential expression of PPP3R1 in the prefrontal

cortex of depressed adolescents aligns with the existing evidence

that the PFC is one of the regions most consistently affected in

depression. Extensive literature has strongly implicated PFC

dysfunction in MDD, revealing functional, structural, and

systems-level abnormalities spanning various PFC regions (40).

Evidence of structural changes in the PFC associated with

depression mainly comes from secondary measures. For instance,

the volume of the PFC is reduced in depressed patients, and this

decrease is correlated with the duration of illness (41). In

depression, specific changes can be observed in the molecular

composition of PFC neurons (42), which modulate their electrical

properties (43). Decreases in the volume of the orbitofrontal cortex

(44) and pyramidal cell density (45) have also been observed in

depression. These studies suggest that PFC neurons undergo

widespread physiological and morphological alterations during

depression. Other lines of evidence include dysregulation of

glutamatergic and GABAergic neurotransmission in the PFC.
B CA

FIGURE 2

PPP3R1 expression. (A) PPP3R1 plasma NPX in the PSY cohort depending on the DAWBA risk group. Asterisk indicates a nominal p<0.05. (B) The
expression levels of PPP3R1-related probe ILMN_1796962 in whole blood in depression versus controls in GSE64930. Asterisk indicates a nominal
p<0.05. (C) The expression levels of PPP3R1-related probe 204506_at in prefrontal cortex in several psychiatric conditions and controls in the
dataset GSE53987. Asterisk indicates a nominal p<0.05. DAWBA, Development and Well-Being Assessment; NPX, Normalized Protein Expression;
SCZ, schizophrenia; BD, bipolar disorder; MDD, major depressive disorder.
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PFC glutamate metabolites are reduced in depression (46), and

postmortem studies demonstrate changes in ionotropic and

metabotropic glutamate receptors (47, 48). Medial PFC levels of

the GABA synthetic enzyme glutamate decarboxylase-67 are also

reduced in postmortem brains of depressed subjects (30), as are

markers of the somatostatin/calbindin (SST) GABAergic subtype

(49, 50).

Other interesting findings involve two proteins, ASGR1 and

CD63, corresponding to genes that may offer new insights into the

pathophysiological processes of depression. Both proteins were

replicated with consistent changes, but only in one cohort,

GSE98793, where CD63 remained significant after Bonferroni

correction. CD63 belongs to the tetraspanin family and is

characterized by its four transmembrane domains (51). It can

associate with interaction partners, including integrins, receptors,

kinases, and other tetraspanin proteins, on the cell surface, thus

contributing to the regulation of multiple signaling pathways (51–

54). CD63 also serves as a platelet dense granule and lysosomal

membrane protein. Interestingly, CD63 exhibits high expression in

patients with comorbid diabetes and depression compared to those

with diabetes alone. This comorbidity results in enhanced platelet

hyperactivation and a pro-inflammatory state, increasing

susceptibility to vascular complications (55). On the other hand,

ASGR1 is the major subunit of the asialoglycoprotein receptor

(ASGPR), a liver-specific lectin that plays a role in glycoprotein

homeostasis (56). Variants in ASGR1 are associated with lower

non-high-density lipoprotein (non-HDL) cholesterol levels and a
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reduced risk of coronary artery disease (57, 58). Thus, ASGR1 holds

clinical potential as a target for lowering blood cholesterol levels.

However, there is limited information available regarding the

regional or cellular specificity of ASGR1 in the human brain, and

its function in the brain remains poorly understood (59).

In the search of an explanatory model for the observed

associations between depression and the blood levels of PPP3R1,

CD63, and ASGR1, platelets emerge as potentially pivotal players

(Figure 3). The presence of free CD63 in plasma strongly suggests

its exosomal origin, as CD63 is widely recognized as one of the

most specific exosomal markers (62). Notably, activated blood

platelets are a major source of exosomes in human blood (63).

This finding raises the possibility of a positive association between

activated blood platelets and depression, a notion supported by

multiple studies linking platelet activation to depression (60, 61).

Additionally, it’s worth noting that ASGR1 plays a vital role

in platelet clearance by the liver, both in humans and pigs

(66, 67). Moreover, genetic variants of ASGR1 has been reported

to influence platelet activation (68). Furthermore, PPP3R1, a

regulatory component of the calcineurin complex responsible for

phosphatase activity, has been observed to bind to platelets and

prevent their aggregation (64, 65). Consequently, an increase in

PPP3R1 levels may signify disruptions in platelet homeostasis.

In summary, while this model may involve some speculation, it

is reasonable to suspect that the identification of three proteins

related to platelet activation status in depressed adolescents could

potentially reflect the neuropathological status of these adolescents.
FIGURE 3

Hypothetical model of blood proteome relation with depression. This figure represents a hypothetical model explaining observed associations
between depression and the blood levels of PPP3R1, CD63, and ASGR1. I Several studies indicate links between platelet activation and depression
(60, 61). However, this mechanism is not fully established. II. The activation of platelets could be indirectly indicated by increase of CD63 levels, as
this protein is abundant in exosomes (62) and release of exosomes could be attributed to platelet activation (63). The levels of CD63 platelets were
positively associated with depression (60, 61). III. PPP3R1, a regulatory component of calcineurin complex mediating phosphatase activity, has been
shown to bind platelets and prevent their aggregation (64, 65), and thus its increase may indicate disturbances in platelet homeostasis. The
disturbances of calcineurin signaling may be indicated by changes in blood and prefrontal cortex as observed in this study. However, we observed
increased plasma levels of PPP3R1 in depressed individuals. IV. The ASGR1 contribution to depression is not clear, however it is related to platelet
phagocytosis by liver sinusoidal endothelial cells (66, 67).
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This notion is supported by a substantial body of scientific evidence

suggesting that blood platelets may mirror the condition of neurons

in the central nervous system (CNS) (69–74). To highlight some

specific roles of platelets, studies of the serotonin uptake, storage,

and secretion mechanisms in platelets have indicated major

similarities to neurons (75). Studies investigating the comorbidity

between cardiovascular disease and depression have proposed

platelet serotonin signaling as a potential mechanism for the

higher incidence of cardiac adverse events in depressed

cardiovascular patients (76). Additionally, other studies have

suggested that altered platelet reactivity might link stress,

depression, and cardiovascular disease through changes in platelet

aggregability and their content of bioactive compounds (77, 78).

Platelet activation has also been implicated as a contributor to the

progression of neurological conditions such as Alzheimer’s disease

(79). There is potential for platelet interactions with systemic factors

that change concurrently with CNS alterations, underscoring the

importance of future studies elucidating the numerous systemic

factors that change during depression onset, e.g. in adolescence, and

how they interact with platelets.

The study’s results should be interpreted in light of several

limitations. Firstly, our proteomic platform covers a rather selective

portion of the proteome, potentially missing numerous proteomic

pathways related to depression that our methods did not capture.

Additionally, a significant number of proteins in the selected panel

appear to be unexpressed in whole blood, as only 43 out of 92 were

analyzable. This limitation might be attributed to the use of

peripheral fluid biomarkers, as concentrations measured in the

periphery may not necessarily reflect pathophysiological processes

in the CNS. Furthermore, depression is a heterogeneous group of

diseases often occurring concurrently with or induced by other

conditions. Consequently, it is challenging to select a molecularly

homogeneous group of patients or samples.

Additional limitations include the nominal significance

observed for almost all proteins, which may provide weak

evidence. However, it’s worth noting that nominal replication at

the transcriptome level with consistent directions in independent

cohorts could be considered stronger evidence. Another limitation

is related to the characterization of depression across all cohorts,

which is not consistent and may not represent the same phenotype.

Furthermore, the populations in the cohorts are diverse and not

easily comparable. Despite our efforts to account for some of the

differences between the cohorts, such as age, there is still a lack of

age overlap between the PSY cohort and the transcriptome cohorts.

This necessitates cautious interpretation of the discordant results

between the cohorts. However, on the other hand, the current

findings in the PSY cohort, which reveal changes associated with

depression that differ from those observed in older patients in the

transcriptomic cohorts, may offer valuable insights into the etiology

of depression onset during adolescence. Lastly, there were many

missing values regarding medication in the PSY cohort. Since

antidepressant treatment can be a significant confounder, we

conducted analyses both with and without adjustment for

antidepressants. Adjusting for antidepressants led to a smaller

sample size due to the exclusion of missing values. We observed
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slightly increased effect size in the adjusted analysis that should be

interpreted carefully. It could be related to biological effects of

antidepressants masking protein effect in non-adjusted models or it

may be of random origin as the accuracy of estimates is smaller in

the adjusted analysis. Consistently, the observed shifts in the

estimates of matching proteins matched between analyses

(PPP3R1, RBKS, and CRADD) were less than corresponding

standard errors. Lastly, even though the analysis was adjusted for

antidepressants, it is possible that the real prevalence of

antidepressant use may be underestimated due to underreporting

from study participants. However, our estimated prevalence of

antidepressant used in the PSY cohort of ~4.2% is comparable to

the recent report on antidepressant use in Sweden of ~4.76 (age

group 10-19 years) (80).
Conclusion

Our study of adolescent depression revealed protein-level and

transcriptomic differences, particularly in PPP3R1, pointing to the

involvement of the calcineurin pathway in depression. Our finding

with regard to PPP3R1 also support the role of the prefrontal cortex in

depression and reinforces the significance of investigating PFC-related

mechanisms in depression. However, it’s important to consider these

findings within the context of certain limitations, such as the selectivity

of our proteomic platform and variations in depression

characterization across cohorts. Further research is needed to validate

and expand upon these findings, potentially leading to improved

diagnostic and therapeutic strategies for adolescent depression.
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SUPPLEMENTARY FIGURE 1

PPP3R1 expression. This figure shows the PPP3R1 expression across cohorts

in the form of bars for better effect size visualization. (A) PPP3R1 plasma NPX
in the PSY cohort depending on the DAWBA risk group. Asterisk indicates a

nominal p<0.05. Error bar shows the standard error of the mean. (B) The
expression levels of PPP3R1-related probe ILMN_1796962 in whole blood in

depression versus controls in GSE64930. Asterisk indicates a nominal p<0.05.

Error bar shows the standard error of the mean. (C) The expression levels of
PPP3R1-related probe 204506_at in prefrontal cortex in several psychiatric

conditions and controls in the dataset GSE53987. Error bar shows the
standard error of the mean. Asterisk indicates a nominal p<0.05. DAWBA,

Development and Well-Being Assessment; NPX, Normalized Protein
Expression (NPX); SCZ, schizophrenia; BD, bipolar disorder; MDD, major

depressive disorder.
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