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Introduction: Rare copy number variants (CNVs) and polygenic risk for

intelligence (PRS-IQ) both confer susceptibility for autism spectrum disorder

(ASD) but have opposing effects on cognitive ability. The field has struggled to

disentangle the effects of these two classes of genomic variants on cognitive

ability from their effects on ASD susceptibility, in part because previous studies

did not include controls with cognitive measures. We aim to investigate the

impact of these genomic variants on ASD risk while adjusting for their known

effects on cognitive ability.

Methods: In a cohort of 8,426 subjects with ASD and 169,804 controls with

cognitive assessments, we found that rare coding CNVs and PRS-IQ increased

ASD risk, even after adjusting for their effects on cognitive ability.

Results: Bottom decile PRS-IQ and CNVs both decreased cognitive ability but

had opposing effects on ASD risk. Models combining both classes of variants

showed that the effects of rare CNVs and PRS-IQ on ASD risk and cognitive ability

were largely additive, further suggesting that susceptibility for ASD is conferred

independently from its effects on cognitive ability. Despite imparting mostly
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1369767/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1369767/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1369767/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1369767/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1369767/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2024.1369767&domain=pdf&date_stamp=2024-05-01
mailto:guy.rouleau@mcgill.ca
https://doi.org/10.3389/fpsyt.2024.1369767
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2024.1369767
https://www.frontiersin.org/journals/psychiatry


Schmilovich et al. 10.3389/fpsyt.2024.1369767

Frontiers in Psychiatry
additive effects on ASD risk, rare CNVs and PRS-IQ showed opposing effects on

core and associated features and developmental history among subjects

with ASD.

Discussion:Our findings suggest that cognitive ability itself may not be the factor

driving the underlying liability for ASD conferred by these two classes of genomic

variants. In other words, ASD risk and cognitive ability may be two distinct

manifestations of CNVs and PRS-IQ. This study also highlights the challenge of

understanding how genetic risk for ASD maps onto its dimensional traits.
KEYWORDS

CNV (copy number variant), polygenic risk score (PRS), ASD autism spectrum disorders,
cognitive abilities, intelligence quotient (IQ)
Introduction

ASD has a high estimated overall heritability and a genetic

architecture composed of rare and common variants (1–4). The

genetic architecture of ASD consists of deleterious single-nucleotide

variants (SNVs) and copy-number variants (CNVs), as well as

common single nucleotide polymorphisms (SNPs) which confer

an additive susceptibility en masse. Despite its strong genetic

component, there remains insufficient evidence for ASD-specific

genes (5). Rare de novo and inherited CNVs that substantially

increase ASD risk are present in 8-14% of individuals with ASD (6,

7). The susceptibility to ASD conferred by most CNVs remains

unclear. However, it has been shown that ASD-susceptibility

variants also have negative effects on cognition (3).

Studies have quantified the negative effects of CNVs on cognitive

ability, showing that the effects are the same in individuals with ASD

and the general population (8, 9). Despite this, studies have also

shown that deletion and duplication CNVs increase the risk for ASD

even after adjusting for their effects on cognitive ability (10). In other

words, CNVs are over-represented in cases with ASD compared to

controls with similar cognitive capacities. Conversely, there is a

significant genetic correlation (rG = 0.199) between ASD and

intelligence such that common variants that increase the risk for

ASD also increase cognitive ability in the general population (2).

Studies also suggest that PRS-ASD is positively associated with

intelligence and higher educational attainment (11, 12). This effect

is opposite to what has been shown for PRSs of other

neurodevelopmental disorders (13–15). These findings are

counterintuitive and difficult to interpret, given that individuals

with ASD have IQ levels that are on average 1 standard deviation

(s.d.) below the general population (16). Indeed, there is a complex

relationship between genetic risk, cognitive ability, and ASD that is

paradoxical and remains contentious.

Previous studies have estimated the effects of rare and common

variants in different samples separately; as such, combined variant
02
effects on ASD risk and cognitive ability have not been assessed, nor

have their effect on other ASD-associated traits been evaluated. This

study aims to clarify the individual and combined impact of rare

variants that decrease cognitive ability (CNVs) and common

variants that increase intelligence (PRS-IQ) on ASD risk,

cognitive ability, and other ASD-associated traits.
Methods

Datasets

Three ASD cohorts and five general population cohorts were

included in the study (Supplementary Table S1).

ASD cohorts
Three family-based ASD cohorts were included in the study: the

Simons Simplex Collection (SSC) (17), Simons Foundation Powering

Autism Research for Knowledge (SPARK) (18), and MSSNG (19).

The SSC and SPARK cohorts comprised SNP genotyping data, while

the MSSNG cohort comprised Whole-Genome Sequencing (WGS)

data. In total, the genetic data of 28,307 cases with ASD and 50,953

typically developing family members [including siblings and parents

of the affected proband(s)] were included in this study. The

unaffected family members from the ASD cohorts were used as

intrafamilial controls (n=50,953) in the study.

Unselected general population cohorts
Five community-based cohorts were used as extrafamilial controls:

IMAGEN (20); Generation Scotland (GS) (21); Lothian Birth Cohort

1936 (LBC) (22, 23); the Saguenay Youth Study (SYS) (24), and the UK

BioBank (UKBB) cohort (25). To avoid base and target sample overlap

in PRS computation, we excluded the UKBB subjects that were part of

the 2017 intelligence GWAS [150,000 subjects from the May 2015

release of the genotype data (15)]. As such, this study only includes the
frontiersin.org
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imputed genotyping data from the second data release (July 2017) of

the UKBB cohort. In total, the genetic data of 357,546 extrafamilial

controls were included in this study.
CNV calling, filtering, and annotation

We called CNVs using the established protocol described in

Douard et al. (2020) and Huguet et al. (2018, 2021) (8–10). In brief,

CNVs were detected from the genotyping and WGS data across all

eight cohorts and filtered according to established methods (https://

martineaujeanlouis.github.io/MIND-GENESPARALLELCNV/)

(8–10). In order to minimize the number of false discoveries, the

pipeline involves two algorithms, PennCNV (26) and QuantiSNP

(27) of which it extracts consensus results. Coding genes fully

encompassed in deletion or duplication CNVs were annotated

according to two haploinsufficiency scores based on previous

observations (10): the probability of being loss-of-function

intolerant (pLI) (28) and the loss-of-function observed/expected

upper bound fraction (LOEUF) (29) constraint score. In total, the

CNVs that were called encompassed 19,368 genes genome-wide,

16,967 encompassed by deletions and 19,282 by duplications. Of

these genes, 18,347 (94.7%) had available pLI and LOEUF

annotation data available; 16,047 (94.6%) for deletions and 18,264

(94.7%) for duplications.

While both scores reflect genetic fitness, they were used in

different contexts in this study, and their distinct distribution of

intolerance scores across genes reflects the nature of how they were

derived. The pLI score (ranges from 0 to 1, from most to least

tolerant) was designed to capture high-confidence genes harbouring

protein truncating variants (PTVs) (30) and is generally used as a

dichotomous metric. We observed that the pLI score had a bimodal

distribution across the 19,197 genes included in the analysis

(Supplementary Figure S1A). This observation suggests that a

sum of pLI scores of impacted genes is well suited to capture the

genome-wide burden of CNVs per individual (CNV risk score),

with higher values denoting a higher burden. On the other hand, the

LOEUF scores presented a continuous distribution (ranging from

0.03 to 2) thus better suited to capture the moderate

haploinsufficiency of most genes (Supplementary Figure S1B),

with lower strata denoting high intolerance to loss of function.

Accordingly, a sum of pLI scores of impacted genes was used as a

measure of burden per individual. In contrast, the LOEUF

annotation was used to stratify individuals according to the

number of deleted or duplicated genes intolerant to loss-of-

function that they carried. Hereafter, we use the term “intolerant

CNVs” to refer to CNVs that encompass constraint genes that are

intolerant to loss-of-function.
Copy-number variant risk score

For each individual, pLI scores for genes fully encompassed

within CNVs were summed for deletions (SDEL pLI) and

duplications (SDUP pLI) separately. The sum of pLI represents
Frontiers in Psychiatry 03
the individual-level burden of deletions and duplications and is

referred to as the CNV risk score.
Genetic quality control and imputation

Genotype and sample-level quality control (QC) were

performed across cohorts separately using established criteria (31)

and the PLINK toolset (v1.9) (32). The PLINK files for the MSSNG

WGS pVCF data were generated using the standard protocol based

on the UK BioBank WGS (33). We used bcftools (v1.13) to remove

indels, keep biallelic sites, and normalize the SNV dataset (34).

Then, we used the PLINK toolset (v1.9) to convert the pVCF to the

genotyping format data (.bed,.bim,.fam) while applying the

following filters: –geno 0.05, –mind 0.05, –maf 0.01 and –hwe 5e8.

In brief, we excluded individuals with genotyping rate<95%,

excessive heterozygosity (± 3 standard deviations from the mean

using the —indep-pairwise command with a 50-variant window

and pruning variants with r2 > 0.2), sample missingness >0.02,

mismatched in reported and genetic sex, and families with

Mendelian errors >5%. We removed SNPs with a call rate<98%, a

minor allele frequency (MAF)<1%, deviation from Hardy-

Weinberg Equilibrium (HWE) (P<1×10-6), had Mendelian errors

in more than 10% of the families, and SNPs that were not genotyped

in more than 10% of families. Population stratification and

inference were performed using the Kinship-based INference for

Genome-wide association studies (KING) toolset (35). Given the

Eurocentric genome-wide association study (GWAS) summary

statistics available, only individuals with ≥85% probability of

inferred European ancestry were selected. The filtered genotyping

data was imputed on the 1000 Genomes Phase 3 reference panel

using the Sanger Imputation Server (https://www.sanger.ac.uk/tool/

sanger-imputation-service/) and EAGLE+PBWT pipeline. Given

that the number of variants in the MSSNG cohort (>7M),

generated from WGS data, was comparable to the number of

SNPs in the genotyping datasets following imputation, the

MSSNG WGS data were not imputed. For the UKBB cohort, we

obtained the imputed genotyping data and selected the samples

with self-reported white British or European ancestry that had a

genotyping call rate >98%.

The imputed genotypes across all cohorts and technologies were

merged, such that only variants that were present across all technologies

were retained. Established QC filtering criteria were applied to exclude

variants that had poor imputation scores (INFO ≥ 0.3); non-biallelic;

MAF<5%; call rate<98%, and deviated from Hardy-Weinberg

Equilibrium (P< 5×10-7).
Polygenic risk score generation

Details of the methodological pipeline to compute PRS are

detailed in Supplementary Figure S2. To avoid target and base

sample overlap, the largest GWAS summary statistics available for

intelligence that excluded most of the samples included in the study,

were used to compute the polygenic risk score for intelligence (PRS-
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IQ) (15). The Sniekers et al. (2017) GWAS (n=78,308) used

Spearman’s g or a primary measure of fluid intelligence as the

outcome for the association. With the exception of the LBC cohort,

none of the cohorts used in this study were included in the Sniekers

et al. GWAS. PRS-CS was used with its default parameters to infer

the posterior effect sizes of SNPs in the samples that overlapped

with the selected GWAS summary statistics and linkage

disequilibrium (LD) 1000 Genomes European reference panel

(36). The PLINK 1.9 “score” parameter was used to estimate the

individual-level burden of all scored variants into a PRS for

intelligence (PRS-IQ).

To account for subtle population structure differences amongst

the European samples, PRS-IQ was modelled as a function of the

top 20 ancestry principal components (PCs) in a linear model as

follows:

lm(PRSIQ)   ∼   PC1   +   PC2   +  …   +   PC20

The residuals from the model were extracted to represent a PRS-

IQ that removes the underlying effects of ancestry. The PRS-IQ was

then scaled according to the mean PRS-IQ of the community-based

general population cohorts (UKBB, GS, IMAGEN, LBC, SYS; n =

311,811). Thus, PRS-IQ is represented as the number of standard

deviations that an individual is from the unselected general

population mean PRS-IQ. The distribution of PRS-IQ across each

analysis group and cohort is shown in Supplementary Figure S3.
Phenotypic measures

Cognitive ability was assessed based on non-verbal IQ

(IMAGEN, SYS-children, SSC, MSSNG), parent-report full-scale

IQ or non-verbal IQ (SPARK), g-factor (GS, SYS-parents, LBC), or

both g-factor and fluid intelligence (FI) (UKBB). For a detailed

description of the evaluation of cognitive ability across cohorts

(including the definition of phenotypes and comparability of

different scores) see the supplemental data of Huguet et al. (2021)

(9). The g-factor represents the first dimension obtained by

principal component analysis of cognitive tests primarily

assessing fluid reasoning. In SPARK, parent-report full-scale IQ

was reported in the form of 10 IQ bins; each bin was assigned the

median value from the distribution of non-verbal IQ extracted from

charts in a subset of the same cohort. For UKBB, the g-factor was

computed using four cognitive tasks assessed in person (n=73,882)

and online (n=62,080): Trail Making Test parts A and B (Executive

function), Symbol Digit Substitution Test (Processing speed),

Paired Associate Learning Test (Verbal declarative memory) and

Picture Vocabulary (Crystallized ability). In UKBB, the FI score was

assessed in person (n=88,441) and online (n=13,773).

The NVIQ and g-factor measures across the cohorts were

standardized to reflect the general intelligence of the samples

based on cognitive tests that primarily assessed cognitive ability

(9). All cognitive ability measures were z-scored within each cohort

and residualized for age using a linear regression as detailed in

Huguet et al. (2021). The distribution of cognitive ability is shown
Frontiers in Psychiatry 04
in Supplementary Figure S4. The relationship between cognitive

ability and PRS-IQ is shown in Supplementary Figure S5.

We used a linear regression model to assess the mean change in

cognitive ability as a function of ASD case/control status while

adjusting for sex as a covariate:

lm(cognitive   ability)   ∼  ASD

To further detail the clinical heterogeneity among ASD subjects,

we selected a range of phenotypes (Supplementary Figure S6) that

represent fundamental dimensions associated with ASD: 1–Core

ASD features: Repetitive Behavior Scale-Revised [RBSR (37)], Social

Responsiveness Scale parent report [SRS (38)], Social

Communication Questionnaire lifetime version [SCQ (39)]; 2–ASD

specifiers and associated features: Vineland Adaptive Behavior Scale

(VABS) composite score and subscales (40), Developmental

Coordination Disorder Questionnaire (DCDQ) (41), and 3–

Developmental history, as per parent report: age at first word, age

at first phrase, age at walking independently, language regression. Of

note, the category ‘ASD specifiers and associated features’ captures

additional information about the subjects’ adaptive behaviours and

developmental coordination skills, which are commonly affected in

individuals diagnosed with ASD.
Statistical analyses

All statistical analyses were performed using R version

4.0.5 (42).
Analysis groups
All statistical analyses were conducted across four case-control

groups: 1–cases with ASD (n = 21,255) vs. unselected general

population (extrafamilial controls) (n = 311,811); 2–cases with

ASD (n = 8,426) vs. unselected general population (extrafamilial

controls) (n = 169,804) that had cognitive data available; 3–cases

with ASD (n = 21,255) vs. their unaffected family members

(intrafamilial controls) (n = 24,474), and; 4–unaffected family

members (treated as cases) (n = 24,474) vs. unselected general

population controls (n = 311,811). The effect of the genetic factors

on cognitive ability was modelled separately in cases with ASD and

extrafamilial controls. When comparing subjects with ASD to their

unaffected family members, familial relationship was included as a

random effect variable. All regression models included sex (and

when available, cognitive ability) as a covariate.
Impact of CNV burden and PRS-IQ on ASD risk
and cognitive ability

To estimate the individual and interactive effect between the

sum of deletions (∑DELpLI) and duplications (∑DUPpLI) with PRS-

IQ on ASD risk, we used a logistic regression model using the glm

function from “stats” base R package (42) as follows:

logit(ASD)   ∼   (SDELpLI � PRSIQ)  þ  (SDUPpLI � PRSIQ)
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where a binary diagnosis of ASD is the outcome, SDELpLI and
SDUPpLI represent the global burden of deletions and duplications

that interact with PRS-IQ.

For analyses comparing cases with ASD to their unaffected

family members (intrafamilial controls), a generalized linear mixed-

effects (GLME) model was applied using the glmer function from

the “lme4” R package (43). This model accounted for the effects of

relatedness among ASD individuals and the intrafamilial controls

by including the family identifier as a random effect.

We also ran a linear regression model with the same predictor

variables and cognitive ability as the outcome using the glm

function from “stats” base R package (42) as follows:

lm(cognitive   ability)   ∼   (SDELpLI � PRSIQ)   +(SDUPpLI � PRSIQ)

where cognitive ability is a continuous measure standardized to

reflect general intelligence as described above. This regression model

was computed separately for cases with ASD (n = 8,426) and

extrafamilial general population controls (n = 169,804) separately.

All P values were adjusted by the Benjamini–Hochberg false-

discovery rate (FDR) correction for multiple comparisons using the

p.adjust function from the base R package.

We also investigated the role of deletions and duplications

encompassing highly intolerant genes (LOEUF ≥ 0.35) in

modulating the impact of PRS-IQ on ASD risk and cognitive

ability. However, we lacked sufficient statistical power to robustly

assess the interaction between 1–CNV carrier status (i.e.: number of

CNVs in highly intolerant genes); 2–PRS-IQ, and; 3–ASD risk or

cognitive ability. The findings from this exploratory analysis are

detailed in Supplementary Note 1 and Supplementary Figure S9.

Sliding window analyses across PRS-IQ deciles
We also examined the effect of each PRS-IQ decile on ASD risk

and cognitive ability. To do this, we ran ten logistic or linear

regressions as follows (for each PRS-IQ decile), depending on

whether the outcome was a binary ASD diagnosis or cognitive

ability, respectively:

logit(ASD)   ∼   PRSIQ−decilei   +SDELpLI + SDUPpLI

+ covariates lm(cognitive   ability)  

∼   PRSIQ−decilei   +SDELpLI + SDUPpLI   +covariates

Each model included sex as a covariate, cognitive ability in the

logistic regression model when available, and family identifier as a

random effect variable when modelling cases with ASD versus

intrafamilial controls. The distribution of PRS-IQ for each decile

across cases and controls is detailed in Supplementary Figure S7.

Convergence of CNV burden and PRS-IQ effect
sizes on phenotypic measures among cases
with ASD

The distributions of all continuous traits were visualized for

normality, after which some variables were applied a logarithmic

transformation to normalize their distribution (age offirst word, age

of first phrase, age of walking independently, and RBSR subscales).

All continuous variables were then z-scored before analyses.
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Regarding ASD as the outcome, we focused on comparing cases

with ASD versus extrafamilial controls. Regarding cognitive ability

and other phenotypes, we focused on analyses restricted to cases

with ASD.

Linear models for continuous traits and logistic models for

binary traits were estimated for each variable as the outcome as

follows:

trait   ∼  DELpLI   +  DUPpLI   +   PRSIQ   +   (1 ∣ family   ID)   +   sex   +   age   +   cohort

We included a random effect for the family identifier to account

for relatedness, and we corrected for cohort where applicable. For

ASD and cognitive ability, regressions were adjusted for sex. For

other traits, the inclusion of covariates sex and age, where

applicable, was based on Akaike’s information criterion (AIC). P

values were adjusted with the false discovery rate (FDR) method

considering the total number of models tested. For all analyses, the

significance threshold was fixed at a FDR<0.05, two-sided.
Results

Following quality control, 21,255 cases with ASD; 24,474

unaffected family members of ASD probands (intrafamilial

controls), and; 311,811 unselected individuals from the general

population (extrafamilial controls) were included in the analyses.

Of these, 8,426 cases and 169,804 extrafamilial controls had

cognitive data available (Table 1). On average, cases with ASD

had a 0.69 (95% confidence interval (CI) = [-0.71, -0.67]) lower

scaled cognitive ability compared to extrafamilial controls

(Supplementary Figure S4A).
Effect of deleted or duplicated intolerant
genes on ASD risk and cognitive ability

We previously showed that genome-wide deletions and

duplications measured by pLI are associated with ASD risk and

decreased cognitive ability (8–10). We sought to extend this analysis

to a larger dataset and found that the burden of intolerant genes

increased the risk for ASD when deleted or duplicated (ORDEL=1.49

[1.45, 1.54]; ORDUP=1.18 [1.16, 1.20]) and decreased cognitive

ability with similar effect size in cases with ASD (bDEL=-0.16
[-0.21, -0.11]; bDUP=-0.09 [-0.14, -0.05]) and extrafamilial

controls (bDEL=-0.11 [-0.13, -0.09]; bDUP=-0.06 [-0.07, -0.05])

(Figure 1A; Supplementary Table S2).

Liability for ASD remained unchanged for deletions and

duplications of intolerant genes even after adjusting for their

effects on cognitive ability (ORDEL=1.46 [1.39, 1.53]; ORDUP=1.16

[1.13, 1.19]) (Figure 1B; Supplementary Table S2).

Because most of the genetic risk examined above is inherited

from unaffected parents, we also assessed the burden of risk variants

in unaffected ASD family members. While cases with ASD carried a

greater burden of deletions and duplications compared to their

unaffected family members (ORDEL=1.34 [1.28, 1.42]; ORDUP=1.15

[1.12, 1.19]) (Figure 1C; Supplementary Table S2), we found that
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unaffected family members still carried a greater burden compared

to extrafamilial controls (ORDEL=1.17 [1.12, 1.22]; ORDUP=1.06

[1.04, 1.08]) (Figure 1C; Supplementary Table S2).
High PRS-IQ confers risk, and low PRS-IQ
decreases the risk for ASD when adjusting
for cognitive ability

The positive correlation between PRS-IQ and ASD risk remains

misunderstood. To further investigate this relationship, we

compared PRS-IQ in subjects with ASD to control participants

while accounting for CNV burden and cognitive abilities.
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We found that individuals with ASD had a greater PRS-IQ

(OR=1.02 (1.00, 1.03]) (Figure 1A), despite having a mean score of

cognitive ability that was 0.69 (z-score) lower than the extrafamilial

controls (b=-0.69 [-0.71, -0.67]) (Supplementary Figure S4A). This

increase was more pronounced when adjusting for cognitive ability

(Figure 1B; Supplementary Table S2) (OR=1.10 [1.08, 1.13]).

Sensitivity analyses showed no differences in PRS-IQ between

intrafamilial controls and controls from general population

cohorts (Figure 1C).

To assess the specific effects of PRS-IQ on liability for ASD and

cognitive ability and to test for the presence of non-linear effects, we

computed effect sizes for each PRS-IQ decile on liability for ASD

(Figure 2A; Supplementary Table S3) and cognitive ability
TABLE 1 Cohort descriptives following sample and genetic-level quality control.

Ascertainment Cohort N
N with
cognitive
data (%)

Females,
n (%)

Age in
years,
mean
(SD)

Z-scored
intelligence
measure, mean (SD)

Type of
intelligence measures

Cases with ASD

SSC 1526 1517 (99.41%) 199 (13.04%) 9.28 (3.63) -0.9 (1.76)
WISC-IV; DAS-II E-Y; DAS-II S-
A; Mullen; WASI-I

SPARK 18230 6289 (34.5%)
4391

(24.09%)
13.22

(10.11)
-0.54 (1.94)

WISC; Stanford-Binet Intelligence
Test; Mullen; Bayley-II; DAS-II

MSSNG 1499 620 (41.36%) 342 (22.82%) 9.59 (4.59) -0.33 (1.63)
WISC-IV; WASI-II; Leiter; Raven;
Stanford Binet; WPPSI

Total 21255
8426

(39.64%)
4932 (23.2%)

12.83
(9.74)

-0.59 (1.89)

Unaffected family
members
Intrafamilial controls

SSC 4798 –
2441

(50.88%)
32.27

(15.46)
–

SPARK 17835 –
10438

(58.53%)
37.21

(14.05)
–

MSSNG 1841 – 915 (49.7%)
41.25

(12.29)
–

Total 24474 -
13794

(56.36%)
36.26

(14.47)
-

Unselected general
population controls
Extrafamilial
controls

IMAGEN 1532 1492 (97.39%) 778 (50.78%)
14.45
(0.36)

0.48 (0.96)

WISC-IV (and g-factor,
similarities score, vocabulary score,
block design score, matrix
reasoning score)

GS 13853
13450

(97.09%)
8157

(58.88%)
46.88
(15.1)

0.05 (0.97)
g-factor, logical memory, digit
symbol, verbal fluency, Mill
Hill Vocabulary

LBC 506 460 (90.91%) 248 (49.01%) 70 (0) 0.03 (0.98) Moray House Test (and g-factor)

SYS 1843 1547 (83.94%) 945 (51.28%)
28.14
(17.1)

0.17 (0.91)
WISC-III (and g-factor using 63
cognitive measures), g-factor, 12
cognitive measures

UKBB 294077
152855

(51.98%)
161559

(54.94%)
59.33
(8.51)

0.1 (0.96)
g-factor computed using four
cognitive tasks and
fluid intelligence

Total 311811
169804

(54.46%)
171687

(55.06%)
57.25

(11.63)
0.1 (0.96)
Following quality control, this study uses the genetic data of 357,540 individuals across eight cohorts. These samples include 21,255 individuals diagnosed with ASD, 24,474 unaffected family
members from simplex and multiplex families with ASD and 311,811 unselected individuals from community-based general population cohorts. To avoid base and target sample overlap for PRS
computation, we only included the UKBB participants from the second data release. Only the subset of individuals with available cognitive data was included in analyses where cognitive ability
was included in the regression models.
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(Figure 2B; Supplementary Table S3). The top and bottom deciles of

PRS-IQ significantly increased and decreased the risk for ASD,

respectively, even after adjusting for the effects of cognitive ability.

The effects of PRS-IQ on cognitive ability followed a similar pattern

to its effects on ASD risk. Furthermore, the impact of PRS-IQ on

cognitive ability was identical among subjects with ASD and

extrafamilial controls.
Deletions and duplications in highly
intolerant genes may modulate the impact
of PRS-IQ on ASD risk and cognitive ability

We identified the same negative interaction between deletions

and PRS-IQ on cognitive ability in individuals with ASD (bDEL*PRS-
IQ=-0.05 [-0.10, -0.006]) and extrafamilial controls (bDEL*PRS-IQ=-
0.032 [-0.05, -0.01]) (Figure 1A). This suggests that the negative

impact of deletions on cognitive ability may be attenuated in

individuals with an increasing PRS-IQ, regardless of a diagnosis

of ASD.

We also observed a negative interaction between deletions and

PRS-IQ, as well as duplications and PRS-IQ, in conferring liability

for ASD, even when adjusting for cognitive ability [ORDEL*PRS-IQ=
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0.95 (0.91, 1.00); ORDUP*PRS-IQ=0.97 (0.94, 1.00)] (Figure 1B). This

similarly suggests that the effect of deletions and duplications on

ASD risk is reduced in individuals with a high PRS-IQ.

To further examine the relationship between CNVs, PRS-IQ,

cognitive ability, and ASD risk, we stratified individuals according

to whether they carried zero, one, two or more deletions or

duplications in a highly intolerant gene (LOEUF ≤ 0.35)

(Supplementary Table S4). However, we lacked sufficient

statistical power to robustly assess the negative interaction

between CNVs and PRS-IQ and how they may modulate their

impact on ASD risk and cognitive ability. These exploratory

analyses can be found in Supplementary Note and Supplementary

Figure S9. Future studies with larger sample sizes are needed to

clarify this interaction.
The burden of CNVs and PRS-IQ converge
to confer risk for ASD but diverge to
confer risk for core and associated features
and developmental history

We reasoned that since both CNVs and PRS-IQ increase ASD

risk, they would affect at least one developmental trait (relevant to
A

B

C

FIGURE 1

The impact of CNV burden and PRS-IQ on ASD risk and cognitive ability. The estimate and 95% confidence interval (CI) of genetic factors related to
cognition in conferring risk for ASD and impact on cognitive ability. (A) A greater burden of CNV deletions and duplications increase the risk for ASD
and decrease cognitive ability (divergent effects). Conversely, PRS-IQ increases the risk for ASD and increases cognitive ability (convergent effects).
(B) Adjusting for cognitive ability does not change the risk for ASD conferred by CNVs and PRS-IQ. The risk for ASD is evaluated only in a subgroup
of cases with ASD (n=8,426) and extrafamilial controls (n=169,804) for which cognitive ability data were available. CNVs and PRS-IQ increase the risk
for ASD, independently from their effects on cognitive ability. (C) The impact of deletions and duplications on ASD risk is significant – albeit, lower –
when comparing subjects with ASD to their unaffected family members versus extrafamilial controls. Although they do not have a diagnosis of ASD,
intrafamilial controls have an excess burden of deletions and duplications in comparison to the general population. A similar PRS-IQ between
intrafamilial and extrafamilial controls suggests that the differences in PRS-IQ in (A, B) are not driven by batch effects between ASD and general
population cohorts. Filled-in points represent statistically significant terms (P value ≤ 0.05 following FDR adjustment for multiple corrections). Error
bars represent the 95% CIs. For detailed model results, see Supplementary Table S2.
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ASD) in the same direction. We therefore investigated the effect of

intolerant CNVs and PRS-IQ on 19 cognitive, behavioural and

developmental traits. However, this was not the case. Among these

traits, 14 were significantly (FDR<0.05, 21 comparisons counting

ASD and cognitive ability) impacted by both CNVs and PRS-IQ. No

significant effects were identified for language regression, any

regression, and the Social Responsiveness Scale. We observed that

CNVs and PRS-IQ had diverging effects on all traits, including core

and associated features of ASD, and developmental milestones

(Figure 3A), similar to the diverging effects observed on cognitive

ability but different from the converging effects observed on ASD.

This is further demonstrated by hierarchical clustering (Figure 3B)

based on effect sizes of all 3 classes of variants (deletions,

duplications, PRS-IQ) which separates ASD itself from all other

related phenotypes.
Discussion

This study dissects the paradoxical effects of rare CNVs and

PRS-IQ that both increase ASD risk while impacting cognitive

ability in opposing directions. We show that the effects of intolerant

CNVs and PRS-IQ increase the risk for ASD, even after adjusting

for their effects on cognitive ability. This suggests that cognitive

ability may not be the dimension underlying ASD risk conferred by

both of these classes of genetic variants. To further demonstrate that

decreased cognitive ability may not be the factor underlying liability

for ASD, we show that the bottom decile of PRS-IQ is protective for
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ASD after adjusting for its effects on cognition. We provide

preliminary evidence for the negative interaction between CNVs

and PRS-IQ, suggesting that the impact of PRS-IQ on ASD risk and

cognitive ability could be attenuated in carriers of CNVs

encompassing highly intolerant genes. However, larger sample

cohorts and independent replications are required to confirm this

observation. Finally, unlike their convergent impact on ASD risk,

we find that CNVs and PRS-IQ have opposing effects on

developmental phenotypes associated with ASD.

Low cognitive ability is a major feature of ASD and is associated

with greater autistic impairments (44). We find that intolerant

deletions and duplications follow this pattern, such that they

decrease cognitive ability and increase ASD risk. Conversely, we

show that common genetic risk factors that are similarly associated

with low cognitive ability (i.e.: bottom PRS-IQ decile) are protective

against a diagnosis of ASD. In fact, these findings suggest that

intolerant CNVs and PRS-IQ may modulate cognitive ability and

ASD risk through distinct mechanisms. While this phenomenon

may be driven by the role of cognition in the evolutionary

mechanisms of ASD and the shared features between ASD and

high IQ (i.e.: large brain size, fast brain growth, enhanced synaptic

functions, increased attentional focus, positive assortative mating)

(45–47), further studies are warranted to delineate the complex

relationship between these factors. The counterintuitive impact of

PRS-IQ on susceptibility for ASD remains a contentious topic in the

field. However, this study contributes to the interpretation of

genetic factors associated with cognitive ability, and their role in

ASD. Our findings posit that efforts to identify genetic risk factors
A B

FIGURE 2

The effect of PRS-IQ deciles on ASD risk and cognitive ability. The estimate and 95% CI of each PRS-IQ decile on ASD risk and cognitive ability. Each
regression accounted for the individual-level burden of deletions (∑DELpLI), duplications (∑DUPpLI), and – when available – cognitive ability of
individuals included in the model. (A) Even after adjusting for the effects of cognitive ability, a high PRS-IQ (10th decile) increases the risk for ASD,
while a low PRS-IQ (1st, 2nd deciles) decreases the risk for ASD. (B) A PRS-IQ below and above the 6th decile significantly decreases and increases
cognitive ability in the general population, respectively. The effect of PRS-IQ on cognitive ability is the same in cases with ASD and in the general
population (extrafamilial controls). Filled-in points represent statistically significant terms (P value ≤ 0.05 following FDR adjustment for multiple
corrections). Error bars represent the 95% CIs. For detailed model results, see Supplementary Table S3. See Supplementary Figure S8 and
Supplementary Table S3 for the results across other analysis groups.
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that are uniquely associated with susceptibility for ASD

(independently of their effects on cognitive ability) may prove

ineffective if cognitive ability-associated genetic risk factors are a

key element of ASD.

We identified a nominally significant negative interaction

between these genetic risk factors, implying that the impact of

PRS-IQ on ASD risk is attenuated in subjects with a high burden of

CNVs, irrespective of their level of cognitive ability. However, the

significance and effect size of this interaction is weak. This implies

that most of the CNV and PRS-IQ effects are additive. Similar

additive effects between CNV and PRS have been previously

observed in schizophrenia (48, 49). In our study, however, we

show that such an additive effect extends to two classes of

variants with opposing effects on the same trait (cognitive ability),

further highlighting the fact that ASD risk is independent of the

effects of variants on cognitive ability. These findings support the

liability threshold model for ASD, in which common variants and

CNVs act additively to confer risk for the disorder. We also identify

a similar relationship between PRS-IQ and CNVs in modulating

cognitive ability such that deleterious CNVs reduce the positive

impact of PRS-IQ on cognitive ability. Our findings suggest that

individuals with a genetic risk for low (i.e.: high CNV burden,

deleterious CNVs, or bottom PRS-IQ deciles) or high (i.e.: top PRS-

IQ deciles) cognitive ability have a substantial risk for ASD,
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irrespective of their level of cognitive ability. Interestingly, we find

that cases with ASD carry substantial genetic risk for either low or

high cognitive ability, but not both.

Beyond the opposing effects on cognitive ability, this study

shows that these two classes of genetic risk for ASD systematically

show opposing effects on all developmental milestones and

dimensional traits, including core features of ASD. This highlights

the fact that biological factors which increase ASD risk may not

necessarily map onto core ASD features.

While we lack sufficient statistical power to fully clarify the

relationship between CNVs and PRS-IQ on ASD risk and cognitive

ability, we summarize our findings from this study in

Supplementary Figure S10. Future studies with larger sample sizes

that include measures of cognitive ability may corroborate our

preliminary understanding of the interplay between cognition-

related genetic risk factors and liability for ASD.
Limitations

This is the first large-scale study that controls for cognitive

ability when modelling the impact of cognition-related genetic

factors on ASD risk. Yet, it is important to consider that the

available cognitive measures only serve as a proxy to capture
A

B

FIGURE 3

Genetic dissection of phenotypes among subjects with ASD. (A) Comparing the effect directionality of PRS-IQ and deletions (upper plots), and
duplications (lower plots). Effect sizes and their 95% confidence intervals on core ASD features, specifiers and associated features, and
developmental history traits are displayed, along with ASD risk and cognitive ability. The burden of CNVs (deletions and duplications) and PRS-IQ
only have convergent effects on ASD risk. (B) Hierarchical clustering of phenotypes based on their association effect sizes with PRS-IQ, deletion
burden and duplication burden. The number displayed reflects sample sizes. Only phenotypes with at least one significant effect (FDR<0.05) are
displayed within each plot. See section "Phenotypic measures" for references to abbreviations.
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cognitive ability. Furthermore, the dimension of cognitive ability

used in the study consists of diverse cognitive measures across cases

and controls of different age groups. This study is also limited by the

number of subjects for whom we had cognitive data available.

Indeed, only ~39% and ~54% of cases with ASD and extrafamilial

controls had cognitive measures available, respectively.

Additionally, cognitive measures were not available for

intrafamilial controls. These data would have provided further

insights into the transmission of genetic liability for cognitive

measures within ASD families. We also note that impairments in

social communication may limit the performance of traditional

cognitive measurements and may underestimate the cognitive

abilities of individuals with ASD (50–52). It is also important to

note that substantial phenotypic data in this study was collected

from self or parent-reported questionnaires. This limitation may

introduce biases and subjective interpretations, which may, in turn,

affect the interpretation of the results. While we identified a

significant negative interaction between CNVs encompassing

intolerant genes and PRS-IQ in ASD risk and cognitive ability,

larger sample sizes are needed to confirm this interaction. This is an

intrinsic limitation in studying the integrated effects of rare and

common variants: even though the present study assembles some of

the largest community-based cohorts as well as ASD cohorts

presently available, the sample sizes for carriers of rare CNVs

remain small (highly intolerant genes deletions or duplications

are present in<5% of individuals globally). Thus, the study of the

combined effects of these variants with PRSs is subject to class

imbalance. As such, the interaction plots we present should be

interpreted with caution – solely as an exploratory analysis of the

trends between these genetic factors – given that the models are

trained on a smaller subset of the sample. While these findings

capture the interaction between CNVs and PRS-IQ in modulating

ASD risk and cognitive ability, we lack sufficient statistical power to

robustly ascertain this effect in each analysis group.
Conclusions

Rare CNVs and PRS-IQ increase the risk of ASD

independently of their opposing effects on cognitive ability.

Altogether, this study supports the complex interplay between

these two classes of genomic variants on ASD risk, cognitive

ability, and ASD-associated features. Our findings suggest that

these genetic factors related to cognitive ability may be a key

element in ASD risk. Indeed, there remains insufficient evidence

for ASD-specific genes (5), which puts the relevance of searching

for ASD-specific – rather than cognition-related – genetic risk

factors into question. As such, we posit that cognitive ability may

have been a red herring in the interpretation of genetic studies in

ASD. Indeed, searching for ASD-associated genomic variants that

do not influence cognitive ability may not be necessary to advance

our understanding of the mechanisms underlying ASD risk.

Finally, we also show that the way genetic variants influence

dimensional traits may not fully inform on the mechanisms

underlying their liability for ASD.
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