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Background: Attention deficit hyperactivity disorder (ADHD) is the most

common neurodevelopmental disorder of childhood, and pathogenesis is not

fully understood. Observational studies suggest an association between fatty

acids abnormalities and ADHD, but there are contradictions and differences

between these findings. To address this uncertainty, we employed a two-sample

bidirectional Mendelian Randomization (MR) analysis to investigate the causal

relationship between fatty acids and ADHD.

Methods: We conducted a two-sample Mendelian Randomization (MR) study,

selecting single nucleotide polymorphisms (SNPs) highly correlated with fatty acid

levels from the CHARGE Consortium as our instruments. The outcome data were

sourced from the Psychiatric Genomics Consortium (PGC) dataset on ADHD,

comprising 225,534 individuals, with 162,384 cases and 65,693 controls. Inverse

variance weighting, MR-Egger, and weighted median methods were employed to

estimate the causal relationship between fatty acids and ADHD. Cochran’s Q-test

was used to quantify heterogeneity of instrumental variables. Sensitivity analyses

included MR-Egger intercept tests, leave-one-out analyses, and funnel plots.

Results: The MR analysis revealed no significant associations between genetically

predicted levels of various saturated, monounsaturated, and polyunsaturated fatty

acids (including omega-3 and omega-6) and ADHD risk in the CHARGE and PGC

cohorts. Notably, an initial association with Dihomo-gamma-linolenic acid (DGLA)

(OR = 1.009, p = 0.032 by IVW) did not persist after correction for multiple testing

(adjusted p-value = 0.286). Sensitivity analysis supported our findings, indicating

robustness. Moreover, there was a lack of evidence supporting a causal link from

ADHD to fatty acids.

Conclusion:While our study on the basis of genetic data does not provide evidence

to support the causal role of fatty acids in ADHD, it does not preclude their potential

involvement in reducing the risk of ADHD. Further research is needed to explore

this possibility.
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1 Introduction

Attention deficit hyperactivity disorder (ADHD) is a life span

disorder, and recognized as the most common neurodevelopmental

disorder of childhood (1). Only a small proportion (15%) of

individuals with ADHD achieve complete remission during their

early adulthood (2, 3). It is marked by age-inappropriate levels of

inattention, hyperactivity, and impulsivity, and it can lead to long term

social, academic, and mental health issues (4, 5). According to a

systematic review and meta-analysis study, the global incidence of

ADHD is 7.6% in children aged 3 to 12 years and 5.6% in teenagers

aged 12 to 18 (6). The fifth edition (DSM-5) of the Diagnostic and

Statistical Manual of Mental Disorders released by the American

Psychological Association provided a definition of ADHD as a

consistent pattern of inattention and/or hyperactivity- impulsivity

that hinders both development and functioning (7, 8). It is often

comorbid with various psychological/mental disorders, such as

oppositional defiant disorder (ODD), conduct disorder (CD),

anxiety/depression disorder, learning disabilities (LD), and tic

disorders (TD) among others (9–11).

Fatty acids are the major metabolic products of lipid metabolism

(12). They are divided into three categories based on the number of

carbon-carbon double bonds: saturated fatty acids, monounsaturated

fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs). Trans

fatty acids (TFAs) are a general term of unsaturated fatty acids

containing 1 or more trans nonconjugated double bond structure.

There are two sources of TFAs: natural source and industrial source.

Natural source means that trans fatty acids are present in meat or

dairy products of ruminants, as some trans fatty acids are produced

during the fermentation process (is a process of biological

hydrogenation) in the rumen of ruminants. Industrial source

means that trans fatty acids are present in margarine, cocoa butter

substitutes, hydrogenated cream, and fried foods, as these trans fatty

acids are produced through pathways such as partial hydrogenation

of vegetable oils and high-temperature frying (13).

It is universally known that fatty acids composition and

metabolism can be altered during diseases, leading to beneficial

(14, 15) or adverse effects (16, 17). It has earlier been considered

that altered fatty acids composition may be related to ADHD (18,

19). Observational studies found that PUFAs may be pertinent to

the development of mental disorders, such as ADHD (20), autism

spectrum disorder (ASD) (21), anxiety disorders (15) and

Alzheimer’s disease (22). There is also research pointing a

possible link between trans fatty acids and ADHD, where

children with ADHD have higher levels of trans fatty acids than

those without ADHD (23). Some meta-analyses indicate that

children and adults with ADHD have elevated ratios of blood

omega-6 to omega-3, indicating a disruption in fatty acid

metabolism (14).However, the causal relationship between fatty

acid abnormalities and the onset of ADHD remains unclear because

of the common methodological problems in observation studies,

such as residual confounding, reverse causality and misclassification

(24, 25). For example, although there are a few observational studies

suggesting the presence of fatty acid imbalances in children with

ADHD (12, 19, 20, 23), yet conflicting observations regarding fatty

acid imbalances in ADHD have been found in different studies. The
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contradictory result may be caused by residual confounding or

reverse causality (26).

Mendelian randomization (MR) is a method that uses genetic

variation as instrumental variables (IVs) to examine causal effects

(24). Genetic variants are not easily influenced by confounding

factors because it randomly assembled at the time of conception

(25, 27), and the onset and progression of the disease do not alter

the genetic variants. Therefore, MR minimizes biases from residual

confounding and reverse causality in observational studies, thereby

strengthening the causal inference of exposure-outcome

associations (24, 28).

Several Mendelian randomization (MR) studies have

investigated the complex relationships between fatty acids and

other mental disorders. Some MR studies have revealed that long-

chain omega-3 and omega-6 fatty acid levels are associated with a

lower risk of schizophrenia (29, 30), while short-chain fatty acids

are linked to an increased risk (30). One study has found genetically

predicted increases in omega-3 levels were associated with a higher

risk of epilepsy (31). Additionally, research on depression identified

protective effects of adrenic acid and eicosapentaenoic acid (EPA),

while oleic acid (OA) and alpha-linolenic acid (ALA) may be

potential risk factors (32). Interestingly, a metabolome-wide MR

study identifies dysregulated arachidonic acid synthesis as a

potential causal risk factor for bipolar disorder (33). These

findings underscore the multifaceted role of various fatty acids in

mental disorder.

Given the complex associations and comorbidities among

mental disorders (34), along with the shared common risk factors

and genetic bases (35), further investigation into the association

between fatty acids and ADHD is warranted. Understanding this

relationship could provide valuable insights into the prevention and

management of ADHD. MR can provide stronger evidence for the

causal inference between fatty acids and ADHD. In this study, we

applied a two-sample bidirectional MR design to further verify

whether fatty acids abnormalities are associated with an increased

risk of ADHD.
2 Materials and methods

2.1 Study design

In this study, we performed a two-sample Mendelian

randomization analyses using summary statistics from a genome-

wide association study (GWAS) to investigate whether fatty acids

would have a causal effect on ADHD. Genetic variants were used as

instrument variables (IVs) to evaluate the causal effect of the

exposure (fatty acids) on the outcome (ADHD). The validity of

MR design hinges on three important assumptions that serve as the

criteria for screening IVs (24, 28). Assumption 1: IVs are strongly

associated with the exposure factors (fatty acids). Assumption 2:

There is no correlation between IVs and any potential confounding

factors. In short, IVs should be dependent of confounding factors.

Assumption 3: IVs can affect outcomes only through exposure

factors, not themselves or confounding factors. The study design of

our experiment is shown in Figure 1.
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2.2 Data source

2.2.1 GWAS data of fatty acids (exposure)
We selected single nucleotide polymorphisms (SNPs) from fatty

acid-related datasets to serve as IVs. The GWAS data on fatty

acids were derived from three large-scale meta-analyses

involving individuals of European ancestry, conducted by the

Cohort for Heart and Aging Research in Genomic Epidemiology

(CHARGE) consortium [n = 8916 individuals for saturated fatty

acids (SFAs) or monounsaturated fatty acids (MUFAs), n = 8631

individuals for n-6 polyunsaturated fatty acids (PUFAs), and

n=8866 individuals for n-3 PUFAs] (29–31). These data included

two SFAs, palmitic acid (16:0) and stearic acid (18:0); two MUFAs,

palmitoleic acid (16:1n7) and oleic acid (18:1n9) (36); four omega-3

PUFAs, alpha-linolenic acid (ALA) (18:3n3), eicosapentaenoic acid

(EPA)(20:5n3), docosapentaenoic acid (DPA)(22:5n3), and

docosahexaenoic acid (DHA)(22:6n3) (37); and three omega-6

PUFAs, adrenic acid (AdrA)(22:4n6), gamma-linolenic acid

(GLA)(18:3n6), and dihomo-gamma-linolenic acid (DGLA)

(20:3n6) (38).

2.2.2 GWAS data of ADHD (outcome)
Data sources for attention-deficit/hyperactivity disorder

(ADHD) were obtained from a genome-wide association study

(GWAS) meta-analysis of 38,691 individuals with ADHD and

186,843 controls, published by the Psychiatric Genomics

Consortium (PGC) (39). These data were combined from the

extended Danish Integrative Psychiatric Research (iPSYCH)

cohort (25,895 cases; 37,148 controls), the Icelandic deCODE

cohort (8,281 cases; 137,993 controls) and 10 European cohorts

aggregated by the PGC (4,515 cases; 11,702 controls). The iPSYCH

cases were diagnosed with ADHD based on the ICD10 diagnosis

codes (F90.0, F90.1, F90.8) and were identified in the Danish
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Psychiatric Central Research Register and the National Patient

Register. The deCODE cases were clinically diagnosed with

ADHD according to the ICD10 criteria (ICD10-F90, F90.1, F98.8)

or were prescribed medication specific for/to ADHD symptoms.

The iPSYCH and deCODE controls were individuals without

ADHD. The PGC cases were derived from10 PGC cohorts with

European ancestry as a part of a previous GWAS meta-analysis of

ADHD. All participants who donated samples provide informed

consent. The study identified 27 genome-wide significant loci. The

data sources and sample information used in our study are detailed

in Table 1.
2.3 Selection of instrumental variables

Figure 2 illustrates the research workflow. We initially selected

instrumental variables (IV) from the 11 exposures, requiring single-

nucleotide polymorphisms (SNPs) with genome-wide significant

associations with exposure p < 5×10^-8. However, for all 9

exposures except n-6 PUFA DGLA and n-6 PUFA GLA, only 1-4

SNPs meet this criterion. To ensure a sufficient number of IVs for

sensitivity analyses and potentially identify more causal association,

the threshold for these 9 exposures was loosened to a threshold of

5×10^-5.[18].

Secondly, we eliminated linkage disequilibrium among the

screened SNPs by applying thresholds of r2 < 0.001 and kb >

10,000, resulting in independent IVs free from linkage

disequilibrium. Subsequently, we utilized the online database

PhenoScannerV2 (http://www.phenoscanner.medschl.cam.ac.uk/)

to identify potentially related phenotypes. SNPs associated with

ADHD outcomes and confounding factors were then filtered out

using criteria of r2 ≥ 0.8, none proxies and p-value < 0.001. In the

context of the relationship between fatty acids and ADHD, factors
FIGURE 1

Study design This is the causal directed acyclic graph of MR design. The MR design assumptions are that the genetic variants are associated with
fatty acids, but not with confounders, and the genetic variants are associated with the risk of ADHD only through fatty acids.
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such as genetics, brain structure and function, premature birth and

low birth weight, exposure to tobacco smoke and alcohol during

pregnancy, and lead exposure are potential and significant

confounding factors. All outlier and palindromic SNPs

were removed.

Subsequently, we extracted the effect estimates of the selected

instrumental variables (IVs) from the ‘‘ADHD outcome’ dataset

and excluded SNPs with palindrome structures. To adhere to the

Mendelian first hypothesis, we employed R2 as a genetic tool to

elucidate the proportion of trait variance. The R2-value,

representing the proportion of phenotypic variations explained by

each SNP, was calculated using the formula (40, 41):

 R2 =o ½2� (1 −MAF)�MAF � b2 ÷ (SE2 � N)�

where SE and b represent the standard error and b coefficient

for effect size, MAF is the minor allele frequency for each SNP, and

N is the sample size. Next, we calculated an F-statistic to assess the

overall strength of the selected SNPs in explaining phenotypic

variations using the formula (42–44):
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where N is the sample size, k is the total number of SNPs

selected for MR analysis, and R2 is the total proportion of

phenotypic variations explained by all the SNPs. An F-statistic >

10 indicates that a SNP is a strong genetic instrument that

can elucidate phenotypic variations and effectively reduce

potential bias (42). Strong genetic instruments were chosen as

the IVs of exposure phenotype for MR analysis. Additionally,

we assessed the statistical power to estimate the genetically

causal effects of fatty acids on ADHD risk using a web-

based application, the mRnd power calculator (https://

shiny.cnsgenomics.com/mRnd/) (45).
2.4 Statistical analysis

All our statistical analyses were conducted using the “Two

Sample MR (version 0.5.8)” “data. Table (version 1.14.8)” and

“MR-PRESSO (Mendelian Randomization Pleiotropy RESidual
FIGURE 2

Mendelian randomization study flowchart. The gray boxes denote research steps, while the gray arrows signify the general direction. GWAS,
genome-wide association study; IV, instrumental variable; LD, linkage disequilibria.
TABLE 1 Information on genetic instruments and outcome source.

Category Trait Participant Population Consortium

Exposures SFA 8,916 European CHARGE

MUFA 8,916 European CHARGE

Omega-3 PUFA 8,866 European CHARGE

Omega-6 PUFA 8,631 European CHARGE

Outcome ADHD 225,534
(38691 cases and 186,843 controls)

European PGC
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Sum and Outlier)” “LDlinkR” packages in R (2023 The R

Foundation for Statistical Computing) (version 4.3.1). Reserved

IVs were used to perform two-sample MR analyses.

Five MR methods, including inverse variance weighted (IVW),

MR Egger, weighted median, simple mode, and weighted mode, were

employed to analyze the causal influence of fatty acids on ADHD

outcomes. Sensitivity analyses were conducted using established

approaches such as leave-one-out analysis, PRESSO test, pleiotropy

test, and heterogeneity test. The IVW method served as the primary

analytical tool due to its demonstrated greater statistical power (46).

This method assumes the validity and lack of horizontal pleiotropy

for all instrumental variables, leading to more stable estimates.

Consequently, IVW results were considered the main findings,

while MR Egger, weighted median, simple mode, and weighted

mode served as supplementary analyses.

Pleiotropy includes horizontal pleiotropy and vertical

pleiotropy. Vertical pleiotropy implies that a genetic variant

affects only a specific phenotype or feature without influencing

others. On the other hand, horizontal pleiotropy suggests that a

genetic variant affects multiple different phenotypes or features

simultaneously. If horizontal pleiotropy exists, it implies that the

genetic variant can influence other phenotypes besides the

exposure, which are unrelated to the outcome. This would lead to

a violation of the “no horizontal pleiotropy” assumption for the

instrumental variable in MR analysis. This assumption essentially

requires that the genetic variant only influences the outcome

variable through its effect on the exposure. If a genetic variant

with horizontal pleiotropy is used as an instrumental variable (IV),

it can lead to biased estimates of the causal relationship between the

exposure and outcome (47). Despite excluding known confounding

SNPs, unknown confounding factors may still exist, leading to

genetic polymorphism and biased effect size estimates. To satisfy the

second and third hypotheses of MR, we employed MR-Egger for

testing horizontal pleiotropy. The regression intercept reflects the

magnitude of pleiotropy, with an intercept closer to 0 indicating a

lower likelihood of pleiotropy. The P-value from the pleiotropy test

signifies directional pleiotropy, and if P > 0.05, it indicates

nonsignificant pleiotropy, suggesting that exposure is unlikely to

affect the outcome through confounding factors or its own

effects (48).

Heterogeneity indicates significant differences in the effects of

different IVs on the outcome, affecting the stability of results. We

utilized IVW and MR-Egger regression to test heterogeneity,

evaluating it through the Cochran Q test’s Cochran Q value. P >

0.05 suggests the absence of heterogeneity (49, 50).

MR-PRESSO was employed to detect outliers and assess

differences in estimated values before and after outlier removal,

reducing the impact of outliers and enhancing study reliability.

Additionally, it evaluates horizontal pleiotropy (P > 0.05 is

considered indicative of no pleiotropy) (51).

Furthermore, leave-one-out test was applied for sensitivity

analysis to demonstrate that the causal effect of fatty acids on

ADHD outcomes is not influenced by individual SNP. Effect sizes

in MR analysis were presented as odds ratios (OR) with 95%

confidence intervals (CI).
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3 Results

3.1 Causal effects of fatty acids on ADHD

After IVs selection, we conducted a two-sample Mendelian

randomization study using the valid IVs and obtained results

(Palmitic acid = 4, R2 = 0.650%, F = 14.421; Stearic acid = 4,

R2 = 1.120%, F = 25.561; Palmitoleic acid = 5, R2 = 0.924%, F =

16.498; Oleic acid = 3, R2 = 0.975%, F = 29.145; Alpha-linolenic acid

= 2, R2 = 1.745%, F = 78.540; Eicosapentaenoic acid = 1,

R2 = 1.299%, F = 116.671; Docosapentaenoic acid = 5,

R2 = 5.223%, F = 95.310; Adrenic acid = 5, R2 = 3.977%, F =

70.783; Dihomo-gamma-linolenic acid = 12, R2 = 8.277%, F =

60.866; Gamma-linolenic acid = 48, R2 = 16.831%, F = 30.435);

(Supplementary Tables 1–10). We only obtained 1 usable IV for

DHA after filtering on F-statistic. Therefore, we were unable to

conduct MR analysis on n-3 DHA and ADHD.

As plotted in Figure 3, the results of the IVW analysis revealed

results for two types of SFA (16:0 (OR = 1.054, 95% CI 0.941 - 1.180,

p = 0.365), 18:0 (OR = 1.071, 95% CI 0.973 - 1.180, p = 0.161)), and

two types of MUFA (161:n7 (OR = 1.234, 95% CI 0.819 - 1.861, p =

0.315), 18:1n9 (OR = 1.031, 95% CI 0.959 - 1.108, p = 0.406)), two

types of n-3 PUFA (ALA (OR =1.888, 95% CI 0.253 - 15.192,

p =0.550), DPA (OR =1.075, 95% CI 0.859 - 1.347, p =0.526)) and

two types of n-6 PUFA (AdrA(OR =0.999, 95% CI 0.693 - 1.440,

p =0.996), GLA (OR =0.987, 95% CI 0.956 - 1.019, p = 0.430)),

showing no causal relationship with ADHD. Genetically predicted

EPA was also showed no causal association between EPA and ADHD

(OR = 0.988, 95% CI 0.777 - 1.265, p = 0.922 by Wald ratio). MR

analyses indicated a causal relationship between DGLA (OR =1.009,

95% CI 1.001 - 1.018, p = 0.032). Since we had multiple exposures, we

performed FDR correction on this result to prevent the probability of

false positives (using the Benjamini-Hochberg method). The adjusted

P-value was 0.286, which not reached significance after adjustment.

This suggests that DGLA is unlikely to be a risk factor for ADHD.

Consistent conclusions were also provided by MR-Egger, MW, and

four other methods Figure 3), indicating no association between

genetically predicted fatty acid increase and increased risk of

ADHD. MR-Egger intercept and MR-PRESSO did not reveal

horizontal pleiotropy (P > 0.05) among all analyses, and no outliers

were identified through MR-PRESSO. Except for palmitic acid (16:0)

(p = 0.023), Cochran’s Q-test yielded P-values greater than 0.05 for the

remaining fatty acids, suggesting no significant heterogeneity was

observed. Despite the detection of heterogeneity in palmitic acid

(16:0), utilizing the random-effects IVW method allowed for

balancing the combined heterogeneity, making it acceptable

(Table 2). Due to the limited number of available IVs for ALA and

EPA, the tests for horizontal pleiotropy and heterogeneity could not be

completed. To assess the robustness of our findings, we conducted a

leave-one-out sensitivity analysis. In this analysis, we removed each

SNP one at a time and re-estimated the causal effects. We observed no

substantial changes in the overall effect estimates (Supplementary

Figures 1–3). This suggests that our MR results are robust and reliable.

Figures 4–6 shows scatter plots of three types of n-3PUFAs,

three types of n-6PUFAs, two types of MUFAs, and two types of
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TABLE 2 Pleiotropy and heterogeneity test of fatty acids IVs in ADHD GWAS.

Fatty acids nSNP Heterogeneity test Pleiotropy test

IVW MR-Egger MR-
Egger intercept

p MR-PRESSO Global test p

Cochran's Q p Cochran's Q p

SFA 16:0 4 9.546 0.023 8.251 0.016 0.042 0.632 0.087

SFA 18:0 5 6.111 0.106 2.807 0.246 0.029 0.265 0.228

MUFA 16:1n7 5 1.826 0.768 1.777 0.620 -0.004 0.837 0.772

MUFA 18:1n9 3 0.786 0.672 0.242 0.623 0.009 0.593 –

n-3 ALA 2 3.318 0.069 – – – – –

n-3 EPA 1 – – – – – – –

n-3 DPA 5 4.444 0.349 4.024 0.259 0.004 0.615 0.458

n-6 AdrA 5 2.871 0.579 1.414 0.702 0.007 0.314 0.397

n-6 DGLA 12 15.40 0.165 15.397 0.118 -0.0005 0.961 0.173

n-6 GLA 48 50.784 0.327 48.137 0.386 -0.008 0.119 0.328
F
rontiers in Psych
iatry
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FIGURE 3

Odds ratio plot for genetic associations between 10 fatty acids and ADHD.
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SFAs with ADHD under different methods. Each point in the

scatter plot represents an IV, and the line on each point

represents a 95% confidence interval. The x-axis represents the

SNP’s impact on the exposure factor (fatty acids), the y-axis

represents the SNP’s impact on the outcome ADHD, and the

colored lines indicate the MR fitting results. Forest plots and

funnel plots of the individual SNP effects of fatty acids on ADHD

are presented in Supplementary Figures 4–9.
3.2 Causal effects of ADHD on fatty acids

We performed MR analysis with ADHD as exposure to explore

the possible reverse causality on fatty acids. As shown in Figure 7,

genetically predicted ADHD was not associated with any fatty acid

traits (Palmitic acid: OR = 1.059, 95% CI 0.826 - 1.358, p = 0.365;

Stearic acid: OR = 1.022, 95%CI 0.823 - 1.269, p = 0.845; Palmitoleic

acid: OR = 1.004, 95% CI 0.975 - 1.034, p = 0.805; Oleic acid: OR =

1.028, 95% CI 0.866 - 1.221, p = 0.749; ALA: OR = 1.000, 95% CI
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0.989 - 1.011, p = 0.974; EPA: OR = 0.974, 95% CI 0.931 - 1.020, p =

0.266; DPA: OR = 0.987, 95% CI 0.961 - 1.014, p = 0.330; DHA: OR

= 0.916, 95% CI 0.781 - 1.073, p = 0.275; AdrA: OR = 1.015, 95% CI

0.991 - 1.039, p = 0.216; DGLA: OR = 1.003, 95% CI 0.995 - 1.011, p

= 0.503; GLA: OR = 1.054, 95% CI 0.941 - 1.180, p = 0.365). Neither

heterogeneity nor pleiotropy was detected in the reverse directional

MR analysis (Table 3). The scatter plots, forest plots, funnel plots

and leave-one-out of the genetic variance are presented in

Supplementary Figures 10–21.
4 Discussion

ADHD, one of the most prevalent neurodevelopmental

disorders in children and adolescents, is typically diagnosed

during childhood and persists into adulthood. The symptoms of

ADHD can disrupt individuals’ learning, daily life, family, and

employment, placing a significant burden on families. The causes of

ADHD are multifaceted, involving factors such as genetics,
A B

DC

FIGURE 4

Scatter plots of SFA and MUFA. (A) Scatter plots of 16:0. (B) Scatter plots of 18:0. (C) Scatter plots of 16:1n7. (D) Scatter plots of 18:1n9. Scatter plots
of the five MR results from the two SFAs and two MUFAs related to ADHD. Each point in the scatter plot represents an IV. The line on each point
reflects the 95% CI, and the horizontal coordinate is the effect of SNPs on 16:0, 16:1n7, 18:0, 18:1n9. The vertical coordinate is the effect of SNPs on
ADHD. SNP effects were plotted into lines for the inverse-variance weighted test (light blue line), MR-Egger regression (dark blue line), simple mode
(light green line), weighted median (dark green line), and weighted mode (pink line).
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1368942
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhou et al. 10.3389/fpsyt.2024.1368942
environment, preterm birth, preeclampsia, hypoxia events, and

maternal prenatal smoking exposure (52, 53). Extensive evidence

from numerous cohort studies and meta-analyses published in

recent decades supports the evaluation of pharmacological, non-

pharmacological, and combined treatment options for managing

ADHD (54–56). Multiple studies have shown that supplementing

PUFA, especially n-3 PUFA, has a positive impact on improving

ADHD symptoms and cognitive function (57–59). Due to the side

effects of commonly used drugs for treating ADHD, many families

are seeking alternative therapies for ADHD, such as supplementing

with fatty acids.

We utilized MR to strengthen the inferences that can be drawn

about the effect of SFA, MUFA, n-3 PUFA and n-6 PUFA on ADHD

risk. Our study did not reveal a significant association between

ADHD risk and levels of SFA (16:0 PA and 18:0 SA), MUFA (161:

n7 PA and 181: n9 OA), n-3 PUFA (ALA, DPA, EPA) and n-6 PUFA

(AdrA, DGLA, GLA). Specifically, we did not find any evidence that

the 10 fatty acids examined in our study were associated with a

reduced risk of ADHD. This finding is inconsistent with some

previous observational studies, which reported protective effects of

certain fatty acids against ADHD. However, other studies have also

found limited efficacy PUFA in the treatment of ADHD, aligning
Frontiers in Psychiatry 08
with our results (60–64). A recent meta-analysis further supports this

notion, indicating no improvement in core ADHD symptoms with n-

3 PUFA supplementation (65). Nevertheless, it is undeniable that

some studies have shown potential benefits of fatty acid

supplementation, such as improved sleep (66). Additionally, MR

studies have suggested protective effects of certain fatty acids against

diseases such as schizophrenia and depression (29, 30, 32).

Intriguingly, two recent MR studies examining the relationship

between LA, DHA, and ADHD reached opposing conclusions

(67, 68), highlighting the need for further research in this area.

One study has indicated a positive correlation between essential

fatty acid deficiency and ADHD symptoms (69). Children with

ADHD show more severe essential fatty acid deficiency, and the n-3

PUFA levels in ADHD patients are significantly lower compared to

those in healthy control children (70). Our reverse Mendelian

randomization study, designed to explore the potential impact of

ADHD on fatty acids, found no genetic indication that ADHD leads

to abnormal fatty acid levels.

The mechanisms underlying the therapeutic effects of fatty acids

on ADHD remain unclear, although several potential pathways

have been explored. Studies suggest that imbalances in omega-3 and

omega-6 fatty acid levels in the blood of ADHD patients might
A B

C

FIGURE 5

Scatter plots of n-3 PUFA. (A) Scatter plots of ALA. (B) Scatter plots of EPA. (C) Scatter plots of DPA. Each point in the scatter plot represents an IV.
The line on each point reflects the 95% CI, and the horizontal coordinate is the effect of SNPs on ALA, DPA, EPA. The vertical coordinate is the effect
of SNPs on ADHD. SNP effects were plotted into lines for the inverse-variance weighted test (light blue line), MR-Egger regression (dark blue line),
simple mode (light green line), weighted median (dark green line), and weighted mode (pink line).
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contribute to the disorder, possibly due to disrupted fatty acid

metabolism or increased inflammation (71, 72). Fatty acids also play

a critical role in early brain development, influencing neuronal

growth, communication between brain cells (synaptic function),

and neurotransmitter signaling. Disruptions in fatty acid

metabolism may hinder proper brain development and lead to

some ADHD symptoms (73). Some studies propose that essential

fatty acids can regulate brain cell signaling through monoamine

modulation, signal transduction activation, and modulation of lipid

rafts on cell membranes (74). Additionally, DPA and EPA have

been shown to enhance anti-inflammatory effects by inhibiting free

radical production and oxidative stress (75). Animal experiments

suggest that EPA and DHA can restore a normal Firmicutes/

Bacteroidetes ratio and improve stress-related inflammation by

increasing the abundance of bacteria producing butyrate salts and

reducing the levels of pro-inflammatory bacterial genera (76, 77).

Moreover, DHA deficiency is associated with disturbances in the

transmission of serotonin (5-hydroxytryptamine, 5-HT),

norepinephrine, and dopamine, which may be related to cognitive

impairments in ADHD (78). These findings, although suggestive of
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potential mechanisms, do not align with our study’s conclusion that

there is no causal relationship between fatty acids and ADHD.

However, this does not negate the possibility that other PUFA

subtypes or a broader assessment of fatty acid metabolism may be

relevant to ADHD. These findings highlight the need for further

research to comprehensively understand the potential role of PUFA

subtypes and broader fatty acid metabolism in ADHD risk.

In the present research, we employed anMR design to minimize

residual confounding and reverse causation, improving causal

inference regarding the correlation between fatty acids and

ADHD. Utilizing ADHD data from the newly released PGC

consortium, providing a large sample size for more robust

evidence than observational studies. All analyses were confined

within populations of European ancestry and genome-association

tests adjusted for population stratification bias. Moreover, our

dataset was obtained from the CHARGE consortium and PGC

consortium, ensuring no overlap in samples. The consistency of

effect sizes across different methods, the strength of evidence, and

our secondary analyses indicate that our findings are consistent

with an effect of fatty acids on ADHD, although the estimate of ALA
A B

C

FIGURE 6

Scatter plots of n-6 PUFA. (A) Scatter plots of AdrA. (B) Scatter plots of DGLA. (C) Scatter plots of GLA. Scatter plots of the five MR results from the
three n-6 PUFAs related to ADHD. Each point in the scatter plot represents an IV. The line on each point reflects the 95% CI, and the horizontal
coordinate is the effect of SNPs on AdrA, DGLA, GLA. The vertical coordinate is the effect of SNPs on ADHD. SNP effects were plotted into lines for
the inverse-variance weighted test (light blue line), MR-Egger regression (dark blue line), simple mode (light green line), weighted median (dark green
line), and weighted mode (pink line).
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and EPA are likely to be underpowered, given the small number of

instruments used in these two exposures. Our MR-Egger model and

MR-PRESSO analyses revealed no outliers, indicating no horizontal

pleiotropy, thereby minimizing the potential bias in causal

inference. Additionally, our research provides valuable insights

for the health management of ADHD patients. While our study

does not definitively establish a causal relationship between fatty

acids and ADHD, it is crucial to remain vigilant about the risk

factors associated with fatty acid deficiency in individuals

with ADHD.

Our study also has inevitable limitations. First, the limitation to

individuals of European descent, restricting the generalizability of

our study to non-European populations. Second, we did not include

fatty acid data from other databases, considering that the quality

control standards for genome-wide association analysis vary among

different databases, and this difference may lead to heterogeneity,

which also resulted in a limited number of available instrumental
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variables for our partial exposure (ALA, EPA) that could not be

used for heterogeneity and pleiotropy analysis, or even unavailable

(DHA). Third, ADHD has a male predominance, and our data were

not stratified by gender, making it impossible to assess the effect of

fatty acids on ADHD risk in different genders, potentially

introducing bias. Due to the lack of publicly available dataset, our

study could not conduct a stratified analysis on the progression and

severity of ADHD, as well as different clinical subtypes. Finally, we

must pay attention to the diversity of ADHD population and fatty

acid types, and in the future, comprehensive research on ADHD

subgroups and multiple fatty acids should be considered.
5 Conclusion

We found no genetic evidence supporting the causal

relationship between n-3 PUFAs, n-6 PUFAs, SFA, and MUFAs
FIGURE 7

Odds ratio plot for genetic associations between ADHD and 10 fatty acids.
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in the risk of ADHD. From a public health perspective, our study

challenges the notion that supplementing PUFAs can reduce the

risk of ADHD. Given the inconsistent evidence from trial data,

further MR studies targeting different populations and larger-scale

epidemiological research are still needed to validate this conclusion.
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TABLE 3 Pleiotropy and heterogeneity test of ADHD IVs in fatty acids GWAS.

Fatty acids nSNP Heterogeneity test Pleiotropy test

IVW MR-Egger MR-
Egger intercept

p MR-PRESSO Global test p

Cochran's Q p Cochran's Q p

SFA 16:0 13 5.932 0.919 3.891 0.973 -0.082 0.181 0.917

SFA 18:0 13 18.916 0.091 17.977 0.821 0.039 0.465 0.113

MUFA 16:1n7 13 8.862 0.715 8.588 0.660 -0.004 0.611 0.719

MUFA 18:1n9 13 8.353 0.757 7.520 0.756 -0.037 0.381 0.758

n-3 ALA 12 17.886 0.084 16.625 0.083 -0.002 0.404 0.082

n-3 DHA 13 18.367 0.105 18.135 0.078 0.014 0.715 0.119

n-3 EPA 13 12.014 0.445 11.779 0.380 -0.005 0.649 0.496

n-3 DPA 13 6.941 0.861 6.941 0.804 -7.688e-05 0.990 0.880

n-6 AdrA 11 14.261 0.161 14.260 0.113 4.00099e-05 0.994 0.178

n-6 DGLA 13 5.551 0.937 5.550 0.902 0.0007 0.981 0.934

n-6 GLA 13 7.245 0.841 7.230 0.780 -0.0002 0.119 0.907
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