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Introduction: Fentanyl and fentanyl analogs (F/FA) have become increasingly

common adulterants in counterfeit prescription pills and illicit street drug

mixtures due to their ease of synthesis and exceedingly high potency. The

ongoing epidemic of fatal overdoses fueled by F/FA continues to highlight the

need for longer-acting therapies than naloxone (NLX), the current gold-standard

for reversing opioid overdoses, which shows limited efficacy to prevent

renarcotization associated with F/FA toxicity. A novel opioid reversal agent

based on covalent naloxone nanoparticles (cNLX-NP) has been shown to blunt

fentanyl-induced respiratory depression out to 48 hr, demonstrating its potential

therapeutic utility. The purpose of this study was to characterize how rapidly

cNLX-NP reverses fentanyl-induced respiratory effects as well as the duration of

its protective effects.

Methods: Sprague Dawley male rats (n=6/group) were tested on an oximeter for

baseline percent arterial oxygen saturation (%SaO2) challenged with 0.1 mg/kg

SC fentanyl and 15 min later given 10 mg/kg IM doses of NLX, nalmefene (NLMF),

or cNLX-NP and continuously monitored via oximetry for 10 minutes. One week

later the experiment was repeated using a 1:1 mixture of NLX:cNLX-NP as the

reversal agent in the rats that previously received NLX alone.

Results:While both NLX and NLMF rapidly reversed %SaO2 to baseline within 1 min,

rats that received cNLX-NP did not return to >90% SaO2 levels until 9 min after

administration. Similarly, heart and breath rates returned to baseline within 1 min of

treatment with NLX and NLMF but did not return to baseline until 10 minutes after

cNLX-NP administration. In contrast, NLX:cNLX-NP reversed all fentanyl-induced

respiratory depressive effects within one minute.
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Discussion:While cNLX-NP alone may not sufficiently reverse F/FA overdose in a

timely manner, mixing free NLX with cNLX-NP can provide a mechanism to both

rapidly reverse fentanyl-related effects and maintain extended protection against

synthetic opioid toxicity. These data support further development of cNLX-NP as

a fast-acting and long-lasting antidote to treat F/FA-induced respiratory

depression and overdose, and potentially prevent renarcotization in humans.
KEYWORDS

fentanyl, synthetic opioids, antagonist, reversal agent, antidote, substance use disorder,
opioid use disorder
Introduction

Opioid overdoses have accelerated in recent years, with over

107,000 reported fatalities in 2021 alone (1). Fentanyl and fentanyl

analogs (F/FA) have been implicated in over 70,000 of those deaths

(1), demonstrating the serious public health threat posed by this

class of compounds (2–8). Fentanyl was detected in over 90% of

fatal overdoses in Massachusetts between 2017 and 2019 (9). F/FA

have appeared in non-opioid overdose deaths as well, with F/FA

being detected in two-thirds of benzodiazepine deaths in 2020 (10),

demonstrating that F/FA are a growing concern beyond opioid use.

These trends have continued, or worsened, through 2023 (11). One

of the challenges of treating F/FA overdoses is due to the different

pharmacokinetic and pharmacodynamic (PK/PD) profiles of F/FA

compared to current reversal agents.

F/FA are extremely hydrophobic mu opioid receptor (MOR)

agonists that rapidly distribute to tissues including the blood-

brain barrier (BBB) and are readily absorbed via multiple routes of

administration (6, 12–15). The half-life of F/FA varies greatly

between compounds and across individuals. Fentanyl has a half-

life of 1 – 9 hours (16–18), remifentanil has a half-life of 8 –

48 min (16, 17, 19), alfentanil has a half-life of 0.42 – 1.6 hours (16,

18), and carfentanil has a half-life of 6 – 7 hours (16, 20). The

current antidotes to treat F/FA overdose are small molecule MOR

antagonists such as naloxone and nalmefene. Naloxone is rapidly

eliminated and has a relatively short half-life of between 30 –

120 min (21–23). A recent study showed that naloxone occupancy

of MORs decreased from 90% occupancy 5 min after

administration to 50% occupancy 20 min later, which

demonstrated how short-lived naloxone’s effects may be (24).

Nalmefene, which is structurally similar to naloxone, has a

much longer elimination half-life of approximately 11 hr in

humans (25). This difference between the half-life of F/FA and

naloxone could lead to renarcotization, whereby F/FA-induced

respiratory depression returns after a brief period of reversal via

treatment (20, 26, 27). This requires a subset of patients to be

intubated and on ventilators in a hospital setting until they are

capable of breathing on their own (20), or receive repeated doses

of either naloxone or nalmefene. Because nalmefene was only
02
recently FDA approved, it is not clear what role it will play in

preventing renarcotization.

Other medications to treat F/FA overdose are at varying stages

of preclinical development. Monoclonal antibodies (mAbs) against

F/FA’s have demonstrated efficacy to reverse fentanyl and

carfentanil effects (28, 29). Monoclonal antibodies provide the

advantage of not blocking opioid receptors and a lesser likelihood

of precipitating withdrawal. However, F/FA-specific mAbs would

likely be more selective to single drug targets (instead of broadly

reversing all opioid-induced effects) and may be less amenable to

over-the-counter use due to logistics associated with administration

routes and storage conditions. Methacinnamox (MCAM), another

long-lasting opioid antagonist in preclinical development, has

shown efficacy in reversing fentanyl-induced respiratory

depression in rats and non-human primates (NHP) (30, 31) and

had even longer efficacy against heroin-induced respiratory

depression in NHP (32). However, MCAM may also precipitate

withdrawal (33), and it has not yet been tested in humans. Further

studies for these and other promising medications are

warranted (34).

A new long-acting covalently-linked naloxone nanoparticle

(cNLX-NP) has been developed as an antidote against F/FA,

which demonstrated reversal of fentanyl-induced respiratory

depression within 15 minutes of dosing and was protective

against effects of fentanyl out to 48 hr after cNLX-NP

administration (35). The cNLX-NPs are prepared via a two-step

process involving the synthesis of biodegradable, naloxone-

containing polymers and the subsequent precipitation of those

polymers via a single-phase emulsion and nanoprecipitation to

form well-defined nanoparticles. First, naloxone was ligated to the

chain end of a biodegradable polymer via a hydrolytically labile

bond, and then the polymer-bound NLX is then formulated as a

nanoparticle using traditional fabrication methods wherein

naloxone was non-covalently trapped in a particle (35). Given

that polymer composition influences the biodegradation rate and

controls the percent of naloxone incorporated in the nanoparticle,

we synthesized a series of naloxone polymers possessing different

levels of steric hinderance along the polymer backbone to control

drug release. The steric properties were controlled by varying the
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amount of lactide (L) and glycolide (G) monomers that were grown

from the 3-hydroxyl moiety of the naloxone initiator. Presented

herein are two covalently loaded naloxone polymers with a 60:40

and 100:0 L:G composition.

This poly-lactic acid (PLA) and poly-lactic-co-glycolic acid

(PLGA) nanoparticle technology is an advancement over current

FDA-approved controlled-release drug delivery pharmaceuticals

(such as Vivitrol®), which are in non-covalently drug-

encapsulated form. Vivitrol® contains PLGA particles loaded with

naltrexone and displays an early burst release of antagonist followed

by latent low release designed for treatment of opioid use disorder

(OUD). If given post-exposure, this effect can lead to precipitated

opioid withdrawal, as well as provide limited therapeutic coverage

post injection. By contrast, the covalent nanoparticle formulation

cNLX-NP provides a linear release of antagonist at a tunable rate for

a long period of time providing consistent protection

from renarcotization.

The goal of these studies was to determine the effect of altering

polymer composition on naloxone half-life. The lead cNLX-NP

formulation would be taken forward to compare against naloxone

and nalmefene to elicit rapid reversal (within minutes) and long-

lasting protection (prevention of renarcotization out to 48 hr)

against fentanyl. Results demonstrated that the polymer

containing only lactide and no glycolide provided naloxone the

longest half-life, and that this formulation was protective out to 48

hr. However, cNLX-NP could not rapidly reverse fentanyl-induced

respiratory depression, which was improved when free naloxone

was added to the formulation. Together, these data suggest cNLX-

NP may provide better protection than free naloxone or nalmefene

to prevent F/FA-induced renarcotization.
Materials and methods

Ethics statement

All animal studies were performed in accordance with the

Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health. Animal protocols were approved by

the Allegheny General Hospital and University of Minnesota

Institutional Animal Care and Use Committees. Animals were

euthanized by CO2 inhalation using AAALAC approved

chambers, and all efforts were made to minimize suffering.
Formulation of cNLX-NP

Naloxone was used as an initiator for the ring opening

polymerization of lactide or combinations of lactide and glycolide

using previously reported conditions (35) (Characterization of prepared

polymers can be found in Supplementary Figures S1, S2). Nanoparticles

were formulated by slow injection of an acetonitrile solution of

naloxone-containing polymer into a 0.3% polyvinyl alcohol solution

(Supplementary Figure S3). Naloxone loading was calculated via

hydrolysis of the particles and measurement of the released naloxone

content (Supplementary Table S1). Particles were washed using water
Frontiers in Psychiatry 03
washing and centrifugation and freeze dried. Incorporation of glycolide

increased the rate of nanoparticle hydrolysis.
Nanoparticle preparation

Naloxone-containing polymers were synthesized according to

the previously described solvent-free (35), organocatalyzed ring-

opening polymerization (ROP) protocol as illustrated in Figure 1.

Lactide and glycolide monomers were mixed at either 100:0 or 60:40

mole ratio, pre-melted at 130°C under an inert atmosphere, then

treated with a mixture of naloxone (10 mol%) and thiourea catalyst

(5 mol%). After 15 min, the reaction mixture was dissolved in

CH2Cl2 and precipitated into cold isopropyl alcohol. The resulting

precipitate was dried under reduced pressure and then subjected to

flash chromatography. Characterization of polymers was achieved

using gel permeation chromatography (GPC, Supplementary Figure

S1) and proton nuclear magnetic resonance spectroscopy (1H NMR,

Supplementary Figure S2) and the corresponding data is presented

in Table 1. Isolated polymers were taken up in acetonitrile and

added slowly dropwise via syringe pump to a 0.3% aqueous solution

of poly(vinyl alcohol) (PVAMW~6000) with vigorous stirring.

Dialysis against water with a 50 kDa MWCO membrane followed

by lyophilization proved to be a suitable strategy to purify the

nanoparticles. Particles were characterized using dynamic light

scattering (Supplementary Figure S3, Supplementary Table S2)

and hydrolyzed and naloxone concentration was measured using

UV-Vis spectroscopy to determine naloxone loading percentage

(Supplementary Table S1).
Drugs

Fentanyl citrate (Hikma Pharmaceuticals, previously West-

Ward Pharmaceuticals, Berkeley Heights, NJ) and naloxone

hydrochloride (LGM Pharma, Boca Raton, FL) were purchased

from Boynton Pharmacy at the University of Minnesota. Naloxone

hydrochloride dihydrate was purchased from LGM Pharma (LGM

Pharma, Boca Raton, FL) and subsequently converted to the

corresponding free base (2) via acid−base extraction with

saturated aqueous sodium bicarbonate (NaHCO3). Nalmefene

hydrochloride (Tocris, Minneapolis, MN) was purchased from

Bio-Techne (Minneapolis, MN). Covalently loaded naloxone
FIGURE 1

Synthesis of naloxone-PLA and naloxone-PLGA60:40 (cNLX-NP
precursors) using ring opening polymerization.
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nanoparticles (cNLX-NP60:40 and cNLX-NP100:0, written with a

subscript reflecting the ratio of lactide:glycolide in their polymeric

backbone) were prepared as previously described (35).
Animals

For Experiment 1, male Sprague−Dawley rats (300 g) were

purchased from Charles River Laboratories (Wilmington, MA) with

indwelling jugular vein catheters. For Experiments 2 and 3, male

Sprague Dawley rats (8 weeks old) were purchased from Envigo

(Indianapolis, IN). Rats were housed in AAALAC-approved

facilities with a 14-hour light/10-hour dark cycle with free access

to water and food.
Analysis of drug levels

The concentrations of naloxone (from either free naloxone or

cNLX-NP formulations), nalmefene, and fentanyl in the serum and

brain from rats in Experiment 3 were measured by LC-MS/MS as

described previously (35, 36). The limit of detection for naloxone and

nalmefene was 1 ng/mL and the limit of quantitation for both was 2.5

ng/mL. Briefly, solid-phase extraction was used to isolate the drugs of

interest from serum and brain using Bond Elut Plexa PCX cartridges

(Agilent, Santa Clara, CA). The reconstituted samples were then

analyzed by an Agilent G6470A triple quadrupole LC-MS/MS system

consisting of an Infinity II 1290 G7116B Multicolumn Thermostat,

G7120A High Speed Quad Pumps, and a G7267B Multisampler.

Samples were stored at -20 °C until measurement.
Respiratory depressive and
antinociception assays

Fentanyl-induced respiratory depression and antinociception

were measured by the pulse oximetry and hot plate test,

respectively, as previously described (35). Briefly, after habituation

to the testing environment, an oximetry collar (MouseOX, Starr Life

Sciences Corp, Oakmont, PA) was placed around the neck of each

rat to measure oxygen saturation (% SaO2) and heart rate at baseline

and at various intervals based on experimental details (see specific

experimental details below). Immediately following each oximetry

measurement, rats were placed on a hot plate (Columbus

Instruments, Columbus, OH) set to 54°C to measure latency to

respond (as indicated by a lift or flick of the hind paw or jumping)

with a maximum cutoff of 30 sec to avoid thermal tissue damage.
Frontiers in Psychiatry 04
Experiment 1 - Pharmacokinetics of naloxone
nanoparticles compared to current therapeutics

To determine the elimination half-life of nalmefene and cNLX-

NP100:0, male Sprague-Dawley rats (n=3-6) were given a normalized

dose of 10 mg/kg reversal agent (nalmefene or cNLX-NP100:0) via

intramuscular (IM) administration. Blood was drawn at t = 0, 0.5, 1,

1.5, 2, 3, 4, 6, 9, 12, 24, 48, and 72 hr at a volume of 0.1 mL per time

point. Catheters were flushed with 0.2 mL of heparin (50 IU/ml) and

locked to maintain catheter patency. Naloxone and cNLX-NP60:40
pharmacokinetic parameters were previously published (35) but were

included in the present study because the experiment was identical

and new analyses were performed. Any place where previously

published data are presented will be noted.

Experiment 2 - Long-term efficacy of opioid
antagonist reversal agents

To determine the long-term efficacy of cNLX-NP100:0 to reverse

fentanyl-induced respiratory depression, rats (n=6/group) were

baselined on a hotplate set to 54°C and monitored by oximetry

(MouseOX) for oxygen saturation (% SaO2 and heart rate) prior to

experiment on each day. Then, 0.1 mg/kg SC fentanyl was given at

t=0, 6, 24, and 48 hr. Fifteen minutes after fentanyl administration,

rats were monitored on the hotplate for antinociception and via

oximetry. Immediately afterwards at t=17 min (but not at t=6, 24, or

48 h), rats received a single IM dose of 10 mg/kg naloxone,

nalmefene, or cNLX-NP100:0. On Day 1 (t=30 min), rats were

monitored on the hotplate and oximeter to demonstrate that all

formulations rapidly reversed fentanyl effects. On Day 2 (t=24 h),

rats were tested on the hotplate and oximeter 15 minutes after

fentanyl exposure and any rats that had <90% SaO2 were given a 0.1

mg/kg SC dose of naloxone to reverse fentanyl-induced respiratory

depression. On Day 3 (t=48hr), rats were tested on the hotplate and

oximeter 15 minutes after fentanyl exposure and immediately

euthanized to measure fentanyl, naloxone, and nalmefene levels

in serum and brain via LCMS. See Supplementary Figure S4 for the

study design.

Experiment 3 - Rapid reversal of fentanyl-
induced effects using opioid antagonists.

To determine the rate of reversal of cNLX-NP formulations, rats

(n=6/group) were baselined via oximetry and then given 0.1 mg/kg

fentanyl SC. Fifteen minutes later rats were tested again on the

oximeter. Immediately afterwards, rats received 10 mg/kg IM of

naloxone, nalmefene, or cNLX-NP100:0. One week later, this

experiment was repeated in six rats (two rats from each group

that were randomly selected) who received a 1:1 mixture of 5 mg/kg

free naloxone and 5 mg/kg cNLX-NP100:0.
TABLE 1 GPC and 1H NMR characterization data for NLX-PLA and NLX-PLGA-based polymers (precursors of cNLX-NP).

Polymer Yield (%) Mn Mw Mw/Mn DP NLX loading (%)

NLX-PLA 53 4100 5200 1.26 36 11

NLX-PLGA (60:40) 30 5200 7500 1.44 64 7
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Statistics

Pharmacokinetic parameters in Experiment 1 were estimated

using noncompartmental analysis using PKSolver, an excel-based

pharmacokinetic software as previously described (37, 38), and

using Phoenix WinNonlin (Certara, Princeton, NJ), the benchmark

software application for pharmacokinetics. Within each analysis

type (PKSolver or WinNonlin) groups were compared using one-

way ANOVA with Welch’s correction. To compare between
Frontiers in Psychiatry 05
analysis types (PKSolver versus WinNonlin), multiple t test

analysis was performed. Oxygen saturation, heart rate, and

antinociception were compared between groups at each time

point in Experiment 2 using two-way ANOVA using Tukey’s

multiple comparison test. Naloxone and nalmefene levels were

compared between groups in serum or brain in Experiment 2

using the Kruskal-Wallis one-way ANOVA.
Results

Experiment 1: Pharmacokinetics of
naloxone nanoparticles compared to
current therapeutics

The pharmacokinetic parameters of opioid antagonists were

explored. After administration of a 10 mg/kg dose, naloxone

showed a rapid reduction in drug plasma levels with a terminal

half-life of 0.37 ± 0.05 hr. Nalmefene, cNLX-NP60:40, and cNLX-

NP100:0 exhibited much longer half-lives relative to naloxone at

12.3 ± 11.1 hr (33-fold increase), 12.67 ± 5.38 hr (34-fold increase),

and 16.90 ± 2.54 hr (46-fold increase), respectively (Figure 2).

However, only cNLX-NP100:0 showed a statistical difference

compared to naloxone (F(3 , 7 . 9 )=4.86 , p<0.05) . Other

pharmacokinetic parameter comparisons are shown in Table 2.

Because cNLX-NP100:0 had the best pharmacokinetic profile, it was

selected as the lead formulation in subsequent experiments.

To ensure that the excel-based pharmacokinetic software

(PKSolver) calculated the appropriate pharmacokinetic

parameters of the reversal agents, data were compared against

Pharsight WinNonlin (Table 2). No differences between the two
FIGURE 2

Pharmacokinetics of opioid antagonist reversal agents. Rats (n=2-6/
group at each time-point) were given IM doses of 10 mg/kg of
naloxone, nalmefene, cNLX-NP60:40, or cNLX-NP100:0 and blood
was taken at various time points as shown. Naloxone and cNLX-
NP60:40 data were previously published (35) and were shown for
comparison. Half-life was calculated using PKSolver. The dotted line
on the Y-axis at 10 ng/mL estimates the amount of naloxone or
nalmefene needed to significantly reduce fentanyl-induced
respiratory depression in rats (as demonstrated in Experiment 2).
Data are represented as Mean ± SD.
TABLE 2 Comparison between PKSolver and WinNonlin pharmacokinetic parameters of opioid antagonist reversal agents from Experiment 1.

Parameter
Naloxone2

(n=3)
Nalmefene
(n=6)

cNLX-
NP60:40

2 (n=3)
cNLX-
NP60:40

3 (n=2)
cNLX-
NP100:0 (n=5)

PKSolver

Terminal t1/2 (hr) 0.37 ± 0.05 12.3 ± 11.1 12.67 ± 5.38 9.56 ± 0.02 16.90 ± 2.54*

Tmax (hr) 0.5 - 1.0 0.5 9 9 1 - 12

Cmax (ng/mL) 1010 ± 250.85 1132 ± 355 147 ± 72.5+ 147 ± 72.5 377 ± 102.91+ #

AUC 0-inf1

(ug/mL*hr) 1.25 ± 0.17 2.1 ± 0.61 3.97 ± 1.69 4.68 ± 1.62 10.73 ± 1.86* + #

MRT 0-inf1 (hr) 1.11 ± 0.21 4.64 ± 2.75 23.51 ± 7.20 19.36 ± 0.37 24.11 ± 5.08* +

Cl/F1 (ml/kg/min) 135.05 ± 17.13 85.5 ± 22.8* 47.17 ± 18.65* 37.81 ± 13.07 15.87 ± 2.45* +

WinNonlin

Terminal t1/2 (hr) 0.37 ± 0.05 12.4 ± 11 N/A 8.85 ± 0.10* 16.5 ± 2.82* #

Tmax (hr) 0.5 - 1.0 0.5 N/A 9 1 - 12

Cmax (ng/mL) 1010 ± 251 1130 ± 355 N/A 147 ± 72.5+ 378 ± 103+

AUC 0-inf1

(ug/mL*hr) 1.2 ± 0.17 2.1 ± 0.6 N/A 4.16 ± 1.44 10.0 ± 2.1* +

MRT 0-inf1 (hr) 1.13 ± 0.2 4.80 ± 2.84 N/A 20.1 ± 0.48* + 26.6 ± 3.40* +

Cl/F1 (ml/kg/min) 140.33 ± 18.17 87.8 ± 23.3 N/A 42.67 ± 14.72* 17.2 ± 3.02* +
1Observed, 2PKSolver data previously published (35), 3Because one animal could not be analyzed with WinNonlin, the same animal was excluded from PKSolver and shown here for comparison
between analysis types only. This group was not used to compare within the PKSolver analysis groups. Data are Mean ± SD, except Tmax, which is expressed as median. *p<0.05 compared to
Naloxone; +p<0.05 compared to Nalmefene; #p<0.05 compared to cNLX-NP60:40 within analysis methods. No differences between PKSolver and WinNonlin analyses were observed.
N/A, Not Available.
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packages were detected, although PKSolver was able to compute the

pharmacokinetic parameters of one animal in the cNLX-NP60:40
group that WinNonlin could not. It was not clear why this

difference occurred. By removing the animal from PKsolver, the

two programs showed identical pharmacokinetic parameters in the

cNLX-NP60:40 formulation.
Experiment 2: Long-term efficacy of opioid
antagonist reversal agents

This study assessed the long-term protective effects of each

antagonist to prevent fentanyl-induced respiratory depression after

repeated exposures. At t=0 hr, naloxone, nalmefene, and cNLX-

NP100:0 all reversed fentanyl-induced effects such as oxygen

saturation (Figure 3A), bradycardia (Figure 3E), and

antinociception (Figure 3I) 15 min after administration. Two-way
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ANOVAs for oxygen saturation, bradycardia, and antinociception

only showed a significant effect on time (F(1.1,16.6)=124.6, p<0.0001;

F(1.8,26.5)=77.7, p<0.0001; F(1.8,26.7), p<0.0001, respectively). At t=6 hr,

all reversal agents continued to completely prevent fentanyl effects

(Figures 3B, F, J), with no significant differences between groups

detected. At 24 hr, only cNLX-NP100:0 was effective at preventing

fentanyl-induced respiratory depression, bradycardia, and

antinociception (Figures 3C, G, K, respectively). Two-way ANOVA

for oxygen saturation showed a significant effect on time (F(1,15)=32.0,

p<0.0001), treatment (F(2,15)=5.5, p<0.05), and interaction (F(2,15)
=7.4, p<0.01). Two-way ANOVA for bradycardia showed

a significant effect on time (F(1,15)=10.2, p<0.01) and interaction

(F(2,15)=10.6, p<0.01). Two-way ANOVA for antinociception showed

a significant effect on time (F(1,15)=190.3, p<0.0001), treatment (F(2,15)
=21.4, p<0.0001), and interaction (F(2,15)=29.8, 0.0001). Rats that had

oxygen saturation levels <90% following the end of study at 24 hr

required a dose of naloxone to prevent hypoxia. All rats from the
B C D

E F G H

I J K L

A

FIGURE 3

Long-lasting efficacy of cNLX-NP100:0 to reverse fentanyl-induced effects. Rats (n=6/group) received 0.1 mg/kg SC fentanyl at t=0, 6, 24, and 48 hr
and 10 mg/kg IM naloxone, nalmefene, or cNLX-NP100:0 at t=17 min only and were monitored for physiological parameters via oximetry for %SaO2

(A-D) and heart rate (E-H) and for antinociception via hotplate using latency to respond to lick hindpaw or jump (I-L). Results demonstrated that all
formulations effectively reversed fentanyl-induced effects 15 minutes after administration (left-most panels) at t=0 hr and all formulations remained
effective at preventing fentanyl-induced effects at t=6 hr (second column of panels from the left). Only cNLX-NP100:0 remained effective at
preventing fentanyl-induced effects at t=24 and t=48 hr compared to naloxone and nalmefene. At t=24 hr, all animals that had previously received
naloxone or nalmefene had oxygen saturation levels <90% post-fentanyl administration and required an additional SC dose of naloxone to reverse
fentanyl-induced effects. Only one animal in the cNLX-NP100:0 group required naloxone. Data are represented as Mean ± SD.*p<0.05 compared to
naloxone; #p<0.05, ##p<0.01, and ###p<0.001 compared to cNLX-NP100:0 using two-way ANOVA.
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naloxone and nalmefene groups (100%) required a dose of naloxone,

while only 1 rat from the cNLX-NP100:0 group (17%) needed a dose.

At 48 hr, only cNLX-NP100:0 was effective at preventing fentanyl-

induced respiratory depression and antinociception (Figures 3D, H,

L). Two-way ANOVA for oxygen saturation showed a significant

effect on time (F(1,15)=90.8, p<0.0001), treatment (F(2,15)=11.3,

p<0.001), and interaction (F(2,15)=10.7, p<0.01). Two-way ANOVA

for bradycardia showed a significant effect on time (F(1,15)=99.7,

p<0.001). Two-way ANOVA for antinociception showed a significant

effect on time (F(1,15)=58.9, p<0.0001). Following the end of the study

at 48 hr, fentanyl, free naloxone, and nalmefene levels were measured

to demonstrate that no differences between fentanyl levels were

observed between groups and to analyze antagonist levels. There

was significantly more (p<0.01) free naloxone in the cNLX-NP100:0
group compared to both naloxone or the nalmefene groups 48 hr

after administration (Figure 4A). Nalmefene levels in serum and

brain were below the limit of detection for all subjects. Fentanyl levels

were not different between groups in serum and brain (Figure 4B).
Experiment 3: Rapid reversal of fentanyl-
induced effects using opioid antagonists

Oxygen saturation (Figure 5A) and heart rate (Figure 5B) were

monitored continuously post-reversal administration (10 mg/kg

normalized concentration, IM) fifteen minutes after a SC fentanyl

(0.1 mg/kg) challenge. Oxygen saturation levels rapidly returned to

baseline levels within 1 min following naloxone (Figure 5C) and

nalmefene (Figure 5D) administration, while the cNLX-NP

formulation required at least 9 min to observe oxygen saturation

levels of >90% or higher (Figure 5E). To determine if mixing free

naloxone with cNLX-NP100:0 could improve antagonist efficacy, a

1:1 ratio of 5 mg/kg naloxone with 5 mg/kg cNLX-NP100:0 (for a

total 10 mg/kg normalized naloxone) was formulated. This 1:1

mixture exhibited an identical recovery from fentanyl-induced

respiratory depression as free naloxone (Figures 5A, F). Heart

rate in the cNLX-NP100:0 group did not return to baseline levels

within the measured time frame (Figure 5B).
Discussion

The key findings of this study were that cNLX-NP100:0: 1)

extended the terminal half-life of naloxone beyond that

of naloxone alone or nalmefene; 2) blocked fentanyl effects

out to 48 hr; and 3) was effective in rapidly reversing fentanyl-

induced respiratory depression only when combined 1:1 with

free naloxone. These data suggest that cNLX-NP100:0 may be a

long-lasting therapeutic to prevent F/FA-induced renarcotization

and, in combination with free naloxone, may be an effective

formulation to rapidly reverse opioid-induced respiratory

depression.
B

A

FIGURE 4

Opioid levels from Experiment 2 in serum and brain of rats 48 hr
after administration. Following the t=48 hr fentanyl dose and
hotplate and oximetry assessment, serum and brain were collected
from all rats from Experiment 2. Naloxone and nalmefene serum
and brain levels were undetected in all groups excect cNLX-NP,
which showed high levels of free naloxone in serum 48 hr after
administration (A). No differences in fentanyl levels were detected in
any groups treated with naloxone, nalmefene, or cNLX-NP (B),
confirming that effects demonstrated by cNLX-NP100:0 from Figure 3
are due to the presence of free naloxone and not due to differences
in fentanyl distribution. Data are represented as Mean ± SD.
**p<0.01 compared to naloxone; ##p<0.01 compared to nalmefene
in serum or brain using the Kruskal-Wallis multiple
comparison ANOVA.
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The pharmacokinetics of naloxone was previously published

(35) and that data were presented here alongside a new formulation

of cNLX-NP100:0 and nalmefene. The half-life of naloxone was

measured at 22 min, which is well within the 15 – 30 min range in

rats reported in the literature (23, 39). The half-life of naloxone was

also reported following a 0.4 mg dose in humans at 64 min (23),

suggesting naloxone has a slightly longer half-life in humans

compared to rats. These differences likely do not impact the

interpretation of the findings in the current study.

The current study also compared the pharmacokinetics of

nalmefene, which was recently approved by the FDA for

treatment of opioid overdose (40). In rats, the terminal half-life of

nalmefene after a 5 mg/kg IV bolus dose was measured as 45 min

(41). However, drug levels in blood were only measured out to

180 min, which may have artificially lowered the apparent half-life if

only the alpha phase (which relates more to the redistribution of

drug rather than the elimination) was measured. Although the

current study measured the half-life of nalmefene after an IM dose,

the half-life was 12.3 hours, which is 16X longer than the previous

report in rats. It was apparent from Figure 2 that nalmefene has a

rapid redistribution phase but very slow elimination, which may not
Frontiers in Psychiatry 08
have been accounted for in the previous report. One study

measured nalmefene half-life at 26 – 35 min in rats, but this was

after nasal administration and was measured only out to 30 min

following small doses between 15 – 45 mg/mL (42). No other reports

on nalmefene pharmacokinetics in rats could be found. In humans,

the terminal half-life of nalmefene around 8 – 11 hr following IV

bolus doses between 2 – 24 mg (43, 44), which matches the rat data

from the current study. These data suggest that nalmefene

pharmacokinetics may be similar between humans and rats and

that the current findings related to nalmefene and cNLX-NP could

be extrapolated to humans.

An effective antidote to treat F/FA overdose and prevent

renarcotization needs to have a half-life that is greatly superior to

that of naloxone. In a previous publication describing the use of

covalently loaded naloxone nanoparticles derived from PLGA

(cNLX-NP60:40), it was shown that the half-life of naloxone could

be extended by approximately 34-fold (35). The current study

demonstrated that by using only rac-lactide instead of a mixture

of rac-lactide and glycolide the half-life of naloxone could be

extended about 33% more. Furthermore, cNLX-NP100:0 had

approximately 10X more free naloxone at 48 hr than cNLX-
B

C D

E F

A

FIGURE 5

Time-course of reversal of fentanyl-induced respiratory depression and bradycardia following antagonist administration in rats. Rats (n=6/group)
were baselined (x-axis label ‘B’) using a collar-based arterial pulse oximeter to obtain oxygen saturation levels (%SaO2) and then given 0.1 mg/kg
fentanyl SC. Fifteen minutes later rats were tested again on the oximeter (x-axis label ‘0’). Immediately afterwards, rats received 10 mg/kg IM of
naloxone, nalmefene, or cNLX-NP100:0 and % SaO2 (A) and heart rate measured (B), represented as Mean ± SD. Results demonstrated that naloxone
(C), nalmefene (D), but not cNLX-NP (E), rapidly reversed fentanyl-induced respiratory depression. To improve recovery rate for cNLX-NP100:0, two
rats (n=6) from each group were randomly selected and a week later the experiment was repeated using 5 mg/kg IM naloxone with 5 mg/kg IM
cNLX-NP100:0 as the reversal agent. These data demonstrated that a 1:1 Naloxone and cNLX-NP100:0 formulation rapidly reversed fentanyl-induced
respiratory depression (F) and that cNLX-NP100:0 does not interfere with efficacy of free naloxone.
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NP60:40, suggesting that the rac-lactide formulation could perform

even beyond 48 hr. These data are in accordance with the results of

similar studies examining the biodegradation of various PLA and

PLGA polymers. It has been well documented in the literature that

PLA exhibits slow rates of hydrolysis while the hydrolysis of PLGA

copolymers is considerably faster (45). In fact, increasing the

glycolic acid content is a common strategy to increase the

degradation rate of a polymer (46). This phenomenon can be best

explained using a simple steric argument. The methyl-bearing

stereocenter of lactic acid provides a more sterically crowded

environment around the ester carbonyls in PLA thus hindering

nucleophilic attack and subsequent hydrolysis (47). In the present

study, this translates to a slower, sustained release of naloxone and a

longer circulatory half-life. In contrast, glycolic acid ester groups do

not possess any substitution on the adjacent a-carbon leaving them

more readily accessible to nucleophilic attack and more prone to

hydrolysis resulting in a shorter half-life as observed for cNLX-

NP60:40. However, because the two naloxone nanoparticles (cNLX-

NP100:0 and cNLX-NP60:40) were studied at separate times in

different cohort of rats, although under the same conditions,

caution should be applied when interpreting the results.

Although nalmefene and the cNLX-NP100:0 have similar half-

lives, nalmefene was only effective out to 6 hr, while cNLX-NP100:0
reduced fentanyl-induced effects out to 48 hr. The cNLX-NP60:40
formulation previously performed similarly (35). Based on these

results, a hypothetical effective threshold of antagonist needed to

prevent fentanyl-induced respiratory depression of 10 ng/mL was

added to Figure 2 y-axis. Confirming that fentanyl levels were

identical between groups at 48 hr, and that naloxone levels were

only detected in the cNLX-NP100:0 group, demonstrated that

efficacy of cNLX-NP100:0 was related to sustained release of

naloxone and not due to any apparent differences in fentanyl

levels. Although fentanyl has been observed to induce tolerance

(35), post-fentanyl oxygen saturation data in the naloxone and

nalmefene groups at t=0 hr and t=48 hr were similar and suggest

that tolerance did not play a major role in the findings of this study.

Combined, these data suggest that a long-acting nanoparticle-based

formulation can outperform both naloxone and nalmefene,

continuing to protect against F/FA-induced respiratory depressive

effects beyond 6 hr.

PKSolver was demonstrated to produce pharmacokinetic

parameters that were identical to the industry standard software

package Phoenix WinNonlin, validating the use of this software

package in the current study as well as previous studies (35, 38, 48).

The original developers also validated this software against

WinNonlin and showed that no differences were apparent (37).

PKSolver is an add-on toMicrosoft Excel which has an easier-to-use

interface than WinNonlin. Further, Microsoft Excel is a software

package readily available to most researchers whereas WinNonlin

has expensive licensing restrictions that make it difficult to access.

The downside to PKSolver is that the software package is no longer

maintained, cannot be used in versions of Microsoft Excel beyond

2010, is not available on the Mac OS platform, and may require the

use of virtualization within newer operating systems.
Frontiers in Psychiatry 09
An important feature of an opioid antidote is the ability to

rapidly reverse (i.e., within 1 min) an overdose. Although cNLX-

NP100:0 was able to reverse fentanyl-induced respiratory depression

15 minutes after administration as measured in the current study, it

was unable to rapidly reverse fentanyl effects within minutes to the

same degree as naloxone and nalmefene. This was likely because no

free naloxone was available immediately after administration.

However, a mixture of 1:1 free naloxone with cNLX-NP100:0
demonstrated rapid reversal of fentanyl-induced respiratory

depression, indicating that combining free antagonist with a

nanoparticle formulation can provide immediate and long-lasting

effects, while preserving the benefits of both therapeutics.

Bradycardia was rapidly reversed in all groups in Experiment 3,

except the cNLX-NP100:0 alone group which failed to return to

baseline levels within 10 minutes assessment period. This is

surprising given that bradycardia was reversed within 15 minutes

in Experiment 2. A potential difference between these two

experiments is that rats were handled immediately prior to

oximetry testing in Experiment 2, which may have artificially

increased heart rate levels, while rats in Experiment 3 were

untouched during measurement. Further testing may be needed

to better understand the discrepancies between these experiments.

In this report, the pharmacokinetics and immediate and long-

lasting efficacy of cNLX-NP formulations were compared against

current opioid antagonists, naloxone and nalmefene. The results

demonstrated that a formulation of cNLX-NP that contained only

rac-lactide (cNLX-NP100:0) showed a better pharmacokinetic profile

than a formulation containing both rac-lactide and glycolide

(cNLX-NP60:40), suggesting that changes to the nanoparticle

formulation can significantly alter the extent of free naloxone

distribution. Mixture of free naloxone and cNLX-NP100:0 could

rapidly reverse fentanyl-induced respiratory depression and cNLX-

NP100:0 was effective out to 48 hr. Together, the data support cNLX-

NP100:0 as a lead candidate opioid antagonist formulation to treat

overdose and prevent renarcotization following exposure to

fentanyl and fentanyl analogs in humans. Finally, this technology

could be used to develop other chemical countermeasures for

treating exposure to other chemical threats, such as toxins, nerve

agents, or other chemical agents.
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