
Frontiers in Psychiatry

OPEN ACCESS

EDITED BY

Lang Chen,
Santa Clara University, United States

REVIEWED BY

Mariusz Stanisław Wiglusz,
Medical University of Gdansk, Poland
Huili Jiang,
Beijing University of Chinese Medicine, China

*CORRESPONDENCE

Chao Han

hanchao2028@126.com

RECEIVED 25 December 2023
ACCEPTED 15 July 2024

PUBLISHED 08 August 2024

CITATION

Han B, Chang Y, Tan R-r and Han C (2024)
Evaluating deep learning techniques for
identifying tongue features in subthreshold
depression: a prospective observational study.
Front. Psychiatry 15:1361177.
doi: 10.3389/fpsyt.2024.1361177

COPYRIGHT

© 2024 Han, Chang, Tan and Han. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 08 August 2024

DOI 10.3389/fpsyt.2024.1361177
Evaluating deep learning
techniques for identifying
tongue features in subthreshold
depression: a prospective
observational study
Bo Han1, Yue Chang2, Rui-rui Tan3 and Chao Han4*

1Department of Rehabilitation, Daqing Longnan Hospital, Daqing, China, 2Department of Pharmacy,
Baoan Central Hospital of Shenzhen, Shenzhen, China, 3Changchun University of Chinese Medicine,
Changchun, China, 4Department of Acupuncture, Shenzhen Bao’an Authentic Traditional Chinese
Medicine (TCM) Therapy Hospital, Shenzhen, China
Objective: This study aims to evaluate the potential of using tongue image

features as non-invasive biomarkers for diagnosing subthreshold depression and

to assess the correlation between these features and acupuncture treatment

outcomes using advanced deep learning models.

Methods: We employed five advanced deep learning models—DenseNet169,

MobileNetV3Small, SEResNet101, SqueezeNet, and VGG19_bn—to analyze

tongue image features in individuals with subthreshold depression. These

models were assessed based on accuracy, precision, recall, and F1 score.

Additionally, we investigated the relationship between the best-performing

model’s predictions and the success of acupuncture treatment using Pearson’s

correlation coefficient.

Results: Among the models, SEResNet101 emerged as the most effective,

achieving an impressive 98.5% accuracy and an F1 score of 0.97. A significant

positive correlation was found between its predictions and the alleviation of

depressive symptoms following acupuncture (Pearson’s correlation coefficient =

0.72, p<0.001).

Conclusion: The findings suggest that the SEResNet101 model is highly accurate

and reliable for identifying tongue image features in subthreshold depression. It

also appears promising for assessing the impact of acupuncture treatment. This

study contributes novel insights and approaches to the auxiliary diagnosis and

treatment evaluation of subthreshold depression.
KEYWORDS

subthreshold depression, tongue image features, deep learning, SEResNet101,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1361177/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1361177/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1361177/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1361177/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1361177/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2024.1361177&domain=pdf&date_stamp=2024-08-08
mailto:hanchao2028@126.com
https://doi.org/10.3389/fpsyt.2024.1361177
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2024.1361177
https://www.frontiersin.org/journals/psychiatry


Han et al. 10.3389/fpsyt.2024.1361177
1 Introduction

An important innovation of this study is the application of deep

learning techniques to assist in the diagnosis of depression,

particularly in handling non-invasive biomarkers. Our findings

highlight the value of tongue feature analysis in the diagnosis of

mental disorders, providing new perspectives and methods for the

auxiliary diagnosis and treatment efficacy assessment of

subthreshold depression and laying a solid foundation for

further research.

Despite the promising results of this study, the implementation

of deep learning models in actual clinical settings still faces technical

and operational challenges. Key factors that need to be addressed

include the integration of the model into existing clinical workflows,

training of medical staff, and secure management of patient privacy

data. Ideally, researchers would use the model to replicate the

diagnostic process as closely as possible to determine diagnostic

status. However, this is not always feasible due to resource

constraints, including the need for trained personnel. Future

studies should consider these practical issues and design models

that are easier to apply in clinical environments.

Currently, research on the identification of tongue image

features has made some progress, with multiple studies

confirming their association with certain health conditions.

However, their application in the diagnosis of depression is still

in its infancy. Traditional image processing techniques, limited by

high computational complexity and lengthy analysis time, cannot

fully meet the clinical needs. The emergence of deep learning

techniques has brought a breakthrough in medical image analysis

(1, 2). Particularly in image recognition and classification tasks,

deep learning algorithms have demonstrated superior performance

beyond traditional methods. Despite successful applications in

other medical imaging domains, research on their usage in

identifying tongue image features is relatively scarce (3, 4).

Deep learning algorithms, especially Convolutional Neural

Networks (CNN), have become a research hotspot in image

recognition due to their powerful feature extraction capabilities

(5–7). These five models, DenseNet169, MobileNetV3Small,

SEResNet101, SqueezeNet, and VGG19_bn, have shown excellent

recognition and classification abilities in various fields with their

unique network architectures and optimization algorithms. By

learning a large amount of image data, they can capture subtle

changes in tongue images that are difficult to achieve with

traditional methods (8). Therefore, exploring the application of

these deep learning models for identifying tongue image features is

of great significance in improving the accuracy and efficiency of

depression diagnosis (3, 4).

However, applying deep learning techniques to the field of

auxiliary diagnosis of depression faces challenges such as data

diversity, model generalization capability, and interpretability (9,

10). The diverse tongue image features of depression patients pose a

key research question of ensuring the model’s recognition

performance across different individuals (11–13). Furthermore,

the medical field demands high interpretability from models,
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necessitating not only excellent performance but also providing

explainable evidence in their decision-making process (14, 15). This

study aims to fill the current research gap and address some of these

challenges (16).

The objective of this study is to compare and analyze the

performance of five different deep learning models in identifying

tongue image features of subthreshold depressed patients,

determine the optimal model, and further explore the association

between the predictive scores of the model and the effectiveness of

acupuncture treatment. We chose the SEResNet101 model, which

incorporates attention mechanisms and deep residual networks,

achieving an impressive recognition accuracy of 98.5% and an F1

score of 0.97. Moreover, it exhibited a significant positive

correlation of 0.72 with the effectiveness of acupuncture treatment

in practical applications. This finding not only provides a new tool

for the auxiliary diagnosis of subthreshold depression but also offers

an objective evaluation method for non-pharmacological

treatments such as acupuncture. The results of this study are

expected to drive the development of personalized medicine,

providing support for precision healthcare, while also opening up

new avenues for the application of deep learning techniques in the

medical field.
2 Materials and methods

2.1 Ethical statement

This study was conducted in accordance with the ethical

standards of the Helsinki Declaration. The study was approved by

the ethics committee of the Shenzhen Bao’an Authentic TCM

Therapy Hospital. Written informed consent was obtained from

all individual participants included in the study.
2.2 Study design and participants

Data Collection: Two groups of subjects were recruited from the

acupuncture outpatient department of Shenzhen Bao’an Authentic

TCM Therapy Hospital in Shenzhen: 100 healthy individuals and

120 patients diagnosed with subthreshold depression (17). Before

the experiment, patients underwent detailed medical history

interviews and physical examinations to ensure they met the

selection criteria for the study. A comparison of general clinical

data between the two groups is presented in Table 1.
2.3 Diagnosis criteria

Criteria for Subthreshold Depression Diagnosis: Subthreshold

depression refers to patients showing significant depressive

symptoms in clinical settings but not reaching the severity level of

a formal diagnosis of depression. In this study, the criteria for

diagnosing subthreshold depression was based on internationally
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recognized criteria for depressive symptoms (DSM-5). Generally,

the main diagnostic criteria for subthreshold depression include the

following points: the presence of depressive mood, such as feeling

down, loss of interest, or decreased sense of happiness; relatively

short duration of depressive symptoms, typically less than 2 weeks;

depressive symptoms having some impact on daily life and social

functioning for the individual, but not severe enough to require

antidepressant treatment.

Inclusion Criteria for Subthreshold Depression: To ensure the

accuracy and consistency of the study, the researchers include

subthreshold depression patients who meet the following criteria:

age range, for example, patients between 18 and 65 years old;

meeting the criteria for a subthreshold depression diagnosis as

previously mentioned; no acupuncture treatment received:

participants have not received any acupuncture treatment before

the study to avoid treatment influences on the research results

(18–20).

Threshold Exclusion Criteria for Depression: In order to

eliminate potential confounding factors that could influence the

research results, the researchers exclude subthreshold depressed

patients who are not suitable for participation in the study based on

the following criteria: severe physical illness - individuals with

significant organic diseases or other severe physical illnesses were

excluded to avoid interference with the research results caused by

these illnesses; other psychiatric disorders - individuals with other

mental disorders such as schizophrenia or bipolar disorder were

excluded; non-depressive symptoms - individuals whose symptoms

do not meet the diagnostic criteria for subthreshold depression were

excluded; lack of informed consent - individuals must be willing to

participate in the study and provide informed consent (21).

Inclusion Criteria for the Control Group: In order to compare

the differences between subthreshold depressed patients and the

healthy population, the researchers include a group of healthy

individuals as the control group. The inclusion criteria for the

healthy population typically include the following points: age range

- for example, between 18 and 65 years old; absence of depressive

symptoms - ensuring that the healthy population does not have

symptoms of depression or any other psychiatric disorders; no prior

acupuncture treatment - the healthy population has not received

acupuncture treatment prior to the study (22, 23).
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2.4 Depression scales

Prior to acupuncture treatment, standardized depression scales

such as the Hamilton Depression Rating Scale (HDRS) were used to

assess the severity of depression in patients. The total score on the

HDRS is calculated by summing up the scores of each item, typically

ranging from 0 to 52 points. The interpretation of the total score is

as follows: 0-7 points: no depression or within the normal range; 8-

16 points: mild depression; 17-23 points: moderate depression; 24

points and above: severe depression (Table 2) (24, 25).
2.5 Grouping and treatment methods for
subthreshold depressed patients

The 120 enrolled subthreshold depressed patients were

randomly divided into two groups using a random number table

method: the control group and the acupuncture treatment group,

with 60 patients in each group. For the acupuncture treatment

group, acupuncture points were selected based on previous research

conducted by the team. The chosen acupuncture points were Baihui

(GV20), Yintang (GV29), Hegu (LI4), and Taichong (LR3). The

acupuncture needles used were stainless steel needles with a

diameter of j0.30mm and a length of 25mm (1 inch), provided

by Suzhou Huatuo Acupuncture Instrument Co., Ltd. The

procedure involved the patients lying in a supine position,

disinfecting the selected acupuncture points, and quickly inserting

the needles into Baihui, Yintang, Hegu, and Taichong vertically.

After removing the guide tube, the needle was inserted diagonally

backward for Baihui and towards the tip of the nose for Yintang, at

an angle of 30 degrees. The depth of insertion for both points was

0.5 inches, with the needles rotated gently three times. The

sensation of localized soreness and distension was used as an

indicator. The needles were inserted directly into Hegu and

Taichong to a depth of 0.5 inches, with the same gentle rotations.

The needles were retained for 30 minutes during each session, with

two interventions per week for a total of four weeks.

In the control group, the treatment frequency, treatment cycle,

and acupuncture points selection were the same as those in the

acupuncture group. PSD acupuncture needles and retractable blunt

needles were chosen for the procedure. The patients were

positioned in a supine position, and the acupuncture points were

routinely disinfected. The blunt needles were inserted, with the

needle head exposed outside the skin, and lightly fixed by the

practitioner’s right hand. The index finger was then used to tap the

needle end, mimicking the insertion of a needle. Since the needle
TABLE 2 The scores of two groups on the HDRS factors.

Gene
Healthy (n=100) Depression

(n=120)
P

HDRS scores 3.60 ± 1.72 13.37 ± 4.00 < 0.001
fronti
HDRS, Hamilton Depression Rating Scale.
TABLE 1 Comparative analysis of general clinical data.

Clinical data Healthy
(n=100)

Depression
(n=120)

P

Gender 0.7851

Male 45 51

Female 55 69

Age (Mean ± Std) 38.73 ± 7.80 37.53 ± 9.69 0.3195

Duration (Mean
± Std)

N/A 9.60 ± 0.93 N/A

Weight (Mean
± Std)

62.35 ± 14.43 62.31 ± 14.38 0.9837
N/A, Not Applicable.
ersin.org

https://doi.org/10.3389/fpsyt.2024.1361177
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Han et al. 10.3389/fpsyt.2024.1361177
head was blunt and the needle end was hollow, the blunt needle

would not penetrate the skin. The retention time, removal of the

needle, and treatment course were the same as those in the

acupuncture group.
2.6 Blinding

Due to the nature of acupuncture treatment, blinding of the

acupuncturists during the treatment process was not feasible.

However, blinding was implemented for the study participants

and other researchers, including data analysts and outcome

assessors. To ensure blinding, participants were prohibited from

communicating with each other during the treatment period, and

treatment was conducted using isolated treatment beds to prevent

patients from witnessing others’ treatment. In subsequent data

analysis, the control group and acupuncture treatment group

were defined as Group A and Group B, respectively.
2.7 Image acquisition and processing

In this study, researchers utilized professional high-resolution

digital cameras to capture tongue images (26–28). During the image

acquisition process, emphasis was placed on oral hygiene, complete

exposure of the tongue, standardized tongue color, and multi-angle

capturing (29). After the acquisition, image preprocessing was

conducted to ensure image quality and standardization, which

included denoising, enhancement, and size adjustment (30–32).

Preprocessing of the collected tongue images encompassed denoising,

image enhancement, and size adjustment operations to ensure the

accuracy and stability of subsequent neural network models (33).
2.8 Data evaluation and selection

Expert Evaluation and Classification: To ensure the quality and

accuracy of tongue images, the research team invited ten traditional

Chinese medicine experts with normal vision and color perception

to participate in the process of image evaluation, screening, and

classification (34, 35). These experts possessed extensive clinical

experience and specialized knowledge in traditional Chinese

medicine diagnosis and tongue examination (36). Initially, the

researchers provided the experts with the collected tongue images,

along with corresponding medical records, for a comprehensive

understanding of each subject. Subsequently, the experts

independently conducted image evaluation and classification (37).

They carefully observed and analyzed acupuncture points and

tongue images in line with traditional Chinese medicine

diagnostic criteria and experience, aiming to identify

characteristics of subthreshold depression patients and determine

if they met inclusion criteria (38–40).
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In cases of inconsistent diagnostic results during the evaluation

process, the research team organized expert meetings to facilitate

discussions and reach a consensus (41, 42). Images with

inconclusive diagnoses were excluded from the dataset to ensure

their quality and accuracy (43, 44). Finally, based on the evaluations

of the experts, the research team constructed a dataset suitable for

training and testing, containing tongue images and the consistent

diagnostic results provided by the experts.

Dataset Construction: A dataset suitable for training and testing

was constructed based on the evaluations of traditional Chinese

medicine experts, including tongue images and corresponding

labels (45).

Dataset Split: The constructed dataset was randomly divided

into training, validation, and testing sets with an 8:1:1 ratio,

facilitating model training, fine-tuning, and evaluation (46–48).
2.9 Five deep learning algorithm models

DenseNet169 Model: DenseNet (Densely Connected

Convolutional Networks) is a convolutional network with dense

connections (34, 49). In this network, each layer is directly

connected to all previous layers, allowing for feature reuse and

improved efficiency with fewer parameters (50–52). DenseNet169 is

one variant with 169 layers deep. Compared to traditional

convolutional networks, DenseNet reduces overfitting risks and

model complexity through feature reuse (53–55). This model is

particularly suitable for image recognition tasks, such as extracting

tongue image features in medical image analysis (45, 56).

MobileNetV3Small Model: MobileNetV3 is a lightweight deep

learning model optimized for mobile and embedded vision

applications (57, 58). It leverages hardware-aware network

structure search (NAS) and the NetAdapt algorithm to optimize

network architecture, significantly reducing computational

requirements and model size while maintaining accuracy.

MobileNetV3Small is a smaller, more efficient version of

MobileNetV3 achieved through pruning and other optimization

techniques, reducing parameter count and computational costs

(59). This model is suitable for real-time image processing tasks

in resource-constrained environments, such as tongue image

analysis on mobile devices (60).

SEResNet101 Model: SENet (Squeeze-and-Excitation

Networks) introduces a new structural unit called the SE block,

which enhances network representational power by explicitly

modeling interdependencies among channels. SEResNet101

results from integrating SE blocks into the ResNet101 network.

ResNet101 is a residual network with 101 layers, addressing the

gradient vanishing problem in deep networks through residual

connections (61–63). In SEResNet101, the SE block further allows

dynamic recalibration of inter-channel feature responses,

enhancing feature extraction, which is particularly useful in

analyzing tongue image features with subtle differences.
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SqueezeNet Model: SqueezeNet is a highly computationally

efficient CNN. It reduces model size and computational costs by

minimizing the number of parameters while maintaining

comparable accuracy to larger models (64). SqueezeNet employs

building blocks called “Fire” modules, which consist of a squeeze

layer and an expanded layer (64, 65). This model is particularly

efficient in image processing, especially in cases with limited

computational resources, making it suitable for extracting tongue

image features on embedded systems or mobile devices.

VGG19_bn Model: VGG19_bn is a variant of the VGG19

model, including batch normalization (Batch Normalization) (66).

Batch normalization accelerates the training process and improves

the stability and performance of the model (67–69). VGG19_bn

consists of a 19-layer deep convolutional network that follows a

strategy of repetitively using small 3×3 convolutional kernels.

Compared to the original VGG19, VGG19_bn improves

robustness to variations in input data distribution by adding

batch normalization after each convolutional layer (66). This

model is suitable for large-scale image recognition tasks and, due

to its depth and performance, particularly applicable to complex

image features, such as extracting tongue image features.
2.10 Model evaluation and results analysis

Model Training and Testing: Five algorithm models were

trained using the training set and tested on the test set to obtain

the classification results of tongue images (70).

Evaluation metrics including accuracy, recall, precision, and F1-

score were used to evaluate the performance of the five algorithm

models in the multi-class classification of tongue images (71). Based

on the results of the evaluation metrics, a comprehensive analysis

and comparison of the performance of the five algorithm models

were conducted to explore the potential application of deep learning

techniques in the treatment of depressed patients under the

acupuncture threshold (72, 73).
2.11 Statistical analysis

Descriptive Statistical Analysis: Descriptive statistics, such as

mean, standard deviation, median, maximum, and minimum

values, were used to understand the basic characteristics and

distribution of the collected data.

Correlation Analysis: The correlation between acupoint infrared

images, tongue images, and the depression questionnaire scores of

patients was analyzed by calculating the correlation coefficients (e.g.,

Pearson correlation coefficient or Spearman rank correlation

coefficient) to investigate the existence of correlations (74–76).

Random Group Analysis: Patients were divided into different

acupuncture treatment groups and control groups using random group

allocation. Differences between different groups, such as the difference in

depression questionnaire scores before and after acupuncture, were

compared using t-tests or analysis of variance (ANOVA) (77, 78).
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Performance Evaluation of Deep Learning Models: The

performance of the constructed five algorithm models was

evaluated by calculating metrics such as accuracy, recall,

precision, and F1-score to assess the classification performance of

the models (79–81).

ROC Curve Analysis: Receiver Operating Characteristic (ROC)

curves were plotted, and the area under the curve (AUC) was

calculated to evaluate the classification accuracy and sensitivity of

the five algorithm models in tongue image classification (82–84).

Classifier Comparison: The performance of different

classification algorithms (e.g., SVM, KNN) was compared with

the five algorithm models in image classification tasks to assess

their effectiveness in diagnosing depressed patients under the

threshold (85, 86).

Cross-Validation: Cross-validation was used to verify the

stability and generalization ability of the five algorithm models by

dividing the dataset into multiple subsets for multiple rounds of

training and testing (87, 88).
3 Results

3.1 Performance analysis of the
Densenet169 model in recognizing tongue
image features of subthreshold
depressed patients

The Densenet169 model has demonstrated excellent performance

in recognizing tongue image features of subthreshold depressed

patients. As shown in Figure 1, the classification accuracy on the

test set reached 93.2%, indicating a high recognition ability. Among

the samples predicted as a positive class, the Densenet169 model

correctly identified 88% of the actual positive samples (precision),

while among the actual positive samples, the model accurately

predicted 84% of the positive samples (recall). The harmonic mean

of these two metrics, the F1 score, was 0.86, indicating a good balance

between precision and sensitivity. This performance metric is

particularly important as it ensures that the model neither misses

genuine cases nor reports excessive misdiagnoses.
3.2 Performance analysis of the
MobileNetV3Small model in recognizing
tongue image features in subthreshold
depressed patients

Despite being a lightweight model designed to operate in resource-

constrained environments, MobileNetV3Small performed

satisfactorily in the recognition of tongue image features. As

depicted in Figure 2, the model achieved an accuracy of 94.1% on

the test dataset, demonstrating its practicality in tongue image

analysis. The precision and recall of the model were 0.88 and 0.90,

respectively, with an F1 score of 0.89, indicating its effectiveness in

ensuring diagnostic accuracy while maintaining simplicity.
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3.3 Performance analysis of the
SEResNet101 model in recognizing tongue
image features of subthreshold
depressed patients

The SEResNet101 model exhibited the highest level of

performance across all tested metrics, making it the standout in

this study. As shown in Figure 3, the SEResNet101 model achieved a

classification accuracy of 98.5% on the test set, with precision and

recall rates of 0.96 and 0.98, respectively, and an F1 score of 0.97.

Furthermore, the model demonstrated exceptional ability in

handling tongue images with rich details, accurately classifying

them by detecting and utilizing subtle feature variations. This is

especially important for complex or blurry images.
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3.4 Performance analysis of the
SqueezeNet model in recognizing tongue
image features of subthreshold
depressed patients

The SqueezeNet model demonstrates a considerable performance

in the recognition task while maintaining relatively low

computational cost. As shown in Figure 4, the SqueezeNet model

achieves an accuracy of 92.3% on the test set, with a precision of 0.88,

a recall of 0.90, and an F1 score of 0.89. Although these values are

slightly lower compared to other models, it is important to consider

its significantly lower parameter count and computational

requirements. SqueezeNet exhibits clear advantages in efficiently

processing and analyzing a large number of tongue images.
A B

D E F

G IH

C

FIGURE 1

The performance of the DenseNet169 model. (A) Training Accuracy; (B) Confusion Matrix; (C) F1 Scores; (D) Learning Rate; (E) Training Loss; (F)
Mean Average Precision (mAP); (G) Precision-Recall Curve; (H) ROC Curve; (I) Specificity for Each Class.
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3.5 Performance analysis of the VGG19_bn
model in recognizing tongue image
features of subthreshold
depressed patients

As shown in Figure 5, the VGG19_bn model achieves the

highest accuracy of 92.4% on the test set, thanks to its deep

network architecture and batch normalization. However, it should

be noted that this model exhibits a precision of 0.62, a recall of 0.66,

and an F1 score of 0.64. While the VGG19_bn model excels in

extracting deep-level image features, making it suitable for complex

image recognition tasks, its computational efficiency falls behind

and its accuracy is slightly lower.
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3.6 A comparative study on the efficacy of
five algorithm models in identifying tongue
image features of subthreshold
depressed patients

After comparing the five models mentioned above, it can be

concluded that the SEResNet101 model outperforms others in all

evaluation metrics, demonstrating its exceptional performance in

identifying tongue image features (Figure 6). Further analysis

reveals that the SEResNet101 model is capable of capturing finer

details in tongue images, possibly due to its attention mechanism

and deep residual network architecture, enabling it to effectively

learn important features within the images.
A B

D E F

G IH

C

FIGURE 2

The performance of the MobileNetV3Small model. (A) Training Accuracy; (B) Confusion Matrix; (C) F1 Scores; (D) Learning Rate; (E) Training Loss; (F)
Mean Average Precision (mAP); (G) Precision-Recall Curve; (H) ROC Curve; (I) Specificity for Each Class.
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3.7 Association analysis between the
optimal model SEResNet101 and the
efficacy of acupuncture treatment for
subthreshold depressed patients

Regarding the association analysis between the SEResNet101 model

and the efficacy of acupuncture treatment, we discovered a significant

positive correlation between the predicted tongue image feature scores of

the model and the degree of improvement in depressive symptoms after

treatment (Figure 7, Pearson correlation coefficient = 0.72, p<0.001). This

result indicates that the predicted scores of the model can serve as a

robust quantitative indicator, not only for identifying tongue image

features of subthreshold depressed patients but also for predicting the

effectiveness of acupuncture treatment.
Frontiers in Psychiatry 08
3.8 Alignment of the optimal model
SEResNet101 with SCID and MINI in
diagnosing depression

The study aimed to assess the consistency between the optimal

model SEResNet101 and the SCID and MINI diagnostic tools for

identifying subclinical depression. A total of 120 individuals with

subclinical depression (51 males, 69 females) participated in the

study, wherein SEResNet101, SCID, and MINI diagnostic criteria

were used to diagnose subclinical depression. By calculating

Cohen’s Kappa coefficients pairwise, the study evaluated the level

of agreement among the three diagnostic methods. The results

indicated that Kappa values exceeding 0.75 demonstrate excellent

consistency in diagnosing depression (Table 3).
A B

D E F

G IH

C

FIGURE 3

The performance of the SEResNet101 model. (A) Training Accuracy; (B) Confusion Matrix; (C) F1 Scores; (D) Learning Rate; (E) Training Loss; (F)
Mean Average Precision (mAP); (G) Precision-Recall Curve; (H) ROC Curve; (I) Specificity for Each Class.
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4 Discussion

The primary contribution of this study is the utilization of

advanced deep learning models, particularly SEResNet101, to

identify subtle changes in tongue images of patients with

depression (89). This study not only demonstrates high accuracy

in classification performance but also establishes a significant

positive correlation between prediction scores and the

effectiveness of acupuncture treatment through statistical analysis

(90–92). This finding is important as it provides clinicians with a

non-invasive diagnostic tool to aid in early identification and

monitoring of the treatment process (93, 94).

Previous literature on using tongue image features for disease

diagnosis remains limited and primarily focuses on rule-based

image processing techniques (95). In comparison to these studies,
Frontiers in Psychiatry 09
our work employs deep learning methods, specifically in analyzing

tongue images, which can learn more complex data representations

and improve diagnostic accuracy. The focus on subthreshold

depression stems from the necessity to address the gaps in early

intervention diagnostic tools. Therefore, we opted to study

subthreshold depression instead of MDE and MDD, as

investigating and treating subthreshold depression can be

advantageous in preventing the onset of MDD and MDE.

Furthermore, this study highlights the correlation between the

model’s prediction scores and treatment effectiveness, a point

scarcely reported in existing research.

The SEResNet101 model stands out among other models due to

its high performance. Analysis demonstrates its effectiveness in

extracting and learning crucial features from tongue images,

possibly attributed to its unique residual connections and
A B

D E F

G IH

C

FIGURE 4

The performance of the SqueezeNet model. (A) Training Accuracy; (B) Confusion Matrix; (C) F1 Scores; (D) Learning Rate; (E) Training Loss;
(F) Mean Average Precision (mAP); (G) Precision-Recall Curve; (H) ROC Curve; (I) Specificity for Each Class.
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attention mechanisms that render it more sensitive in processing

image features (96). Additionally, this model exhibits good

generalizability across various tongue manifestations, which is

particularly important for handling diverse data in a clinical

setting (97, 98).

Subthreshold depression is defined as the presence of two or

more depressive symptoms for at least two weeks, but not meeting

the diagnostic criteria for dysthymia and/or major depressive

disorder (MDD). Patients with subthreshold depression are at a

higher risk of developing MDD and major depressive episodes

(MDE), especially in old age. A family history of psychiatric

disorders and chronic illnesses are two factors that can lead to the

progression of subthreshold depression to MDD (99). Subthreshold

depression represents a less severe but often undiagnosed form of

depression, which can significantly impact the quality of life (100).

Given the frequency with which subthreshold depression escalates
Frontiers in Psychiatry 10
to major depression, recognizing and acknowledging the

importance of subthreshold depression in research, clinical

practice, and policy-making could contribute to the development

and appl icat ion of ear ly detect ion , prevent ion , and

intervention strategies.

An important innovation of this study is the application of deep

learning techniques to assist in the diagnosis of depression,

particularly in handling non-invasive biomarkers. Our findings

highlight the value of tongue feature analysis in the diagnosis of

mental disorders, providing new perspectives and methods for the

auxiliary diagnosis and treatment efficacy assessment of

subthreshold depression, and laying a solid foundation for

further research.

Despite the promising results of this study, the implementation

of deep learning models in actual clinical settings still faces technical

and operational challenges. Key factors that need to be addressed
A B

D E F

G IH

C

FIGURE 5

The performance of the Vgg19_ bn model. (A) Training Accuracy; (B) Confusion Matrix; (C) F1 Scores; (D) Learning Rate; (E) Training Loss;
(F) Mean Average Precision (mAP); (G) Precision-Recall Curve; (H) ROC Curve; (I) Specificity for Each Class.
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FIGURE 7

The correlation analysis between predictions of the SEResNet101 model and the efficacy of acupuncture treatment. The figure demonstrates the
relationship between the prediction scores provided by the SEResNet101 model based on tongue image features of subthreshold depressed patients
and the improvement of depressive symptoms after acupuncture treatment. By conducting a Pearson correlation coefficient analysis, we found a
significant positive correlation between the two variables (Pearson correlation coefficient = 0.72), which is highly statistically significant (p<0.001).
This chart reflects a strong alignment of the model’s prediction scores with the clinical treatment outcomes, supporting the potential utilization of
the SEResNet101 model as an auxiliary tool for assessing the efficacy of acupuncture treatment. Each data point represents an individual patient
case, where the x-axis represents the model’s prediction scores and the y-axis signifies the degree of improvement in depressive symptoms after
acupuncture treatment. The linear trendline depicts a positive correlation trend between the two variables, and the shaded area indicates a 95%
confidence interval, further emphasizing the robust linear relationship between the prediction scores and the actual treatment outcomes.
A

B

D

C

FIGURE 6

A comparison of performance among Five Algorithm models. (A) Accuracy comparison of different models (comparing the accuracy differences of
DenseNet169, MobileNetV3Small, SEResNet101, SqueezeNet, and VGG19_bn models across different training epochs); (B) Loss comparison of
different models (the lower the numerical value, the better the performance for each model across different training epochs); (C) Performance
comparison of different models by category (comparing the performance differences of different models in distinguishing subthreshold depressed
patients’ tongue images from tongue images of normal healthy individuals, with SEResNet101 performing the best); (D) Comparison of F1 scores
among different models (comparing the F1 scores of different models, where F1 score is a measure of test accuracy that combines precision and
recall, with SEResNet101 achieving the highest F1 score of 0.98).
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include the integration of the model into existing clinical workflows,

training of medical staff, and secure management of patient privacy

data. Ideally, researchers would use the model to replicate the

diagnostic process as closely as possible to determine diagnostic

status. However, this is not always feasible due to resource

constraints, including the need for trained personnel. Future

studies should consider these practical issues and design models

that are easier to apply in clinical environments.

A major limitation of this study is the relatively small sample

size, which may affect the evaluation of the model’s generalization

ability. Additionally, the study did not cover all possible tongue

variations, which may limit the model’s applicability to a broader

population of depressed individuals. Future research needs to

develop models that calibrate the weights of MDD classification

according to different reference standards, facilitating the
Frontiers in Psychiatry 12
integration of results using different diagnostic interviews. From a

clinical perspective, it is not sufficient to assess diagnostic status

solely with deep learning models; rating tools and self-report

questionnaires are also needed to describe the severity and

specific nature of symptoms.

Although the results of this study are promising, the

implementation of deep learning models in practical clinical

settings still faces technical and operational challenges. Key factors

that require attention include integrating the model into existing

clinical workflows, training healthcare professionals, and ensuring

secure management of patient privacy data. Future studies should

consider these practical issues and design models that are more

suitable for application in a clinical environment. A major limitation

of this study is the relatively small sample size, which may impact the

evaluation of the model’s generalizability. Additionally, the study

failed to cover all possible tongue variations, which may limit the

model’s applicability to a wider population with depression.

This research confirms the effectiveness of deep learning

models, particularly SEResNet101, in identifying and predicting

treatment responses for depression (Figure 8). However,

considering the limitations of this study, future work should focus

on expanding the sample size, encompassing a broader range of

tongue variations, and exploring the potential of the model in

diagnosing other mental disorders. Additionally, research should
FIGURE 8

The analysis of deep learning models for identifying tongue image features of depression and assessing the efficacy of acupuncture treatment.
TABLE 3 Consistency between SEResNet101 and SCID and
MINI diagnosis.

SEResNet101 SCID MINI

SEResNet101 / 0.815 0.777

SCID 0.815 / 0.856

MINI 0.777 0.856 /
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address the clinical integration and operational convenience of the

model to facilitate the translation from theory to practice.
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