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Are carfentanil and acrylfentanyl
naloxone resistant?
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and Saadyah Averick3*

1Defense Advanced Research Projects Agency (DARPA), Biological Technologies Office (BTO),
Arlington, VA, United States, 2U.S. Army DEVCOM Chemical and Biological Center, Aberdeen,
MD, United States, 3Neuroscience Institute, Allegheny Health Network, Pittsburgh, PA, United States
The rapid rise in deaths since 2012 due to opioid poisoning is correlated with the

proliferation of potent synthetic opioid agonists such as fentanyl, acrylfentanyl,

and carfentanil. The efficacy of frontline antidotes such as naloxone in reversing

such poisoning events has been questioned, and the possibility of naloxone-

resistant synthetic opioids has been raised. In this manuscript, we applied in vitro

techniques to establish the median effective inhibitory concentrations for

fentanyl, acrylfentanyl, and carfentanil and subsequently evaluate naloxone’s

ability to reverse agonist–receptor interactions.
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Introduction

Synthetic mu-opioid receptor (MOR) agonists derived from the 4-anilinopiperidine

scaffold are responsible for the exponential increase in opioid overdose deaths and

poisoning (1–7). In the past several years, progress toward stemming the tide of death

has been reduced due to the increasing potency of synthetic opioids and limited healthcare

access (8–10). These compounds are relatively straightforward to prepare from available

precursors and are used either as adulterants to other opioids or directly used (11–14).

Multiple factors that contribute to the lethality of synthetic opioids are their a) rapid onset,

b) high potencies (20 to 2000 times greater than morphine), and c) relatively long

pharmacokinetics compared to frontline antidotes (15–21). These factors have led to

critical questioning of the potency and efficacy of the frontline antidote naloxone to reverse

synthetic opioid poisoning (22–26).

Two major mechanisms postulating the limitations of standard naloxone antidote

dosing, in the event of synthetic opioid poisoning, have been put forward. The

renarcotization theory states that the pharmacokinetic mismatch between naloxone and

synthetic opioids causes a single naloxone dose to be insufficient at sustained overdose

reversal (27–33). Naloxone resistance is a theorized phenomenon where naloxone has a

limited and dulled capacity to reverse synthetic opioid agonist poisoning (22, 34). The idea

of naloxone resistance was first put forward by Maryanoff and coworkers in 1982 and has

since found reference in both popular press and scientific literature (35). The competing
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theory of renarcotization being the source of naloxone’s limitations

stems from the metabolic mismatch between naloxone and

synthetic opioids (36–42). Naloxone is, compared to synthetic

opioids, relatively hydrophilic and is rapidly metabolized by the

UGT2B7 glucuronidase enzyme leading to the production of the

brain-impenetrable naloxone-3-glucuronide (43, 44). In contrast,

synthetic opioids are passively absorbed by adipose tissue due to

inherent hydrophobicity and, upon naloxone’s metabolism, are able

to agonize the MOR, resulting in renarcotization (17, 45–48). In this

manuscript, we sought to evaluate two potent synthetic MOR

agonists both postulated to have potential naloxone resistance,

resulting in the need for new countermeasures and antidotes for

these compounds.

To achieve our aims, an in vitro method using a commercially

validated CHO-K1 cell line expressing human MOR was employed

to directly determine a median effective concentration (EC50)

for fentanyl, carfentanil, and acrylfentanyl (Figure 1). Median

inhibitory concentrations (IC50) for fentanyl, carfentanil, and

acrylfentanyl after competition with naloxone were also generated

to assess the reversibility of the receptor–ligand interaction.
Materials and methods

Chemicals

The LANCE Ultra cAMP assay point kit and 384-well ProxiPlate

were purchased from Perkin Elmer (Shelton, CT, USA). The LANCE

Ultra kit consisted of cAMP Standard (50 µM), Eu-cAMP tracer

(ULight™-anti-cAMP), cAMP Detection Buffer, and BSA Stabilizer.

Carfentanil was synthesized at the U.S. Army DEVCOM Chemical

Biological Center (CBC) (APG, MD, USA), and purity was verified

by 13C and 1H NMR. [D-Ala2,NMe-Phe4,Gly-ol5]-Enkephalin

(DAMGO) was purchased from Tocris Bioscience (Park Ellisville,

MO, USA). Hanks’ Balanced Salt Solution (HBSS) 1X, 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 1M,

Versene Solution, and Geneticin were procured from Life

Technologies (Grand Island, NY, USA). Dimethyl sulfoxide

(DMSO), 3-isobutyl-1-methylxanthine (IBMX), and forskolin were

procured from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s

Phosphate-Buffered Saline (DPBS)/Modified Buffer and Ham’s F-12

Media were procured from HyClone Laboratories, Inc. (Logan, UT,

USA). Fetal bovine serum (FBS) was procured from Mediatech, Inc.

(Manassas, VA, USA). Fentanyl citrate was procured from
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Mallinckrodt Pharmaceuticals (St. Louis, MO, USA). Acrylfentanyl

HCl was procured from Cayman Chemical (Ann Arbor, MI, USA).
Cell line

ValiScreen CHO-K1 cells expressing human MOR (ES-542-C)

were purchased from Perkin Elmer, Inc. (Waltham, MA, USA). The

cells were kept frozen in liquid nitrogen storage (vapor phase) until

they were cultured. The cells were grown in accordance with

product literature provided by Perkin Elmer. The cell cultures

were split when they reached ~60%–80% confluence, and no cells

were used past passage 10. Cells were used for opioid assay when

they met the requirements described in the product literature (i.e.,

60%–80% confluence). Before use, cellular solutions used in plating

were counted on a Vi-CELL XR hemocytometer (Beckman Coulter

Life Sciences, Indianapolis, IN, USA). The cells were plated at a

concentration of 2.0 × 105 cells/mL.
Incubation and standard solutions

Standard solutions of fentanyl, carfentanil, acrylfentanyl, and

naloxone (10 mM) were made in DMSO and stored until use in a

freezer at −20°C. A standard solution of DAMGO (1.95 mM) was

made in sterile water. Working solutions of fentanyl, carfentanil,

acrylfentanyl, naloxone, and DAMGO (500 µM) were prepared

immediately before the assay was performed in a fresh stimulation

buffer. Stimulation buffer, forskolin dilutions, and cAMP standards

were made, as needed, in accordance with the Lance Ultra cAMP

assay protocol immediately before the assay was performed.

For the competition assay to assess naloxone requirements, each

agonist’s EC90 was co-incubated in each well concurrently with

naloxone concentrations ranging from 100 µM to 10 fM in full log

intervals. A zero-naloxone concentration control was also included.
Statistical analysis

Median effective concentrations of DAMGO, fentanyl,

carfentanil, and acrylfentanyl were calculated using GraphPad

Prism v9.0.1 (GraphPad Software, Inc., La Jolla, CA, USA). Data

were first normalized to the minimal and maximal responses of the

control compound, DAMGO, and then non-linear regression was
FIGURE 1

Chemical structures of fentanyl (black), acrylfentanyl (blue), and carfentanil (red).
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fit to each dose–response profile using the three-parameter

[agonist] vs. normalized response function within the software.

Ordinary one-way ANOVA tests using multiple comparisons were

then conducted to assess the statistical significance of the EC50

values. EC90 values were then calculated similarly for each of the

agonists for use in the competition assay that followed.

Median inhibitory concentrations of naloxone were then

calculated for challenges with the EC90 values of DAMGO,

fentanyl, carfentanil, and acrylfentanyl. This was performed

similarly to the EC50 determination study with the exception that

for this set of experiments, the non-linear regression function used

was a three-parameter [inhibitor] vs. normalized response.

Ordinary one-way ANOVA tests using multiple comparisons

were similarly conducted to assess the statistical significance of

the IC50 values against each of their challenge doses.
Results and discussion

Agonist dose–response

To establish baseline agonist–receptor activation, we generated

full dose–response curves for DAMGO, fentanyl, carfentanil, and

acrylfentanyl, and we determined EC50, EC90, and relative potency

to fentanyl (Figure 2). By using a functional cAMP response cell

model to determine agonist potential, we are able to directly

ascertain drug potency as compared to pure receptor-radio-ligand

binding assays, which may not reflect the true potency of agonists.

Our studies were able to determine the compounds’ relative potency

to fentanyl (Table 1) and several interesting points based on the
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EC50 values. Contrary to the initial literature report by Maryanoff,

which found acrylfentanyl to have a potency greater than that of

fentanyl, we found that acrylfentanyl had only ~50% of the potency

of fentanyl. In contrast, we determined that carfentanil’s potency

was nearly 100× that of fentanyl. The determined EC50 and EC90

values enable naloxone reversal assays.
Antagonist performance of naloxone

In order to directly ascertain naloxone’s ability to reverse the

agonist activity of the synthetic opioids, cells were stimulated with

an EC90 of each compound, and a dose–response curve with

naloxone was generated against each compound. The EC50 and

EC90 values (Table 1) were determined in the agonist assay for

fentanyl and acrylfentanyl. Cells were incubated with EC90 of

DAMGO, fentanyl, carfentanil, or acrylfentanyl and log-dosed

concentrations of naloxone. The experimental design allowed for

the determination of the concentration of naloxone (antagonist)

required to reverse an EC90 dose of a synthetic opioid (agonist). By

maintaining an EC90 of agonist in each well and varying the

concertation of naloxone, backward-S dose–response curves

(Figure 3) were generated, and the IC50 values could be calculated

for naloxone against the respective synthetic opioids (Table 2).

While the results of the agonist reversal assay clearly

demonstrate that the agonist activities of acrylfentanyl and

carfentanil can both be reversed with naloxone, several interesting

phenomena were observed. The first observation was that although

acrylfentanyl had approximately one-half the potency of fentanyl,

this compound required nearly double the amount of naloxone to

reverse its agonist activity vs. fentanyl. Carfentanil, however,

demonstrated potency roughly 100× that of fentanyl and required

a significantly greater concentration of naloxone in order to

antagonize a challenge of its EC90. Further, this demonstrates that

reports of naloxone resistance need to be verified scientifically, as

carfentanil appears to require more naloxone in order to reverse its

effects, but this is not due to any detection of irreversible binding,

but rather in this test, the system appears to be due to affinity for the

receptor and functional agonistic potency.

While this study aims to equivocally characterize the receptor–

ligand interaction of fentanyl-class opioid agonists at the MOR, it

does not provide guidance for dosing requirements in instances of

treatment of opioid overdose. This study merely aims to provide

evidence that the interaction between a ligand, acrylfentanyl, and its
FIGURE 2

Dose–response curves for [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin
(DAMGO), fentanyl, carfentanil, and acrylfentanyl. Data points
plotted as mean ± standard error of the mean (SEM).
TABLE 1 Potency values for opioid agonists.

Drug EC50 (nM) 95% CI (nM) Relative potency (× fentanyl) p-Value EC90 (nM)

DAMGO* 1.92 1.61–2.29 0.35 <0.0001 17.3

Fentanyl 0.667 0.551–0.808 1.0 NA 6.00

Carfentanil* 0.00699 0.00583–0.00837 95 0.0003 0.0629

Acrylfentanyl* 1.37 1.16–1.63 0.49 0.0001 12.3
DAMGO, [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin.
*Statistical significance by one-way ANOVA when compared to EC50 of fentanyl.
NA = Not applicable.
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primary target receptor is indeed a reversible interaction and thus

able to be reversed in proper conditions, contrary to what has been

reported in mass media. In agreement with our approach and

conclusions, studies performed in humans with radiolabeled

carfentanil also demonstrate rapid distribution of naloxone to the

brain and subsequent displacement of [11C]-carfentanil shortly after

administration followed by rapid redistribution of naloxone out of

the central nervous system (CNS). The lower receptor affinity of

naloxone enables its displacement from the MOR by carfentanil,

practically demonstrating how naloxone resistance may occur in

living systems (40). These data support our hypothesis that

carfentanil, despite its heroic potency at the MOR, is able to be

displaced even by nominal dosing of naloxone. Similarly, the

authors of this study acknowledge that their work, too, does not

dictate dosing requirements of naloxone or any other opioid

antagonist based on the amount of agonist administered; their

work merely demonstrates that the agonist is not irreversibly

bound to the receptor but happens to be an incredibly potent

agonist, functionally, although it is fully reversible at the

molecular level.
Conclusions

In this study, we applied an in vitro live cell receptor activation

assay method to determine EC50 values for synthetic MOR agonists.

These values were then used to determine the amount of naloxone

required to inhibit agonist activity. This straightforward approach
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allowed for the direct determination that naloxone is capable of

reversing the agonist effects of even the most potent of known

synthetic opioids (carfentanil). Nevertheless, our data also indicate

that the amount of naloxone needed to reverse the agonist activity

of synthetic opioids varies compared to fentanyl. Our data show

that naloxone is an effective inhibitor of synthetic opioids. Our

future studies aim to translate these results to an in vivo animal

model of synthetic opioid poisoning to determine the amount of

naloxone needed to successfully reverse fentanyl toxicity vs.

acrylfentanyl and carfentanil. Finally, this study highlights the

need for a longer-acting MOR antagonist that can be sufficiently

dosed at levels that do not induce precipitated opioid withdrawal yet

can still reverse the most potent synthetic opioids.
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