
Frontiers in Psychiatry

OPEN ACCESS

EDITED BY

Rachita Yadav,
Massachusetts General Hospital and Harvard
Medical School, United States

REVIEWED BY

Masaru Tanaka,
University of Szeged (ELKH-SZTE), Hungary
Joana Gonçalves,
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Background: Attention deficit hyperactivity disorder (ADHD) is characterized by

impairments in developmental–behavioral inhibition, resulting in impulsivity and

hyperactivity. Recent research has underscored cortical inhibition deficiencies in

ADHD via the gamma-aminobutyric acid (GABA)ergic system, which is crucial for

maintaining excitatory–inhibitory balance in the brain. This study explored

postnatal changes in parvalbumin (PV) immunoreactivity, indicating GABAergic

interneuron types, in the prefrontal (PFC) and motor (MC) cortices of

spontaneously hypertensive rats (SHRs), an ADHD animal model.

Methods: Examining PV- positive (PV+) cells associated with dopamine D2

receptors (D2) and the impact of dopamine on GABA synthesis, we also

investigated changes in the immunoreactivity of D2 and tyrosine hydroxylase

(TH). Brain sections from 4- to 10-week-old SHRs and Wistar Kyoto rats (WKYs)

were immunohistochemically analyzed, comparing PV+, D2+ cells, and TH+

fiber densities across age-matched SHRs and WKYs in specific PFC/MC regions.

Results: The results revealed significantly reduced PV+ cell density in SHRs:

prelimbic (~20% less), anterior cingulate (~15% less), primary (~15% less), and

secondary motor (~17% less) cortices. PV+ deficits coincided with the

upregulation of D2 in prepubertal SHRs and the downregulation of TH

predominantly in pubertal/postpubertal SHRs.

Conclusion: Reduced PV+ cells in various PFC regions could contribute to

inattention/behavioral alterations in ADHD, while MC deficits could manifest as

motor hyperactivity. D2 upregulation and TH deficits may impact GABA synthesis,

exacerbating behavioral deficits in ADHD. These findings not only shed new light

on ADHD pathophysiology but also pave the way for future research endeavors.
KEYWORDS

attention-deficit/hyperactivity disorder, cortex, parvalbumin, dopamine receptor,
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1 Introduction

Attention deficit hyperactivity disorder (ADHD) is a complex

neurodevelopmental condition affecting the central nervous system

characterized by persistent inattention, hyperactivity, and

impulsivity throughout an individual’s life span (1, 2). It is

believed to be a childhood disorder; but long-term follow-up

studies revealed that symptoms often persist into adulthood (3,

4). The precise etiology and pathogenesis of ADHD remain elusive,

with increasing evidence implicating stress, anxiety, and

neuroinflammation in the emergence of this disorder (5, 6). For

example, increased inflammation could lead to changes in the

synthesis, release, or clearance of a number of neurotransmitters

(7–9). The etiology of the disorder involves the dysregulation of

various neurotransmitters , including dopamine (DA),

norepinephrine (NA), and serotonin (5-HT).

ADHD is intricately linked to dysregulation in DA

neurotransmission, a key factor influencing attention, reward, and

motivation within neural circuits spanning the prefrontal cortex

(PFC) and subcortical structures such as the basal ganglia (10–12).

Dysfunctions in the DA receptors D1 and D2, anomalies in

dopamine transporters, and perturbations in DA release and

synthesis underscore the molecular intricacies contributing to

ADHD symptoms (13). In addition, the interplay between the

inhibitory gamma-aminobutyric acid (GABA)ergic system and

dopaminergic signaling pathways is crucial for regulating the

cognitive and motor functions in the brain, both of which are

impaired in ADHD (14, 15). GABAergic neurons, utilizing GABA

as their principal neurotransmitter, exert inhibitory control on

neural circuits, preventing excessive excitability and contributing

to the balance of neuronal activity. Dopaminergic signaling, driven

by DA, modulates various physiological functions, including

cognition and motor control (15). The intricate reciprocal

modulation between the GABAergic inhibitory neurons and

dopaminergic pathways occurs in cortical and subcortical regions,

creating a dynamic regulatory network (16, 17).

Dysregulation in this interplay has been implicated in

neurological and psychiatric disorders, including ADHD (18–20).

There is a suggestion, supported by recent findings, that a deficit in

behavioral inhibition may be at the core of ADHD (21–23). For

instance, evidence indicates a reduction in the concentration of the

principal inhibitory neurotransmitter GABA in certain studied

cortical (22, 24) and subcortical (23) brain regions of children

with ADHD. Reduced GABA content has also been reported in the

hippocampus of the animal model of ADHD, spontaneously

hypertensive rats (SHRs) (25). Studies in animal models are

pivotal in translational research, offering insights into the

biological and physiological processes pertinent to human health

and the comprehension of numerous disorders (26). Moreover,

recent studies in female ADHD patients have indicated that low

GABA concentrations in the PFC were strongly associated with

high inattention scores (24). In addition, diminished short-interval
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cortical inhibition (SICI), influenced by GABA-A agonists, is

correlated with the severity of ADHD symptoms and motor skills

(27). Although the cellular components involved in this

phenomenon are still unclear, parvalbumin (PV)-expressing

(PV+) cells appear to be quite good candidates as they use GABA

(28) and have an abundant amount of GABA-A receptors (29).

The behavioral inhibition mediated by GABAergic

interneurons in the cortex is modulated by DA, as evidenced by

the influence of dopaminergic innervation on GABAergic neurons

(30–34) and the abundant localizations of DA receptors in these

cells (33). Moreover, current evidence shows that DA inhibits both

spontaneous and evoked neural activity in the PFC, and there is

good evidence that this inhibition is mediated by GABAergic

neurons (34–36). Notably, these interneurons, which receive the

heaviest dopaminergic innervation and possess the most abundant

DA receptors, are PV+ cells that exert potent inhibitory actions on

pyramidal cells (35). Given the capability of a single GABAergic

interneuron to synapse on hundreds of pyramidal cells, the

activation of a limited number of these interneurons by DA is

sufficient to induce strong local cortical inhibition (37, 38).

However, in ADHD, the downregulation of tyrosine hydroxylase

(TH), a rate-limiting enzyme in DA synthesis, has been observed in

patients and in animal models, potentially impacting GABA

neurotransmission and exacerbating deficits in behavioral

inhibition (39). GABAergic cells, including PV+ cells, express

both D1 (activating) and D2 (deactivating) DA receptors.

Dysregulation of these receptors could lead to severe alterations

in GABA synthesis and contribute to abnormalities in behavioral

inhibition in individuals with ADHD (33).

In light of these findings, our hypothesis posits that ADHD-

affected individuals demonstrate a) diminished GABA activity

attributable to deficits in PV+ neurons in cortical regions and b)

perturbations in DA activity due to a diminished density of TH+

fibers and DA receptor (D2)+ cells. To test this hypothesis, the

densities of interneurons expressing PV (GABAergic), cells

endowed with D2, and fibers expressing TH were compared in

the PFC and motor cortex (MC) of SHRs, considered to be a

validated animal model of ADHD, and Wistar Kyoto rats (WKYs),

which served as the control strain (40). The PFC was chosen for

investigation due to reported abnormalities in patients with ADHD,

including morphological and circuit irregularities and weaker

activation during attention and behavior regulation (41, 42).

Moreover, lesions of the PFC produce symptoms that are quite

similar to those observed in patients with ADHD (12). The MC was

selected because either ADHD patients or SHRs display increased

motor activity (43). PV was proposed as a marker of GABAergic

interneurons as, in rats, PV+ cells comprise numerous populations

of GABAergic interneurons in the mammalian cerebral cortex (44–

46). It was estimated that PV+ interneurons make up roughly 40%

of the total GABAergic interneuron population in the rat cerebral

cortex (47–49). Finally, recent studies have indicated that PV+

neurons function as a cohesive unit, orchestrating activity within
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the local PFC circuit during goal-driven attentional processing (50).

D2 was chosen based on evidence indicating its abundant

expression on cortical PV+ neurons (33), suggesting its potential

role in mediating hyperactivity in ADHD (51). TH was considered

due to its role as a rate-limiting enzyme in DA synthesis and its

downregulation in the PFC of SHRs (39) and in patients with

ADHD (41). The study employed rats aged 4–10 weeks to cover the

growth stages from weaning to adulthood, aligning with the

manifestation of ADHD-related abnormalities in children and in

prepubertal SHRs (52). Investigating both hemispheres separately

addressed the observed hemisphere-specific abnormalities (53, 54).

Due to the evident male bias in patients with ADHD and in SHRs,

the study focused its investigation on males of this strain (55, 56).
2 Materials and methods

2.1 Subjects

In order to test the previously mentioned hypotheses, male

SHRs (ADHD group) and WKYs (control group) at 4, 5, 6, 7, 8, 9,

and 10 weeks of age were used as subjects in the present

investigation (n = 5 or 6 per group). Animals from both groups

at 21 days of life were purchased from Charles River (Germany) and

conveyed to the animal facilities at the Institute of Animal

Reproduction and Food Research of the Polish Academy of

Sciences (Olsztyn, Poland). In this study, the animals were

housed in sanitized polypropylene cages in pairs or in threes to

avoid social isolation stress. The rats were maintained in climate-

controlled rooms (21 ± 1°C, 12–20 exchanges/h) with diurnal

lighting (12/12-h light/dark cycle: lights on at 8:00 hours, lights

off at 18:00 hours). All rats had free access to their diet (VRF1 diet;

Charles River, Germany) and tap water. All animal housing and

handling were conducted in strict accordance with the European

Union Directive (2010/63/EU). The use of animals and all protocols

were approved by the Local Ethical Commission of the University of

Warmia and Mazury in Olsztyn (no. 43/2014). Furthermore, all

attempts were made to reduce animal suffering and decrease the

number of animals to the minimum needed to yield accurate data.

The rat strains used in this study have been carefully selected. The

SHRs from Charles River (Germany) were chosen as behavioral,

genetic, and neurobiological studies have indicated that these rats

are at present the most appropriate model of ADHD (40). WKYs

are the classical control for rat ADHD models (especially SHRs). In

addition, the same rat strains have been evaluated by us (57) using

the various behavioral tests that confirmed the symptoms of ADHD

in SHRs. We have previously reported that exposure of SHRs to an

open-field arena results in an increase in motor activity and a drop

in the anxiety behavior of these animals. Thus, these rat strains were

chosen for investigation in the present study. Moreover, the time

points of the rat’s life span were deliberately selected. The decision

to select animals at 4 weeks for investigation was based on the fact

that prepubertal SHRs exhibit ADHD abnormalities and symptoms
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(58) while being free of hypertension (59). On the other hand,

postpubertal and mature SHRs no longer display symptoms of

ADHD (58), but develop hypertension (59).
2.2 Tissue preparation

After the habituation phase, all SHRs andWKYs were randomly

allocated into seven age groups in accordance with the study plan,

with all animals from each group later given the same tissue

processing. Briefly, the rats were acutely anesthetized with an

intraperitoneal inoculation of Morbital (Biowet, Puławy, Poland;

2 ml/kg, 133.3 mg/ml of pentobarbital sodium salt and 26.7 mg/ml

of pentobarbital). Following cessation of breathing, animals were

immediately perfused transcardially with saline (0.9%) followed by

4% paraformaldehyde (PFA; pH 7.4 (1040051000; Merck,

Darmstadt, Germany), which was dissolved in phosphate-buffered

saline (PBS) (P5493; Sigma-Aldrich, Schnelldorf, Germany). After

perfusion, the whole brain was conscientiously removed from the

skull. In the next step, brains were post-fixed by immersion in 4%

PFA for 24 h and then rinsed three times in 0.1 M phosphate buffer

(pH 7.4, 4°C). Thereafter, all brains were cryoprotected in series

(10%, 20%, and 30%) with sucrose (363-117720907; Alchem,

Wrocław, Poland) in 1× PBS at 4°C until they sunk (3–5 days).

Conclusively, the brains were frozen as blocks and were then

coronally cut at a thickness of 10 mm using a cryostat (HM525;

Zeiss, Jena, Germany). The tissue sections were placed on glass

slides and stored at −80°C until further investigation.
2.3 Immunohistochemistry

Chosen brain sections comprising the PFC and MC from both

strains (SHRs and WKYs) were stained using two standard

immunohistochemical methods: immunoperoxidase reaction

targeted a neuron-specific nuclear protein (NeuN) and

immunofluorescence focused on PV, D2, and TH. Both staining

methods were performed in a special humid and dark chamber

(Immuno Slide Staining Trays, R64001-E; Pyramid Innovation Ltd.,

Polegate, UK) at room temperature.

2.3.1 DAB method
To define the location and borders of the various PFC and MC

regions in the brain, every 25th brain section was bound to

diaminobenzidine (DAB) labeling (Dako Liquid DAB + Substrate

Chromogen System, K3468, Glostrup, Denmark), which was

accurate in more detail in our previous studies (60, 61).

Concisely, the slides with the selected brain sections were covered

overnight with a solution of primary antibody: NeuN (anti-NeuN

antibody, clone A60, MAB377, 1:1000 dilution; Merck Millipore,

Warsaw, Poland). Subsequently, the sections were covered for 1 h

with a solution of secondary antibodies (ImmPRESS™ Universal

Reagent anti-mouse/rabbit IgG peroxidase, MP-7500, 1:1 dilution;
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Vector Laboratories Inc., Burlingame, CA, USA). Then, all brain

sections were rinsed in PBS and covered for 1 min with a DAB

substrate and chromogen mixture. Finally, labeled brain sections

were washed in tap water, dehydrated in a series of alcohols

(POCH, Gliwice, Poland), cleaned in xylene, and covered in

DPX (DPX Mountant for histology, 44581; Sigma-Aldrich,

Schnelldorf, Germany).
2.3.2 Immunofluorescence
For neurochemical analysis, slides containing the selected brain

sections composed of the PFC andMC were treated for the standard

single immunofluorescence staining described earlier by Kozłowska

et al. (61) These brain sections were covered overnight with a

solution of primary antibodies: PV (mouse, cat. no. 235, 1:4000

dilution; Swant, Burgdorf, Switzerland), D2 (rabbit, cat. no.

AB5084P, 1:1000 dilution; EMD Millipore, Billerica, MA, USA),

or TH (mouse, cat. no. MAB 318, 1:1000 dilution; EMD Millipore,

Billerica, MA, USA). Subsequently, they were washed in PBS (3 × 15

min) and then covered for 1 h with a solution of secondary

antibodies: Alexa 488 (cat. no. A-21202, 1:1000 dilution; Thermo

Fisher Scientific, Waltham, MA, USA) or Alexa 568 (cat. no. A-

11011, 1:1000 dilution; Thermo Fisher Scientific, Waltham, MA,

USA). Finally, all brain sections were covered with a fluorescent

mounting medium (cat. no. S3023; Agilent, Glostrup, Denmark).

Furthermore, to evaluate the relationship between PV+ neurons

and cells enriched in D2, additional sections of the subject were

processed for double immunofluorescence staining as described

earlier by Równiak et al. (29). In this case, the sections were covered

with a mixture of primary antibodies consisting of mouse antisera

against PV and rabbit antisera toward D2, the same antibodies used

in the single immunofluorescence experiment.
2.4 Controls

NeuN, stained using immunoperoxidase techniques, is a

sensitive and specific neuronal marker for neurons in the

peripheral and central nervous systems (62). The specificity of a

mouse antibody against PV (235) and rabbit antibody against D2

(AB5084P) has also been proven by various researchers in multiple

previous studies (63–66). Moreover, these antibodies have been

positively evaluated using Western blotting, immunohistochemistry

in knockout mouse brain sections, and immunoprecipitation,

justifying their specificity to their targets (63, 64, 66). The mouse

antibody toward TH (MAB 318) is commonly used in brain studies

on dopaminergic neurotransmission (67, 68). The specificity of

secondary antibodies was examined by the omission of the primary

antibody and its replacement by nonimmune sera or PBS. The

absence of any response designated their specificity.
2.5 Cell and fiber counting

To validate the aforementioned hypotheses, a single

immunofluorescence staining method was employed. This widely
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utilized technique in molecular and cell biology laboratories is a

robust and straightforward approach for accurately localizing

molecules within a diverse array of fixed cells or tissues.

Quantification of the density of neurons and/or immunoreactive

fibers for PV, D2, and TH in the selected regions of PFC and MC

was carried out using an Olympus BX61 microscope provided with the

cellSens Dimension image analysis software (Olympus, Tokyo, Japan).

The following PFC regions were analyzed: prelimbic (PRL), anterior

cingulate (CG1), lateral orbitofrontal (LO), and ventral orbitofrontal

(VO). Within the MC, the primary (M1) and secondary (M2) motor

cortices were studied. For each PFC/MC area in each animal for both

SHRs and WKYs, PV+ and/or D2+ cells and TH-positive fibers were

manually counted on 10 evenly distributed sections. To confirm the

localization of specific PFC/MC regions on the sections, they were

stained with mouse anti-NeuN (pan-neuronal marker). All

measurements on the individual section were made at ×40

magnification using 220 µm × 170 µm areas as the test frames.

Based on the cross-section size of the specific PFC/MC area, scores

were calculated from either one such field located in the middle of the

area (covering 100% of its cross-sectional area) or two to six bordering

on non-overlapping fields. All scores determined inside the test frames

in the individual PFC/MC area on the section were averaged. As such,

the mean density value was mentioned only for the region of the test

frame and was recalculated every time to present the density of the

neurons in 1mm3 of the brain tissue. To determine themean density of

the neurons in the entire single PFC/MC area in the rat, the means of

the individual sections were averaged. Eventually, the density values

from every PFC/MC area were averaged for every age range in both

SHRs andWKYs and shown as the mean ± standard deviation (SD). It

should be underlined that all calculations were made on coded slides

prepared by the first author. To abstain from fluorescence fading, every

test frame was digitally recorded before estimation. Digitalized test

frames were then assessed by two independent researchers who had no

knowledge of the parameters of the tissue under study (i.e., strain, age,

and PFC/MC region, among others). The scores of these calculations

presented high inter-rater reliability using Pearson’s correlation test (r

= 0.79, p < 0.05). It should be acknowledged here that the data for PRL

and CG1 in the 5- and 10-week-old WKYs and SHRs shown in the

current study were from our previously published paper (61). They

were included here only to complete the pattern of postnatal

development on the graphs.
2.6 Statistical analysis

Mean differences between multiple groups were comprehensively

assessed through one-way ANOVAusingGraphPad Prism 6 software

(GraphPad Software, La Jolla, CA, USA). Following this, Tukey’s post-

hoc testwas conducted.The ability ofTukey’s test to adjust formultiple

comparisons enhanced the reliability and interpretability of our

findings. In addition, the potential presence of non-normally

distributed data or situations where the assumptions of ANOVA

may not be fully met was recognized, leading to the incorporation of

the Mann–Whitney U test. This nonparametric test allowed

confirmation or exclusion of observed differences between pairs. A p
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< 0.05 was assumed to indicate that the difference is

statistically significant.
2.7 Photomicrographic production

Low-magnification photomicrographs of immunoperoxidase-

stained sections were obtained by digitizing these sections with ×5

magnification using a PathScan Enabler IV Histology Slide Scanner

(Prague, Czech Republic). High-magnification photomicrographs

of the immunofluorescence-stained sections were taken using a CC-

12 digital camera (Soft Imaging System, Münster, Germany) on an

Olympus BX61 microscope.
3 Results

Anatomically, the rat PFC includes two main regions—the

medial PFC (mPFC) with the PRL and CG1 and the ventrally

located orbitofrontal PFC (oPFC) with the LO and VO—which

were chosen for investigation in the present study (Figures 1A, B).

In between these regions and dorsally lies the MC, consisting of M1
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and M2, which were taken into consideration (Figures 1A, B). In all

of these regions, the densities of neurons immunoreactive to PV

and/or D2 and fibers expressing TH were evaluated and compared

in WKYs and SHRs (Figures 2–13). In addition, as part of

preliminary research in these regions, the relationship between

PV and D2 was also elucidated (Figure 14).
3.1 Parvalbumin

The results showed that, in the PRL (Figures 2A, B; 5A, B, green

photomicrographs), M1 (Figures 4A, B; 5E, F, green

photomicrographs), and M2 (Figures 4C, D), the densities of PV+

cells were significantly decreased (p < 0.001) in SHRs when

compared to WKYs at almost any age studied. The CG1 density

values were also decreased (p < 0.001) in the SHRs, but only from 5

to 8 weeks of their lives (Figures 2C, D). No density changes among

PV+ cells were observed in the LO and VO (p > 0.05), with the

exception of the left hemisphere in 5-week-old SHRs where the

density of PV+ neurons decreased (p < 0.01–0.001) in relation to

WKYs (Figures 3A–D; 5C, D, green photomicrographs). Moreover,

the comparison of the right and left hemispheres in SHRs revealed
A

B

FIGURE 1

Topography and subdivisions of the prefrontal cortex (PFC, highlighted in yellow) and the motor cortex (MC, light yellow). (A) Schematic drawing
from the rat brain atlas of Paxinos and Watson (69) illustrating the subdivisions of the PFC and MC at the bregma of 3.72 mm. (B) Low-magnification
photomicrographs capturing representative coronal sections through the PFC and MC of 5-week-old spontaneously hypertensive rats (SHRs). Key
regions include the prelimbic (PRL), cingulate (CG1), lateral orbitofrontal (LO), ventral orbitofrontal (VO), primary motor (M1), and secondary motor
(M2) cortices. Scale bar, 1 mm.
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A B

DC

FIGURE 2

Densities of parvalbumin (PV)-expressing neurons in the prelimbic (PRL) cortex (A, B) and the cingulate (CG1) cortex (C, D) in Wistar Kyoto rats
(WKYs) and spontaneously hypertensive rats (SHRs) during postnatal development. Data are expressed as the mean ± SD (n = 5 or 6). *p ≤ 0.05; ***p
≤ 0.001 (statistically significant differences between WKYs and SHRs). Age-dependent differences show the following: a–f- developmental
differences (p < 0.05–p < 0.001) in the WKY strain; a'–f'- developmental differences (p < 0.05–p < 0.001) in the SHR strain; a, a'- 4 weeks vs.
subsequent weeks; b, b'- 5 weeks vs. subsequent weeks; c, c'- 6 weeks vs. subsequent weeks; d, d'- 7 weeks vs. subsequent weeks; e, e'- 8 weeks
vs. subsequent weeks; f, f'- 9 weeks vs. 10 weeks; and i- differences between the right and left hemispheres.
A B

DC

FIGURE 3

Densities of parvalbumin (PV)-expressing neurons in the lateral orbitofrontal (LO) cortex (A, B) and ventral orbitofrontal (VO) cortex (C, D) in Wistar
Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) during postnatal development. Data are expressed as the mean ± SD (n = 5 or 6). **p
≤ 0.01; ***p ≤ 0.001 (statistically significant differences between WKYs and SHRs). Age-dependent differences show the following: a–f-
developmental differences (p < 0.05–p < 0.001) in the WKY strain; a'–f'- developmental differences (p < 0.05–p < 0.001) in the SHR strain; a, a'- 4
weeks vs. subsequent weeks; b, b'- 5 weeks vs. subsequent weeks; c, c'- 6 weeks vs. subsequent weeks; d, d'- 7 weeks vs. subsequent weeks; e, e'-
8 weeks vs. subsequent weeks; f, f'- 9 weeks vs. 10 weeks; and i- differences between the right and left hemispheres.
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disparities in the density of PV+ neurons. Notably, in the CG1

during weeks 4–7 (p < 0.01; Figures 2C, D), the density of neurons

positive for PV in the right hemisphere was lower than that in the

left hemisphere. In turn, a higher density of PV+ neurons within the

right hemisphere in VO in week 5 was found (p < 0.01;

Figures 3C, D).
3.2 Dopamine receptor 2

PV deficits were accompanied by D2 upregulation, which were

observed mostly in prepubertal SHRs. In the PRL (Figures 6A, B;

9A, B, red photomicrographs), CG1 (Figures 6C, D), and M2

(Figures 8C, D; 9C, D, red photomicrographs), the densities of

D2+ cells were significantly elevated (p < 0.01–0.001) in 4-, 5-, and/

or 6-week-old SHRs in comparison to age-matched WKYs;

however, in older animals, the densities were similar (p > 0.05) in

both rat strains. In the case of LO (Figures 7A, B) and VO

(Figures 7C, D), the density values were also increased (p <

0.001), but only in 4-, 5- and/or 6-week-old SHRs. Significantly

elevated D2+ density values (p < 0.001) were observed in M1 only in

4-week-old SHRs (Figures 8A, B).
3.3 Hydroxylase tyrosine

In all studied regions, PV deficits were also accompanied by the

downregulation of TH, which was observed mostly in pubertal and
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postpubertal SHRs. In M1 (Figures 12A, B; 13C, D, green

photomicrographs) and M2 (Figures 12C, D), the densities of TH+

fibers were significantly decreased (p < 0.01 and 0.001) in SHRs in

comparison to WKYs at any age studied. In VO (Figures 11C, D),

decreased (p < 0.05 and 0.001) density values were observed in 5- to 10-

week-old SHRs; however, in 4-week-old animals, the values were

comparable (p > 0.05) in both rat strains. In the PRL (Figures 10A,

B), CG1 (Figures 10C, D, 13A, B, green photomicrographs), and LO

(Figures 11A, B), the density values were decreased in 6- to 10-week-

old SHRs only (p < 0.01).

3.4 PV/D2 relationships

To elucidate the relationship between PV+ cells and D2+

elements, some sections in each subject were processed for double

immunofluorescence staining. The results revealed extensive co-

expression of D2 in PV+ neurons in both WKYs and SHRs at any

age studied. The co-expression patterns of PV and D2 in various

regions of the PFC and MC did not differ significantly between

WKYs and SHRs and ranged from 60% in PRL to ~75% in M1.

However, a higher abundance of these proteins on PV+ cells in

SHRs was easily recognizable (Figures 14A–F).

3.5 Summary of results

Our findings, which exhibited a region-specific reduction in PV

+ cell density along with D2 receptor upregulation and TH

downregulation in SHRs, serve as a crucial starting point for
A B

DC

FIGURE 4

Densities of parvalbumin (PV)-expressing neurons in the primary motor (M1) cortex (A, B) and secondary motor (M2) cortex (C, D) in Wistar Kyoto
rats (WKYs) and spontaneously hypertensive rats (SHRs) during postnatal development. Data are expressed as the mean ± SD (n = 5 or 6).
***p ≤ 0.001 (statistically significant differences between WKYs and SHRs). Age-dependent differences show the following: a–f- developmental
differences (p < 0.05–p < 0.001) in the WKY strain; a'–f'- developmental differences (p < 0.05–p < 0.001) in the SHR strain; a, a'- 4 weeks vs.
subsequent weeks; b, b'- 5 weeks vs. subsequent weeks; c, c'- 6 weeks vs. subsequent weeks; d, d'- 7 weeks vs. subsequent weeks; e, e'- 8 weeks
vs. subsequent weeks; and f, f'- 9 weeks vs. 10 weeks.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1359237
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
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more comprehensive research aimed at unraveling the

pathophysiology of ADHD. These baseline studies have identified

specific neurobiological alterations within the PFC and MC regions,

shedding light on the intricate interplay between the inhibitory and

excitatory neurotransmission systems. The reduction in the density

of PV+ cells implies a potential imbalance in inhibitory signaling,

while the observed upregulation of D2 and downregulation of TH

suggest alterations in the dopaminergic system, which is crucial for

attention, impulse control, and motor function. Building upon these

foundational findings, further detailed research can delve into the

molecular, cellular, and circuit-level mechanisms underlying these

alterations. Investigating the specific interactions between PV+

interneurons, D2 receptors, and the DA synthesis pathway in

ADHD-relevant brain regions could provide a more nuanced

understanding of the neurobiological basis of this disorder.
4 Discussion

The results presented here provide evidence that, in the PFC

and MC, the densities of PV+ interneurons, which in the cerebral

cortex are the main subset of inhibitory GABAergic neurons (70),

were significantly reduced in pre- and postpubertal SHRs, a
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validated ADHD animal model (40). This parallels the

diminished GABA content in pediatric ADHD patients and aligns

with the reduced SICI observed in ADHD. Notably, PV+ deficits in

all the studied regions coincided with D2 receptor upregulation,

primarily in prepubertal SHRs, and TH downregulation,

predominantly in pubertal and postpubertal SHRs. Given that PV

+ neurons co-expressed substantial D2 receptors (present results)

(29, 33), their upregulation could exacerbate the deficits in GABA

and impairments in cortical inhibition. In addition, downregulation

of TH, a key enzyme in DA synthesis, could contribute to reduced

GABA neurotransmission and behavioral inhibition deficits. The

intricate interplay between GABAergic transmission and DA

signaling in the PFC and MC underscores their pivotal role in

sensory information fi ltering and behavioral response

determination (71). A comprehensive understanding of these

mechanisms during juvenile SHRs development offers critical

insights into the neurobiological foundations of ADHD, with

implications for targeted interventions.

The findings obtained unequivocally illustrate substantial PV

deficits in SHRs across diverse regions of the PFC and MC, except

for the LO and VO regions. This observation resonates with

previous research highlighting diminished GABA concentrations

in the PFC and MC of children diagnosed with ADHD compared to
FIGURE 5

Representative color photomicrographs depicting the staining patterns of parvalbumin (PV)-expressing neurons in the prelimbic (PRL), lateral
orbitofrontal (LO), and primary motor (M1) cortices of Wistar Kyoto rats (WKYs) (A, C, E) and spontaneously hypertensive rats (SHRs) (B, D, F).
Significantly diminished cell densities were observed in the PRL and M1 of 5-week-old SHRs (B, F) in comparison to age-matched WKYs (A, E).
Notably, no significant differences were observed in the LO cortex of 5-week-old WKYs (C) and SHRs (D). Scale bar, 200 mm.
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FIGURE 6

Densities of neurons enriched in dopamine receptor subtype 2 (D2) in the prelimbic (PRL) cortex (A, B) and cingulate (CG1) cortex (C, D) in Wistar Kyoto
rats (WKYs) and spontaneously hypertensive rats (SHRs) during postnatal development. Data are expressed as the mean ± SD (n = 5 or 6). **p ≤ 0.01,
***p ≤ 0.001 (statistically significant differences between WKYs and SHRs). Age-dependent differences show the following: a–f- developmental
differences (p < 0.05–p < 0.001) in the WKY strain; a'–f'- developmental differences (p < 0.05–p < 0.001) in the SHR strain; a, a'- 4 weeks vs. subsequent
weeks; b, b'- 5 weeks vs. subsequent weeks; c, c'- 6 weeks vs. subsequent weeks; d, d'- 7 weeks vs. subsequent weeks; e, e'- 8 weeks vs. subsequent
weeks; and f, f'- 9 weeks vs. 10 weeks. Data for PRL and CG1 in 5- and 10- week-old WKYs and SHRs were earlier published in our study (61) and were
included here only to complete the pattern of postnatal development.
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FIGURE 7

Densities of neurons enriched in dopamine receptor subtype 2 (D2) in the lateral orbitofrontal (LO) cortex (A, B) and ventral orbitofrontal (VO) cortex
(C, D) in Wistar Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) during postnatal development. Data are expressed as the mean ± SD
(n = 5 or 6). *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001 (statistically significant differences between WKYs and SHRs). Age-dependent differences show the
following: a–f- developmental differences (p < 0.05–p < 0.001) in the WKY strain; a'–f'- developmental differences (p < 0.05–p < 0.001) in the SHR
strain; a, a'-, 4 weeks vs subsequent weeks; b, b'- 5 weeks vs. subsequent weeks; c, c'- 6 weeks vs. subsequent weeks; d, d'- 7 weeks vs. subsequent
weeks; e, e'- 8 weeks. subsequent weeks; f, f'- 9 weeks vs. 10 weeks.
Frontiers in Psychiatry frontiersin.org09

https://doi.org/10.3389/fpsyt.2024.1359237
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
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their typically developing counterparts (22, 24). The identified PV

deficits align with documented impairments in SICI in individuals

with ADHD, suggesting a GABAergic deficiency within this

population (27). Given that SICI modulation involves GABA-A
Frontiers in Psychiatry 10
agonists and is believed to be orchestrated by GABA-A cortical

interneurons (72), it appears that fast-spiking PV+ neurons are the

most plausible candidates to meet both criteria (28, 70). These

neurons exhibit GABAergic properties and boast abundant GABA-
A B
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FIGURE 8

Densities of neurons enriched in dopamine receptor subtype 2 (D2) in the primary motor (M1) cortex (A, B) and secondary motor (M2) cortex (C, D)
in Wistar Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) during postnatal development. Data are expressed as the mean ± SD (n = 5
or 6). *p ≤ 0.05; ***p ≤ 0.001 (statistically significant differences between WKYs and SHRs). Age-dependent differences show the following: a–f-
developmental differences (p < 0.05–p < 0.001) in the WKY strain; a'–f'- developmental differences (p < 0.05–p < 0.001) in the SHR strain; a, a'- 4
weeks vs. subsequent weeks; b, b'- 5 weeks vs. subsequent weeks; c, c'- 6 weeks vs. subsequent weeks; d, d'- 7 weeks vs. subsequent weeks; e, e'-
8 weeks vs. subsequent weeks; and f, f'- 9 weeks vs. 10 weeks.
FIGURE 9

Representative color photomicrographs depicting the staining patterns of dopamine receptor subtype 2 (D2)-expressing neurons in the prelimbic
(PRL) and secondary motor (M2) cortices of Wistar Kyoto rats (WKYs) (A, C) and spontaneously hypertensive rats (SHRs) (B, D). Significantly higher
densities of these cells were observed in the PRL and M2 of 4-week-old SHRs (B, D) in comparison to age-matched WKYs (A, C). Scale bar, 100 µm.
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A receptors (29), making them prime contenders for playing a

crucial role in the observed deficits. Recent evidence has

emphasized the pivotal role of PV+ interneurons in regulating

pyramidal neuron activity (73, 74), modulating the excitation/

inhibition (E/I) balance (75, 76) to drive appropriate behavioral

responses (77, 78). Consequently, deficits in PV+ cell density could

disrupt the E/I balance, potentially increasing excitatory drive and

contributing to inappropriate behaviors or psychiatric disorders

(79). Good examples of such phenomena are schizophrenia and

autism spectrum disorder, which is characterized by significant

deficits in GABAergic signaling and reduced expressions of GAD-

67 and/or PV (80, 81). It also appears that at least some of the

ADHD symptoms may have a similar etiology. An example is the

correlation between GABA concentrations and motor control in

healthy adults (82). ADHD patients and SHRs showed increased

motor activity, with reduced GABA in the MC of human patients

(22) and PV+ deficits in the MC of SHRs (present results). There is

also evidence that a low GABA concentration in the CG1 is strongly

associated with high inattention scores in children with ADHD

(24). Interestingly, SHRs that also displayed inattention had PV+

deficits in the CG1 (present results). Notably, the severity of ADHD

symptoms and the motor skill proficiency of school-aged children

with this disorder have been linked to reduced SICI in the MC,

indicating a GABA-A/PV deficit (27). Recent reports have also

suggested that the glutamate levels in the PFC may be related to the
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intensity of ADHD traits in human patients and in SHRs (83, 84).

Elevated glutamate levels in the CG1 of patients with ADHD

positively correlate with the severity of symptoms related to

hyperactivity and impulsivity (84).

The current study reveals a noteworthy association between

deficits in PV+ and the increased density of neurons expressing D2

receptors in various regions of the PFC and MC in SHRs,

particularly evident in prepubertal individuals. While some prior

investigations indicated no significant differences in the expression

of D1 and D2 receptors between SHRs andWKYs (85–87), multiple

studies have consistently reported the upregulation of D1 and D2

receptors in various brain regions of SHRs, including the frontal

cortex, nucleus accumbens, and striatum (88–91). These receptors

in the cortical areas are localized both in the pyramidal

glutamatergic neurons and in various classes of GABAergic

interneurons (present results) (29, 92). Considering that, in

physiological conditions, a high proportion of PV+ interneurons

co-express both D1 or D2 receptors (33, 93) and DA primarily

increases PV+ cell excitability, enhancing the GABAergic

transmission via D1 activation to suppress persistent firing of

pyramidal neurons (35), increased D2 expression on these cells in

juvenile SHRs may favor opposite consequences. Thus, the

overexpression of D2 in conjunction with the overall deficit of

PV+ expression in the PFC and MC of SHRs could, at least in part,

lead to the reduced behavioral inhibition observed in ADHD-
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FIGURE 10

Densities of tyrosine hydroxylase (TH)-expressing fibers in the prelimbic (PRL) cortex (A, B) and cingulate (CG1) cortex (C, D) of Wistar Kyoto rats
(WKYs) and spontaneously hypertensive rats (SHRs) during postnatal development. Significantly reduced fiber densities were observed in pubertal
and postpubertal SHRs in comparison to age-matched WKYs. Data are expressed as the mean ± SD (n = 5 or 6). *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001
(statistically significant differences between WKYs and SHRs). Age-dependent differences show the following: a–f- developmental differences (p <
0.05–p < 0.001) in the WKY strain; a'–f'- developmental differences (p < 0.05–p < 0.001) in the SHR strain; a, a'- 4 weeks vs. subsequent weeks; b,
b'- 5 weeks vs. subsequent weeks; c, c'- 6 weeks vs. subsequent weeks; d, d'- 7 weeks vs. subsequent weeks; e, e'- 8 weeks vs. subsequent weeks;
and f, f'- 9 weeks vs. 10 weeks. Data for PRL and CG1 in 5- and 10-week-old WKYs and SHRs were earlier published in our study (61) and were
included here only to complete the pattern of postnatal development.
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affected individuals. This aligns with the established roles of D2

receptors in mediating hyperactivity and responses to

amphetamine, phenomena observed in both ADHD-affected

individuals and animal models (94). Notably, targeted deletion of

the D2 (but not the D3 or D4) DA receptor in coloboma mice, an

ADHD mouse model, eliminated hyperactivity, and similar effects

were observed in response to amphetamine treatment in both

coloboma mice and human ADHD patients (94–97). The

observed upregulation of D2 receptors in the 4- to 6-week-old

SHRs in our study aligns temporally with the manifestation of

ADHD symptoms in both rats and human patients. Rats undergo

weaning at approximately 3 weeks, with puberty commencing

around 7–8 weeks. In comparison, humans are typically weaned

around 6 months, with puberty beginning at approximately 11.5

years. The 4- to 6-week-old SHRs in our study, equivalent to 7–10

years of age in children (98), exhibited an upregulation of D2

receptors in the PFC and MC. The age of 7 weeks in rats, when the

contents of D2 receptors for the two strains became comparable,

corresponds to the onset of puberty. This temporal alignment

closely mirrors clinical findings in children with ADHD, where

symptoms manifest in young school-aged individuals and

hyperactivity tends to improve after puberty (2).

Preliminary data indicating the co-localization of PV and D2 in

PFC and MC neurons further add to the complexity of the findings.

While detailed analysis on this topic is lacking in the literature,

future investigations exploring the interaction between D2

receptors and PV+ neurons in both WKYs and SHRs may
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provide valuable insights into the neurobiological mechanisms at

play in ADHD.

The currentfindings reveal PVdeficits in the PFC andMCregions

of SHRs, accompanied by a reduction in TH+ fibers, predominantly

observed in pubertal and postpubertal SHRs. Previous reports

documented decreased TH protein and mRNA levels in the PFC of

SHRs (39, 99–101), but data on this aspect in human ADHD patients

are lacking. As the gene encoding TH appears to be not altered in

individuals with ADHD, the phenomenon of TH downregulation is

difficult to explain.There is alsono informationon the contentof L-3,4-

dihydroxyphenylalanine (L-DOPA; a precursor of DA synthesis) in

humanADHDpatients and in SHRs that could shed light on the roleof

TH downregulation in the pathogenesis of ADHD. However, TH

deficits may have an impact on the overall DA action in the PFC and

MCasmethylphenidate treatment increased theTHlevels inSHRsand

improved the ADHD symptoms in these animals (100). It is worth

mentioning that, in the case of PFC, one factor should be considered

when comparing the TH levels in SHRs and WKYs, or in human

ADHDpatients. The PFC undergoes a prolongedmaturation process,

exhibiting structural and connectivity changes that extend through

adolescence into early adulthood (102–104). This protracted

development of the DA input to the PFC is attributed to the

continued growth of DA axons during adolescence (105). Notably,

both ADHD human patients and SHRs display a maturational

trajectory of the PFC that is typical but delayed by a few years or

weeks, respectively (106, 107). This delay is also evident in the

maturation of dopaminergic pathways. When comparing the TH
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FIGURE 11

Densities of of tyrosine hydroxylase (TH)-expressing fibers in the l ateral orbitofrontal (LO) cortex (A, B) and ventral orbitofrontal (VO) cortex (C, D) in
Wistar Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) during postnatal development. Data are expressed as the mean ± SD (n = 5 or
6). **p ≤ 0.01; ***p ≤ 0.001 (statistically significant differences between WKYs and SHRs). Age-dependent differences show the following: a–f-
developmental differences (p < 0.05–p < 0.001) in the WKY strain; a'–f'- developmental differences (p < 0.05–p < 0.001) in the SHR strain; a, a'- 4
weeks vs. subsequent weeks; b, b'- 5 weeks vs. subsequent weeks; c, c'- 6 weeks vs. subsequent weeks; d, d'- 7 weeks vs. subsequent weeks; e, e'-
8 weeks vs. subsequent weeks; and f, f'- 9 weeks vs. 10 weeks.
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FIGURE 13

Representative color photomicrographs depicting the staining patterns of tyrosine hydroxylase (TH)-expressing fibers in the anterior cingulate (CG1)
and primary motor (M1) cortices of Wistar Kyoto rats (WKYs) (A, C) and spontaneously hypertensive rats (SHRs) (B, D). Significantly reduced fiber
densities were observed in the CG1 and M1 of 10-week-old SHRs (B, D) as compared to age-matched WKYs (A, C). Scale bar, 100 µm.
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FIGURE 12

Densities of tyrosine hydroxylase (TH)-expressing fibers in the primary motor (M1) cortex (A, B) and secondary motor (M2) cortex (C, D) of Wistar Kyoto
rats (WKYs) and spontaneously hypertensive rats (SHRs) during postnatal development. Data are expressed as the mean ± SD (n = 5 or 6). *p ≤ 0.05,
**p ≤ 0.01; ***p ≤ 0.001 (statistically significant differences between WKYs and SHRs). Age-dependent differences show the following: a–f-
developmental differences (p < 0.05–p < 0.001) in the WKY strain; a'–f'- developmental differences (p < 0.05–p < 0.001) in the SHR strain; a, a'- 4 weeks
vs. subsequent weeks; b, b'- 5 weeks vs. subsequent weeks; c, c'- 6 weeks vs. subsequent weeks; d, d'- 7 weeks vs. subsequent weeks; e, e'- 8 weeks vs.
subsequent weeks; f, f'- 9 weeks vs. 10 weeks.
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levels in the PFC between SHRs and WKYs, it is essential to consider

developmental delay. The presence of age-inappropriate levels of

hyperactivity/impulsivity and inattention in both ADHD individuals

and SHRs may reflect this delayed maturation of the PFC in these

populations (107).

The study ’s focus on the temporal a l ignment of

neurotransmitter alterations with ADHD symptom manifestation

provides crucial insights into the developmental trajectory of this

disorder. While acknowledging the study’s merit in shedding light

on the neurobiological foundations of ADHD, several limitations

exist. The existence of a PFC in rats and its primate equivalent has

been a subject of ongoing debate. Anatomical studies suggest that

the rat medial PFC is homologic to both the primate anterior

cingulate cortex (ACC) and the dorsolateral PFC (108, 109).

Functionally, in rats, it has been found that there are strong

correlations between motor planning, movement, and reward

anticipation, similar to observations in the primate ACC (110).

Moreover, it is well known that rats may encode information over

delays by utilizing body posture or variations in the running path

that are tracked by medial PFC neurons (111, 112). Based on these

results, the rat medial PFC appears to combine elements of the

primate ACC and dorsolateral PFC (111–113). To aim for a deeper

knowledge of the homology of PFC across species, further research
Frontiers in Psychiatry 14
is required to gather more data. In addition, the study calls for

continued exploration of the interactions of PV+ neurons with D2

receptors in WKYs and SHRs, emphasizing the need for more in-

depth cross-species homology investigations. In conclusion, this

research marks a significant stride toward unraveling the

complexities of ADHD neurobiology, emphasizing the

importance of PV+ interneurons, D2 receptors, and TH in

shaping the neurotransmission dynamics. The findings of this

study not only contribute to existing knowledge but also

underscore the need for more extensive research to unveil

etiological factors, clinical ramifications, and potential therapeutic

interventions for ADHD. These outcomes hold promise for

advancing targeted treatments and facilitating more effective

management of this prevalent neurodevelopmental disorder.
5 Conclusions

The results of the present study provide evidence that, in the PFC

and MC, the density of PV+ neurons, which form in the cerebral

cortex as the main subset of inhibitory GABAergic neurons, is

significantly reduced in pre- and postpubertal SHRs. Thus, these

results unequivocally align with prior findings that have consistently
FIGURE 14

Representative color photomicrographs illustrating the anatomical relationship between parvalbumin (PV)-expressing neurons and dopamine
receptor subtype 2 (D2) in the anterior cingulate (CG1) cortex of juvenile Wistar Kyoto rats (WKYs) (A, C, E) and spontaneously hypertensive rats
(SHRs) (B, D, F). Note the extensive co-localization of PV with D2 in both rat strains (arrows). Note also that the expression of D2 is much more
abundant in SHRs (D) compared to age-matched WKYs (C). Scale bar, 100 µm.
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reported significantly reduced GABA content in children with

ADHD (22, 114). Moreover, they firmly corroborate the observed

pattern of diminished SICI in ADHD (27). In addition, in all studied

areas, the PV+ deficits were accompanied by the upregulation of D2

observed mostly in prepubertal SHRs and the downregulation of TH

observed mostly in pubertal and postpubertal SHRs. As cortical PV+

neurons co-express large amounts of D2 receptors (present results),

which selectively suppress GABAergic transmission (115), the

upregulation of these proteins could additionally potentiate deficits

in GABA and/or deficits in cortical inhibition. Similarly, indirect

effects on GABA neurotransmission and behavioral inhibition may

also have downregulation of TH, which is considered to be the rate-

limiting enzyme of DA synthesis. Nevertheless, additional research is

imperative to comprehensively substantiate the precise etiological

factors, repercussions, and broader implications of impaired

GABAergic signaling in the pathophysiology of individuals with

ADHD. Robust investigations are necessary to deepen our

understanding for more effective treatment of this disorder.
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