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Background: Insular subdivisions show distinct patterns of resting state

functional connectivity with specific brain regions, each with different

functional significance in chronic cigarette smokers. This study aimed to

explore the altered dynamic functional connectivity (dFC) of distinct insular

subdivisions in smokers.

Methods: Resting-state BOLD data of 31 smokers with nicotine dependence and

27 age-matched non-smokers were collected. Three bilateral insular regions of

interest (dorsal, ventral, and posterior) were set as seeds for analyses. Sliding

windows method was used to acquire the dFC metrics of different insular seeds.

Support vector machine based on abnormal insular dFC was applied to classify

smokers from non-smokers.

Results: We found that smokers showed lower dFC variance between the left

ventral anterior insula and both the right superior parietal cortex and the left

inferior parietal cortex, as well as greater dFC variance the right ventral anterior

insula with the right middle cingulum cortex relative to non-smokers. Moreover,

compared to non-smokers, it is found that smokers demonstrated altered dFC

variance of the right dorsal insula and the right middle temporal gyrus.

Correlation analysis showed the higher dFC between the right dorsal insula

and the right middle temporal gyrus was associated with longer years of smoking.

The altered insular subdivision dFC can classify smokers from non-smokers with

an accuracy of 89.66%, a sensitivity of 96.30% and a specify of 83.87%.

Conclusions: Our findings highlighted the abnormal patterns of fluctuating

connectivity of insular subdivision circuits in smokers and suggested that these

abnormalities may play a significant role in the mechanisms underlying nicotine

addiction and could potentially serve as a neural biomarker for addiction treatment.
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Introduction

Tobacco use stands as the foremost risk factor for cancer-related

deaths and years of life lost due to disability (1). Approximately 6

million individuals succumb to smoking-related causes annually,

and this figure is projected to escalate to 8 million by 2030 in the

absence of effective interventions (1). Although achieving cessation

for tobacco use disorder often necessitates multiple attempts, the

addictive nature of tobacco use often leads to unsatisfactory

treatment outcomes (2, 3). Damage to the insular impedes the

compulsion for tobacco consumption, indicating that the insula

holds significant potential as a neuromarker for smoking cessation

(4–6). Investigating the role of the insula in nicotine addiction offers

promise in identifying a target for modifying smoking behavior.

The insula is a highly heterogeneous region, intricately involved in

numerous functions through its functional coupling with distinct

cerebral areas (7). It can be subdivided into three distinct regions: the

dorsal anterior insula (dAI), the ventral anterior insula (vAI), and the

posterior insula (pI) (8). The dAI contributes to cognitive control and

attention by connecting with the anterior cingulate cortex and

dorsolateral prefrontal cortex (9, 10), while the vAI regulates social-

emotional processing and autonomic function through its connections

with the amygdala and orbitofrontal cortex (10, 11). The posterior

insula is linked to primary and secondary somatosensory areas, playing

a crucial role in sensory processing (12). Neuroimaging studies utilizing

the resting-state functional connectivity (FC) method have revealed

abnormal insular networks in smokers. For instance, Compared to

non-smokers, chronic smokers exhibit lower FC between the anterior

insula(AI) and anterior cingulate cortex(ACC), as well as the

ventromedial prefrontal cortex(vmPFC) (13). Longitudinal resting-

state FC studies have shown a significant grater in FC between the

left anterior insula and left precuneus after treatment in quitters,

compared to before treatment (14). Analysis of FC before and after

acute withdrawal indicates a significant positive correlation between the

right vAI and the dorsal anterior cingulate cortex (dACC) prior to

resuming smoking after acute withdrawal. However, no significant

correlation was observed after smoking. This suggests that the right vAI

-dACC circuit may play a role in maintaining smoking behavior (15).

While subdividing insular regions has advanced our understanding of

the role of insula in nicotine addiction, most previous studies have

relied on the assumption of temporally stationary brain connections

and networks during rest (16, 17). Furthermore, existing research has

unveiled that smokers and non-smokers exhibit distinctive resting-state

indices related to dynamic changes in localized neural activity, such as

dynamic regional homogeneity (dReHo) and dynamic amplitude of

low-frequency fluctuations (dALFF) (18). Previous studies employing

dynamic functional connectivity (dFC) methods have found that

smokers experience reduced temporal flexibility and spatiotemporal

diversity in brain networks during acute withdrawal (19). However,

there is a lack of systematic research on dFC of the insula subregions.

Consequently, dynamic regional indexes hold promise as a pioneering

neuroimaging biomarker for discerning smoking behavior.

These findings indicate that functional synchronization

between spatially distinct brain regions evolves dynamically over

the course of resting-state fMRI scans, carrying significant

physiological implications for high-level cognitive functioning
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(20, 21). dFC can capture novel information regarding temporal

fluctuations in coupling strength (21, 22). Both spatial and temporal

characteristics of the insula were considered, studies have suggested

that dFC may offer additional disease-related insights (23, 24).

Research has revealed the dFC of the insula, showing its temporal

flexibility in terms of function, from the standpoint of dFC of

insular subregions, growing evidence was found on brain

dysfunction in autism and schizophrenia (25, 26). For instance,

one study demonstrated specific abnormal insular connections in

autism spectrum disorder, and a linear regression model based on

these aberrant dFC patterns was able to predict symptom severity

(27). Another study observed alterations in dFC of insular

subregions in patients with schizophrenia, and these abnormal

dFC patterns normalized after an 8-week antipsychotic treatment

(28). However, there are currently no reported studies linking it to

nicotine addiction, it remains unclear whether there are specific

dFC patterns within insular subregions in smokers with nicotine

dependence. Further research is needed to understand the

mechanisms and impact of dFC in nicotine addiction. We

therefore undertook a comprehensive analysis of correlations with

dynamic connectivity patterns of these insular subregions.

dFC can be utilized to observe how nicotine alters dynamic

patterns within the brain, thereby potentially identifying biomarkers

of addiction or predictors of treatment outcomes. Support Vector

Machine (SVM) is a supervised machine learning4/algorithm capable

of tackling classification and regression challenges. Consequently, SVM

can be integrated with dFC analysis. If proven to be a reliable classifier,

it could be employed to predict the onset of nicotine addiction, monitor

the progression of the condition, or assess the efficacy of various

treatment strategies. The current study aimed to delineate dFC patterns

within specific subregions of the insula in individuals with nicotine

dependence via a sliding windows method. The SVMwas employed to

assess whether these abnormal dFC within each insular subregion can

accurately distinguish chronic smokers from non-smokers on an

individual level. We hypothesized that chronic smokers exhibit

aberrant dFC patterns within insular subdivisions and that these

atypical fluctuating connections within each insular subdivision may

serve as a discriminative neuromaker for classifying smokers with

nicotine dependence from non-smokers.
Materials and methods

Participants

The current study included 58 male subjects (31 smokers and 27

non-smokers matched for age and education level). Inclusion criteria

were: 1) All participants were right-handed, between the ages of 18–45,

generally good health. 2)Non-smokers are defined as individuals who

have smoked fewer than 10 cigarettes in their lifetime or have never

smoked at all. 3)Nicotine-dependent smokers used combustible

cigarettes containing nicotine for more than one year and at least

four cigarettes per day. Lifetime nicotine dependence diagnosis from

smokers was based on the Diagnostic and Statistical Manual of Mental

Disorders (DSM-IV) (29) criteria using the Structured Clinical

Interview for DSM Disorders (SCID) (30) by two experienced
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psychiatrists. 4) Measurement of exhaled carbon monoxide (CO) levels

was conducted using the Smokerlyzer system (Bedfont Technologies

LTD, Rochester, UK) across all participants. It was established that

exhaled CO concentrations of ≥6 ppm are indicative of smokers, while

a CO content of ≤3 ppm characterizes non-smokers. Smokers and

non-smokers were excluded if they: 1) had learning disabilities or

central nervous system dysfunctions; 2) had any current or previous

major medical or psychiatric disorders; 3) current use intravenous

drugs; 4) had undergone current or previous use of electroconvulsive

therapy (ECT) or brain stimulation therapies; 5) had a history of head

injury with skull fracture or a loss of consciousness for more than 10

minutes; 6) had a family history of psychotic disorder; 7) met substance

dependence diagnosis (excluding nicotine dependence for smokers

groups); 8) pregnancy or contraindications for MRI. 9) Participants

were excluded from the study if head translation exceeded 2 mm or if

rotational movement surpassed 2 degrees during MRI scans. Written

informed consent was obtained from all participants prior to the study.
MRI data acquisition

The brain images were obtained using a Siemens Magnetom

Trio 3.0 T MRI scanner with an eight-channel head coil at the

Magnetic Resonance Center of Hunan Provincial People’s Hospital

in China. The scan range encompassed the entire brain, extending

from the vertex of the skull down to the base. The acquisition

protocol included standard sequences. Gradient echo sequence was

used to acquire three-dimensional T1-weighted brain structural

images with the following parameters: repetition time = 2,000 ms,

echo time = 2.26 ms, field of view = 256 × 256 mm, flip angle = 8°,

matrix size = 256 × 256, number of slices = 176, slice thickness = 1

mm. The functional images were acquired using an echo-planar

imaging sequence with the following parameters: repetition time =

2,000 ms, echo time = 30 ms, time points = 210, slice thickness =

4.00 mm, flip angle = 90°, matrix = 64 × 64, field of view = 220 × 220

mm2. While acquiring fMRI data, especially in fMRI scans, subjects

were instructed to keep their eyes closed, not think of anything, and

avoid falling asleep.
MRI data pre-processing

Data processing involved the use of DPABI (31) (http://

www.rfmri.org/), SPM (http://www.fil.ion.ucl.ac.uk/spm/), and

custom MATLAB code for analysis. The functional images

underwent standard preprocessing steps. Initially, the first ten

volumes were excluded to account for magnetization equilibration

effects and participant adaptation. Subsequently, time delay between

slices was corrected and the images were realigned to the first volume

for head- movement correction. This process estimated translations

and rotations for each volume, indicating head motions. The

maximum displacements for all participants were below 2 mm in

each axis, and the angular motion was also below 2 for each axis. To

control for confounding factors, linear regression was applied,

considering six motion parameters along with white matter and

cerebrospinal fluid signals. The images were then normalized to the
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Montreal Neurological Institute standard stereotactic space with a

voxel size of 3 mm × 3 mm × 3 mm. Following normalization, a 6-

mm full-width at half-maximumGaussian kernel was used to smooth

the images. Finally, temporal bandpass filtering was applied to retain

frequencies between 0.01 and 0.08 Hz.
Dynamic functional connectivity seed-
based analysis

The subdivisions of insula were defined according to the report

by Deen et al (8) (Figure 1). Specifically, the insula was divided into

three subregions in each hemisphere: the ventral anterior insula

(vAI), the dorsal anterior insula (dAI) and the posterior insula (pI).

The MNI coordinates of six spherical ROIs with 6-mm radius split

from insula were defined as follows: the left vAI (MNI: −33, 13, −7),

right vAI (MNI: 32, 10, −6), left dAI insula (MNI: −38, 6, 2), right dAI

(MNI: 35, 7 3), left pI (MNI: −38, −6, 5), right pI (MNI: 35, −11, 6).

A sliding-window method with hamming windows was used to

assess dynamic functional connectivity (dFC) maps. Following the

parameters set in previous studies (32, 33), the window size and the

step of slide were set to 50 TRs (100s) and 1 TR (2s), respectively,

which resulted in 151 windows. Within each window, the

correlation coefficients were transformed to z-values using

Fisher’s z transformation. Subsequently, the standard deviation

(SD) of dFC over the 151 windows was calculated for each voxel

to quantify dFC variability.
Statistical analyses

The demographic data of the two cohorts, namely the smokers

and the healthy controls, were subjected to statistical comparison

employing the two-sample t-test and c2 test. Group differences in

dFC variance of insula between smokers and healthy controls were

also assessed using the two-sample t-test. To address multiple

comparisons, Gaussian random field correction (GRF) was

applied with a threshold of voxel p < 0.005 and cluster p < 0.05

(two-tailed). The relationship between significant findings from

dFC variance and smoking-related variables (including Smoking

Year, Smoking Per Day, and the Fagerström Test for Cigarette

Dependence [FTCD]) was evaluated using Pearson correlation. For

multiple comparison corrections, the false discovery rate (FDR) was

conducted with a threshold p < 0.05.
Classification analysis and
permutation tests

To evaluate whether the variance of functional connectivity

(dFC) in insular subregions can distinguish between smokers and

non-smokers, a SVM classification model was employed. This

machine-learning technique is widely used in classification tasks.

The SVM model was trained using a leave-one-out cross-validation

(LOOCV) approach on the significant group differences in dFC

variance. In this process, the dataset with 58 observations was
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divided into 58 folds. For each fold, one subject was excluded from

the training set to act as a test data point, while the remaining

subjects were used to construct and train the classification models.

This iterative process ensures that each observation serves as a test

data point at least once, allowing for a comprehensive evaluation of

the model’s performance. In SVM, a set of features (e.g., functional

connections) and corresponding labels (e.g., smoker and non-

smoker) are used to train the model. The training process finds

the optimal hyperplane that maximally separates the training data.

This allows the model to predict the label (group) of new

observations based on their derived features. To assess the

performance of the classifier, a permutation test was conducted

with 10,000 iterations. In each iteration, the class labels were

randomly permuted, and the classification accuracy was

recalculated. The classification performance was considered

reliable if the actual classification accuracy exceeded the 95%

confidence interval of the randomly permuted labels. In addition,

quantitative measurements, including the area under the receiver

operating characteristic curve (AUC), sensitivity, and specificity,

were computed. The AUC provides a comprehensive assessment of

the classifier’s effectiveness based on the ROC curve. Sensitivity

measures the proportion of true positive samples (smokers)

correctly identified, while specificity measures the proportion of

true negative samples (non-smokers) correctly identified.
Results

Sample characteristics

Table 1 presents the characteristics of 31 male nicotine

dependent smokers and 27 male drug-free HC. It includes
Frontiers in Psychiatry 04
demographics and nicotine use patterns (smoking duration, daily

cigarette consumption, FTCD scale score). There were no

significant group differences in age and years of education.
The dFC variance difference between
smokers and HC

Compared to HC, nicotine-dependent smokers exhibited lower

dFC variance between the left vAI and right superior parietal cortex

(SPC) and left inferior parietal cortex (IPC) in smokers (p<0.05,

GRF corrected, Figure 1 and Table 2). We also found smokers

showed significantly greater dFC variance between the right vAI

and right middle cingulum cortex (MCC). Lower dFC variance

between the right dAI and right middle temporal gyrus (MTG) and

the right cerebellum Crus2 was observed when compared to

smokers and HC. All displayed results were based on the brain

region definitions provided by the AAL template.
Brain-behavior analysis

The results revealed a positive correlation between years of

smoking and dFC variance between the right dAI and the right

MTG (r = 0.465, p = 0.008) (Figure 2). However, no significant

correlations were observed with Smoking Per Day or FTCD score.
Machine Learning Analysis

As shown in Figure 3, the SVM classification model can

differentiate smokers from HC with an accuracy of 89.66% (AUC
FIGURE 1

The group difference in dFC variance of insular subregions (voxel p < 0.005, cluster p < 0.05, Gaussian random field corrected). L, left; R, right; vAI,
ventral anterior insula; dAI, dorsal anterior insula.
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= 0.951, sensitivity = 96.30%, specify). The permutation tests

revealed a significantly higher classification accuracy based on

actual labels in relative to random labels (p < 0.001).
Discussion

In this study, we investigated abnormal dFC patterns of specific

insula subregions in nicotine dependent smokers in relative to HC.

Smokers exhibited lower dFC variance between insular subregions

and SPC, IPC, MTG, and cerebellum. They also showed grater dFC

variance between insular subregions and MCC. Correlation analysis

demonstrated that dFC variance between the right dAI and right

MTG was positively related with years of smoking. Classification

model based on abnormal dFC variance can identify smokers from

HC with an accuracy of 89.6%. These findings may provide novel

insights into insula functional activity for smokers with

nicotine dependence.

We found that smokers with nicotine dependence showed

abnormal dFC variance between the vAI and SPC, IPC and MCC

compared to HC. The anterior insula, a key hub of the salience

network, is implicated in cognitive and affective functions. Notably,

smokers exhibit heightened activation in the anterior insula during

cue-induced tasks (34). The SPC and IPC are parts of dorsal

attention network which involved in visual-spatial attention (35).
Frontiers in Psychiatry 05
Previous studies found that altering the circuits between the

anterior insula and SPC in smokers plays a crucial role in

nicotine dependence and is coupled with action triggered by

smoking cues in the left dAI (34). Abnormal dFC variance

between the vAI and parietal regions in smokers may be linked to

impaired cognitive processing of tobacco-use cues. MCC is

recognized for its pivotal role in response selection and feedback-

guided decision making (36). Attenuated activation was observed in

the anterior insula and MCC in individuals with stimulant use

disorder when performing a Paper-Scissors-Rock task (37), which is

similar to our results showing lower connectivity of the dAI with

MCC over time.

The lower dFC variance between the dAI and MTG and

cerebellum in smokers with nicotine dependence were revealed in

relative to HC. The dAI is considered to be implicated in cognitive

control process, such as detection of novel salient stimuli. The

alteration in dFC between the dAI and MTG is lined with a study,

which showed lower connectivity of the anterior insula with the

MTG in mild cognitive impairment smokers (38). We speculated

that this finding may contribute to the effect of tobacco on cognitive

control impairment. Additionally, this abnormal dFC of the dAI

and MTG in smokers was related with years of smoking. This aligns

with the notion that prolonged drug use leads to a shift from

reward-directed behavior to habitual and compulsive behavior in

individuals with substance use disorder (7, 39), providing additional
TABLE 2 The group difference between smokers and HC in dFC variance of insular subdivisions.

Anatomical region
Cluster
size
(voxels)

Peak coordinates
Peak T-value

X Y Z

The left ventral anterior insula

The right Superior parietal cortex 43 24 -69 51 -3.73

The left inferior parietal cortex 48 -39 -57 57 -4.30

The right ventral anterior insula

The right middle cingulum cortex 55 3 9 36 3.96

The right dorsal insula

The right middle temporal gyrus 62 66 -39 -6 -4.34

The right cerebellum Crus2 46 9 -84 -42 -3.71
TABLE 1 Participant characteristics of nicotine-dependent smokers and health controls.

Smokers HC T/X P value

Sex (M) 31 27

Age 30.32 ± 6.48 29.37 ± 5.56 0.596 0.554

Education 12.65 ± 2.26 13.70 ± 2.60 -1.660 0.103

CO Levels(ppm) 15.90 ± 8.98 1.52 ± 0.75 8.293 <0.001

Smoking Year 8.87 ± 6.63

Smoking Per Day 12.26 ± 8.19

FTCD 5.74 ± 1.36
Values are presented as the mean ± SD. HC, health control.
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evidence for the link between alterations in dFC and cognitive

control processes. We also found smokers showed lower dFC

variance between the dAI and cerebellum. Upon conducting

VBM analysis, it was discovered that individuals with substance

use disorder showcased a reduction in gray matter volume in the

insula and cerebellum regions (40, 41), consistent with our finding.

Furthermore, coactivation of the insula and cerebellum were found

in individual with substance use disorder during inhibitory

control (42).

A classification model based on the dFC variance of the insula

demonstrated promising potential for accurately diagnosing

individuals with nicotine dependence. Previous studies had

established resting-state fMRI as a valuable tool for objectively

classifying psychiatric disorders and identifying disease-related

neuromarkers at the individual level (43, 44). Traditionally,

clinical diagnosis of substance use disorder was primarily reliant

on behavioral symptoms (45, 46). Our findings suggested that
Frontiers in Psychiatry 06
incorporating dynamic features of insular could potentially offer a

novel and objective neural biomarker for addiction treatment.

The present investigation possesses certain constraints. Firstly,

the magnitude of the sample was comparatively modest, which

could potentially limit the generalizability and statistical power for

detecting subtle effects, especially for machine learning analysis, this

makes the results less valid. Furthermore, The findings are based on

a relatively lenient statistical threshold, which may have a potential

bias introduced by multiple corrections across distinct insular

subregions. Further studies should explore differences in the

insular dFC between smokers and healthy controls using a larger

sample size and a more stringent statistical threshold to mitigate

potential biases, which is currently in progress. Secondly, our

analysis only included male subjects, as the prevalence of male

smokers is typically dozens of times that of female smokers. The

impact of sex on group differences in dFC of insular subregions

should be further explored. Thirdly, recent research indicated that

test-retest reliability is low in resting state functional connectivity

analysis, Hower, some studies have highlighted the enhanced

reliability of dFC variance compared to other FC measures, such

as brain states (47, 48). Fourthly, physiological signals, including

cardiac and respiratory signals, could introduce artifacts into the

research, however, our experiment did not involve the collection of

these signals. In addition, given that smokers may have high

comorbidity rates with conditions such as alcohol use and

depression, it’s essential to note that the current study was unable

to estimate the interaction between alcohol use/depression due to

the lack of this information. Further studies should delve into

exploring the potential effects of comorbid conditions on the dFC.

Finally, our findings are derived from a cross-sectional analysis

conducted on a single dataset. It is crucial to assess the stability of

changes in dFC within specific insular subregions among

individuals grappling with nicotine dependence. Considering the

well-established importance of the insula in sustaining nicotine

addiction, it becomes imperative to delve deeper into the interplay

between the dynamic properties of the insula and addiction

treatment outcomes, including the risk of relapse, in future

research. This can be achieved through comprehensive
A B

FIGURE 3

The performance of the classification model. (A) The area under the curve and (B) the permutation test results.
FIGURE 2

Relationship between years of smoking and dFC variance between
the right dAI and right MTG. dFC, dynamic functional connectivity;
dAI, dorsal anterior insula; MTG, middle temporal gyrus.
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investigations involving follow-up data and diverse datasets for a

more comprehensive understanding of the subject.
Conclusions

To sum up, the findings of this present investigation

demonstrated dynamic features within the various insular

subregions. We observed that smokers with nicotine dependence

exhibited variance in dFC between the anterior insula and cortical

regions, including the IPC, SPC, MCC, and MTG. These abnormal

dFC patterns may serve as a diagnostic tool for identifying nicotine

addiction. Our findings suggested that the dynamic features of the

insula may play a significant role in the mechanisms underlying

nicotine addiction and could potentially serve as a neural biomarker

for addiction treatment.
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