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Objective: Although extensive structural and functional abnormalities have been

reported in schizophrenia, the gray matter volume (GMV) covariance of the

amygdala remain unknown. The amygdala contains several subregions with

different connection patterns and functions, but it is unclear whether the GMV

covariance of these subregions are selectively affected in schizophrenia.

Methods: To address this issue, we compared the GMV covariance of each

amygdala subregion between 807 schizophrenia patients and 845 healthy

controls from 11 centers. The amygdala was segmented into nine subregions

using FreeSurfer (v7.1.1), including the lateral (La), basal (Ba), accessory-basal (AB),

anterior-amygdaloid-area (AAA), central (Ce), medial (Me), cortical (Co),

corticoamygdaloid-transition (CAT), and paralaminar (PL) nucleus. We

developed an operational combat harmonization model for 11 centers,

subsequently employing a voxel-wise general linear model to investigate the

differences in GMV covariance between schizophrenia patients and healthy

controls across these subregions and the entire brain, while adjusting for age,

sex and TIV.

Results: Our findings revealed that five amygdala subregions of schizophrenia

patients, including bilateral AAA, CAT, and right Ba, demonstrated significantly

increased GMV covariance with the hippocampus, striatum, orbitofrontal cortex,

and so on (permutation test, P< 0.05, corrected). These findings could be

replicated in most centers. Rigorous correlation analysis failed to identify
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relationships between the altered GMV covariance with positive and negative

symptom scale, duration of illness, and antipsychotic medication measure.

Conclusion: Our research is the first to discover selectively impaired GMV

covariance patterns of amygdala subregion in a large multicenter sample size

of patients with schizophrenia.
KEYWORDS

schizophrenia, amygdala subregions, gray matter volume, structural covariance,
magnetic resonance imaging
Introduction

Schizophrenia (SCZ), as a mental disorder with a high rate of

disability, has a serious influence on the normal life of patients and

their families, and imposes a significant burden on society (1). The

main clinical symptoms of schizophrenia patients include

hallucinations, disorganized thinking, impaired executive ability,

and reduced emotional expression (2). Numerous neuroimaging

studies of SCZ have demonstrated the abnormalities in multiple

brain regions, especially the prefrontal cortex (PFC) (3) and

hippocampus (4), and proposed a hypothesis that SCZ is a

widespread dysconnection disorder (5). Recently, the amygdala

has been a research focus in human mental health (6), and shows

a close relationship with the pathophysiology of schizophrenia (7).

As a connecting hub, the amygdala has extensive connections to

cortical and subcortical areas such as the frontal lobe, temporal lobe,

and striatum (8), and plays important roles in emotional processing,

memory encoding, and executive control functions (7). Research has

highlighted that the medial prefrontal lobe, which exhibits significant

connectivity with the amygdala, plays a crucial role in modulating

stress, facilitating social cognition, making decisions in events, and

regulating emotions (9–11). Furthermore, evidence suggests that

negative psychological states, such as stress or anxiety, can impair

the regulatory functions of the medial prefrontal-amygdala circuit (12,

13). In parallel, the amygdala’s direct and robust connection with the

hippocampus is essential for processing contextual memories and

behaviors (14–16). Investigations using structural MRI have revealed

a reduction in amygdala volume in schizophrenia patients and their

first-degree relatives compared to healthy subjects (17–19). Studies

utilizing resting state functional MRI studies have identified

disturbances in the amygdala’s functional connectivity with other

cerebral regions (20–23). Such structural and functional anomalies

contribute to cognitive deficits in schizophrenia (24, 25). Therefore, the

disrupted amygdala connectivity may serve as a potential trigger for

schizophrenia, and its intensive study contributes to our understanding

of the pathophysiological mechanisms of schizophrenia (26).

The amygdala can be defined as a more detailed heterogeneous

complex of nuclei due to its different cytoarchitecture,

neurotransmitters, and connectivity patterns (27). It has been
02
demonstrated that different heterogeneous nuclei are embedded in

various connectivity pathways and perform roles in processing different

cognitions. For instance, the cortical nucleus is the main projection

nucleus of the olfactory cortex (27); the lateral nucleus has a significant

role in the fear conditioning reflex (28); the central nucleus receives

information input from the hippocampus (29). Reductions in the

volume of refined amygdala nuclei were apparent in schizophrenia:

all nuclei except the medial nucleus, suggesting a more widespread

change in amygdala morphology than previously thought (30).

According to the dysconnection hypothesis, schizophrenia is

characterized by a reduced ability to integrate information between

distinct brain regions (5, 31, 32). Structural covariance is often used

to analyze the topology of the brain as a method capable of testing

for connectivity deficits in brain regions. Differences in internal

covariance patterns between schizophrenia and healthy controls

were revealed by calculating correlations in morphological

indicators such as volume, cortical thickness, or surface area of

brain regions (33). Recently, based on the more refined

segmentation approach, researchers found that the amygdala

subregions exhibit selective regional structural damages in

schizophrenia patients (30, 34). Thus, we have developed a

hypothesis that the gray matter volume (GMV) covariance of

amygdala subregions would be selectively impaired in

schizophrenia. To test this hypothesis, we investigated whether

GMV covariance of amygdala subregions selectively differs

between schizophrenia and healthy controls; moreover, we tried

to validate if the impairment patterns could be replicated by

multicenter datasets from multiple first-episode versus non-first-

episode schizophrenia centers.
Materials and methods

Subjects

A total of 11 datasets was enrolled in the study as follows: 2 first-

episode schizophrenia local datasets (FE_Guangzhou and

FE_Harbin) and 9 non-first-episode schizophrenia local and

public datasets with 5 local (NFE_Tianjin1, NFE_Tianjin2,
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NFE_Shanghai, NFE_Harbin and NFE_Wuhan) and 4 public

datasets (NFE_BrainGluSchi [www.schizconnect .org] ,

NFE_COBRE [http://fcon_1000projects.nitrc.org/indi/retro/

cobre.html], NFE-NMorphCH [www.schizconnect.org] and

NFE_UCLA [https://openneuro.org/datasets/ds000030/versions/

00016]). The patients with schizophrenia were diagnosed by the

structured clinical interview in DSM-IV. Exclusive criteria were

contraindications to MRI; intracerebral lesions or structural

abnormalities; no history of mental illness; no history of alcohol,

drug, or substance abuse; female subjects were not pregnant or

lactating. Other exclusive criteria for healthy controls were a history

of any Axis I or II disorder and psychiatric disorders and first-

degree relatives with psychiatric disorders. Our definition of a

patient with first-episode schizophrenia was that the patient was

not on antipsychotic medication or had not been on medication for

more than two weeks at the time of inclusion in the trial. To

eliminate possible effects of covariates on the results, we matched

the age and sex of healthy controls (HC) to patients with

schizophrenia in each center separately. Eventually, we included

831 schizophrenia patients and 851 healthy controls. The studies

involving human participants were reviewed and approved by the

Ethics Committee of Tianjin Medical University General Hospital,

Tianjin, China. The patients/participants provided their written

informed consent to participate in this study. Relevant Institutional

Review Boards also approved the four public test-retest datasets,

and detailed recruitment information was provided on the website.
MRI data acquisition

During the acquisition, subjects were told to keep their bodies

still, to immobilize their heads using comfortable and tight foam

pads, and to use earplugs to reduce scanning noise. Structural MRI

data were all acquired by 3.0T MRI scanners, including two GE

MR750 scanners, four Siemens Trio Tim scanners, one Siemens
Frontiers in Psychiatry 03
Prisma, one Siemens Prisma_fit scanner, one Philips Ingenia, and

one Philips Achiva scanner. A 3D fast spoided gradient echo

sequence was used to acquire the high-resolution T1-weighted

structural MRI images. The scanner information, sequence, and

acquisition parameters are shown in Table 1. To ensure the image

quality of the dataset, each MRI image was scrutinized by two

experienced MRI experts (W.Q and H.L). We removed 30 subjects

with obvious artifacts (head motion artifacts, wrap-around artifacts,

metal artifacts, etc.), including 24 patients with schizophrenia and 6

healthy controls. Finally, the T1 structural MRIs of 1652

participants, including 807 schizophrenia patients and 845

healthy controls, were included in the following analyses.
Amygdala segmentation

Previous neuroimaging approaches divided the amygdala into

2-4 nuclei (35–38). However, most of these amygdala atlases are

group-based and ignore the inter-subject variability of the

subfields’ boundaries, which may introduce bias in calculating

the covariance between these amygdala subfields and other brain

regions. Thus, in this study, we turn to apply an individual-level

segmentation atlas to define the amygdala subfields, which has

been incorporated into the FreeSurfer software package v7.1.1

(http://surfer.nmr.mgh.harvard.edu/). This automatic atlas

segments the amygdala subfields based on each person’s high-

resolution MRI data and Bayesian inference algorithm with

postmortem specimens at high resolution at 7T field strength as

reference (39). The amygdala of each subject was automatically

segmented into 9 subregions per hemisphere: lateral (La), basal

(Ba), accessory-basal (AB), anterior-amygdaloid-area (AAA),

central (Ce), medial (Me), cortical (Co), corticoamygdaloid-

transition (CAT), paralaminar (PL) nucleus (39). Finally, we

extracted the volume of each amygdala subregion and the total

volume for each side of the amygdala.
TABLE 1 Scanning information for structural MRI in each Research Centers.

Center Vendor Model Field Sequence TR/TE/TI (ms) FA (°) Matrix size

FE_Guangzhou Philips Achieva 3T TFE 8.2/3.8/0 7 256 × 256

FE_Harbin GE MR750 3T BRAVO 8.2/3.2/450 12 256 × 256

NFE_Tianjin1 GE MR750 3T BRAVO 8.2/3.2/450 12 256 × 256

NFE_Tianjin2 Siemens Prisma 3T MPRAGE 2000/2.3/900 8 256 × 256

NFE_Shanghai Siemens Prisma_fit 3T MPRAGE 2000/2.3/900 8 256 × 256

NFE_Wuhan Philips Ingenia 3T TFE 6.8/3.1/0 7 256 × 256

NFE_Harbin GE MR750 3T BRAVO 8.2/3.2/450 12 256 × 256

NFE_BrainGluSchi Siemens Trio Tim 3T MPRAGE 2530/1.6/1200 7 256 × 256

NFE_COBRE Siemens Trio Tim 3T MPRAGE 2530/1.6/1200 7 256 × 256

NFE_NMorphCH Siemens Trio Tim 3T MPRAGE 2400/3.2/1000 8 256 × 256

NFE_UCLA Siemens Trio Tim 3T MPRAGE 2530/3.3/1100 7 256 × 256
TR, Repetition time; TE, Echo Time; TI, Inversion time; FA, Flip angle.
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Gray matter volume calculation

Other cerebral areas’ absolute GMV and total intracranial

volume (TIV) were obtained by the new segment pipeline using

SPM12 (SPM12; http://www.fil.ion.ucl.ac.uk) with steps including

bias correction, segmentation, spatial normalization using

Diffeomorphic Anatomical Registration Through Exponentiated

Lie Algebra (DARTEL) algorithms, Jacobian modulation,

and smoothing with full width at half maximum (FWHM) kernel

of 8×8×8mm3.
Statistics for GMV covariance alterations
pattern of amygdala subregions

In order to eliminate systematic deviations in the eleven center

GMVs, combat harmonization model was carried out before

statistics, in which the center IDs were defined as the batch

variable, and group, age, sex and total intracranial volume (TIV)

were considered as biological covariates (40, 41). Then, we

employed a general linear model (GLM) to construct an

interaction model between the group (schizophrenia vs. healthy

controls) and the volume of the amygdala subregions. This model

has been frequently used to estimate the structural covariance

coefficient map of a seed region across subjects, and to compare

intergroup differences in their covariance coefficient at the voxel

level (42, 43). Specifically, the basic idea of the GLM for structural

covariance comparison in the present study is to estimate the

covariate coefficients between each amygdala subregion and each

other brain voxels for schizophrenia patients and healthy control

groups, respectively. Then, a two-sample t-test was employed to

compare whether the covariate coefficients between the two groups

differed, with age, sex, and total intracranial volume (TIV) as

nuisance confounders [equation (1)]:

GMV = b1 : SCZ + b2 :HC + b3 :VolSSCZ + b4 :VolSHC

+ bcovs :Covs (1)

where GMV denotes the gray matter volume per voxel, SCZ and

HC represent schizophrenia and healthy controls, respectively. VolS

denotes the volume of the amygdala subregion, and Covs refers to

covariates that need to be controlled for. b3 and b4 signify the

covariate coefficients for schizophrenia and healthy controls. The

effect is the difference between these covariate coefficients, expressed

as b3-b4. The assessment of whether this covariate difference is

significant was performed using a non-parametric permutation-

based two-sample t-test (with 5,000 permutations) and further

employing threshold-free cluster enhancement (TFCE) combined

with family-wise error (FWE) correction to control for false

positives due to multiple comparisons at the voxel level. To

further correct the multiple comparisons false positives derived by

multiple subregions, we evaluated the effective numbers of

independent tests Meff (6.17 times) (44), and at last, using a strict

threshold for the statistics of all amygdala subregions (P< 0.05

[TFCE-FWE threshold]/6.17 = 0.0081). To clarify whether there is
Frontiers in Psychiatry 04
an advantage by sub-regional analysis, we conducted the same GLM

to compare the intergroup differences in GMV covariance of the

whole left and right amygdala with the same significant threshold as

the subregions. Finally, to validate the stability of the covariance

pattern alterations in each of the 11 datasets, we extracted the

average GMV of the brain with changed covariance in each

amygdala subregion and carried out ROI-wise GLM described

above for each site.

Furthermore, to better observe the alteration of subregional

structure, we employed a GLM model to investigate whether there

were GMV differences in whole amygdala and each of its subregions

between schizophrenia patients and healthy controls within both

male and female subgroups, taking age and TIV as confounding

confounders (P< 0.0081). Additionally, we compared whether there

were inter-sex differences between the observed differences in the

male group and those observed in the female group.
Target region definition and revealing
subregion-specific covariance
disruption patterns

To reveal the amygdala subregion-specific covariance disruption

patterns of schizophrenia, we extract the average GMV of brain region-

of-interest (ROI) with changed covariance in at least one amygdala

subregion. This procedure was performed with the following steps: (1)

for each subregion’s statistic map, we generated a binary mask where

intergroup differences of the GMV covariance between this subregion

and voxel within the mask survived; (2) we merged these binary masks

of all amygdala subregion into a union mask; (3) we identified the

intersection voxels between the union mask and each AAL3 region

(45); (4) we calculated the overlapping ratio between the intersection

voxels and each ALL region; (5) we selected the target ROIs with the

criteria: the overlapping ratio is greater than 15% the volume of

overlapping region is greater than 1mm3; (6) finally, the average

GMV of each target ROIs was extracted for each subject.

We then carried out ROI-wise GLM to compare the intergroup

differences in GMV covariance between each amygdala subregion

and target ROI. We generated fingerprints plot to demonstrate the

unique structural covariance disruption patterns between amygdala

subregions in schizophrenia. This plot had been applied to

represent the unique spatial connectivity patterns of a specific

brain subregion that differentiated it from other subregions (46,

47). Besides, we conducted a sex-specific analysis, which could

provide valuable insights into whether the observed GMV

covariance disruptions are differed between the females or males.

We further explored whether these abnormal GMV covariance

patterns were replicable across different data centers.
Association between the GMV covariance
and clinical features

The clinical features included the Positive and Negative

Syndrome Scale (PANSS), duration of illness, and dose of
frontiersin.org
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antipsychotic medication (chlorpromazine equivalent doses) (48).

A Spearman correlation analysis was performed between the GMV

covariance alterations and the clinical features (P< 0.05).
Results

Demographic characteristics

We finally included 807 schizophrenia patients (32.44 ± 10.34

years, 484 males) and 845 healthy controls (32.57 ± 10.47 years, 491

males). The detailed demographic information of the subjects is

displayed in Table 2. There were no statistical group differences in

age (F = 1.09, P = 0.79) or sex (c2 = 0.60, P = 0.44). There were no

significant differences in either sex or age between schizophrenia

patients and healthy controls in each center (P > 0.05).
Frontiers in Psychiatry 05
Altered GMV covariance patterns of
amygdala subregions in schizophrenia

We found significantly increased GMV covariance patterns in

five amygdala subregions, L_AAA, R_AAA, L_CAT, R_CAT and

R_Ba (Figure 1). Among them, changed GMV covariance was

found in both hemispheres of anterior-amygdaloid-area and

corticoamygdaloid-transition with a relatively stable altered GMV

covariance patterns. Both bisymmetric AAA subregions exhibited

increased GMV covariance with the bilateral putamen.

Additionally, the R_AAA subregion also showed increased GMV

covariance with the bilateral caudate nucleus, hippocampus, and

parahippocampal gyrus. The bilateral CAT subregions

demonstrated the most extensive significant GMV covariance

alterations, including the bilateral putamen, caudate nucleus,

hippocampus, parahippocampal gyrus, olfactory cortex, anterior
TABLE 2 Demographic information of recruited datasets.

SCZ HC Statistics P

Total Age(years) 32.44(10.34) 32.57(10.41) F = 1.09 0.793

Sex(M/F) 484/323 491/354 c2=0.60 0.440

FE_Guangzhou Age(years) 21.76(7.62) 20.13(6.00) F = 4.44 0.145

Sex(M/F) 44/40 41/30 c2=0.45 0.504

FE_Harbin Age(years) 31.62(8.66) 32.41(9.08) F = 0.02 0.546

Sex(M/F) 38/40 59/52 c2=0.36 0.548

NFE_Tianjin1 Age(years) 34.01(9.86) 33.78(11.15) F = 8.95 0.872

Sex(M/F) 58/57 48/57 c2=0.49 0.484

NFE_Tianjin2 Age(years) 34.22(8.92) 34.69(10.01) F = 0.59 0.743

Sex(M/F) 45/37 46/53 c2=1.27 0.260

NFE_Shanghai Age(years) 29.82(8.31) 28.73(7.40) F = 0.28 0.538

Sex(M/F) 15/18 32/17 c2=3.18 0.075

NFE_Wuhan Age(years) 32.44(6.87) 31.18(7.61) F = 0.95 0.304

Sex(M/F) 53/37 31/24 c2=0.09 0.765

NFE_Harbin Age(years) 32.57(10.88) 32.41(9.08) F = 2.74 0.905

Sex(M/F) 38/49 59/52 c2=1.75 0.186

NFE_BrainGluSchi Age(years) 34.74(12.47) 38.92(12.74) F = 0.26 0.077

Sex(M/F) 60/5 45/7 c2=1.05 0.307

NFE_COBRE Age(years) 36.75(12.48) 37.79(11.13) F = 3.06 0.573

Sex(M/F) 64/16 60/23 c2=1.33 0.249

NFE_NMorphCH Age(years) 32.70(7.32) 30.31(8.10) F = 0.62 0.172

Sex(M/F) 31/12 19/17 c2=3.15 0.076

NFE_UCLA Age(years) 36.46(8.88) 34.84 F = 0.04 0.315

Sex(M/F) 38/12 51/22 c2=0.56 0.455
frontier
Numerical variables are presented as means (standard deviations).
SCZ, Schizophrenia; HC, Healthy control; M/F, Male/Female; FE, First episode schizophrenia center; NFE, Non first episode schizophrenia center.
First episode schizophrenia center: FE_Guangzhou; FE_Harbin.
Non first episode schizophrenia center: NFE_Tianjin1; NFE_Tianjin2; NFE_Shanghai; NFE_Wuhan; NFE_Harbin; NFE_BrainGluSchi; NFE_COBRE; NFE_NMorphCH; NFE_UCLA.
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and middle cingulate cortex, fusiform gyrus, lingual gyrus, and

superior frontal gyrus. Increased GMV covariance of R_Ba with

bilateral accumbens nucleus and the left putamen.

Moreover, the trend of the altered GMV covariance patterns

can be replicated in most centers, such as FE_Harbin,

NFE_Tianjin1, NFE_Tianjin2, NFE_Shanghai, NFE_Wuhan,

NFE_Harbin, NFE_BrainGluSchi, NFE_COBRE. Specifically, we

validated the increased GMV covariance pattern of R_AAA
Frontiers in Psychiatry 06
except for the NFE_NMorphCH center and the pattern of

R_CAT except for the NFE_UCLA center. However, the

FE_Guangzhou and NFE_NMorphCH obtained opposite results

in the subregions of L_AAA, L_CAT, and R_Ba.

In Figure 2A, we present a visualization of the amygdala

subregions. In Figure 2B, we demonstrated two binary masks for

amygdala subregions versus whole amygdala, allowing us to

compare significant findings between amygdala subregions and
FIGURE 1

Altered GMV covariance patterns of the five amygdala subregions in patients with schizophrenia and the validation across centers. The color bar
indicates the intensity of altered GMV covariance in schizophrenia (t-value). The forest plots represent the effect size (also known as Hedges’
adjusted g*) for inter-group GMV covariance differences of the five amygdala subregions in each centers. L_AAA, Anterior-amygdaloid-area of left
hemisphere; R_AAA, Anterior-amygdaloid-area of right hemisphere; L_CAT, Corticoamygdaloid-transitio of left hemisphere; R_CAT,
Corticoamygdaloid-transitio of right hemisphere; R_Ba, Basal nucleus of right hemisphere. L, left, R, right. SCZ, Schizophrenia, HC, Healthy control.
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the whole amygdala. We observed that the whole amygdala only

showed increased GMV covariance with the bilateral thalamus and

basal ganglia. In contrast, the amygdala subregion analyses revealed

more distributed brain regions with increased covariance, including

the frontal, occipital, and temporal lobes. Our results demonstrated

that the subregional analysis could uncover more GMV covariance

abnormalities and may improve our understanding of the different

roles of amygdala subregions in the pathological process

of schizophrenia.

At the same time, our analysis revealed that the GMV was

significantly reduced in the whole amygdala across both

hemispheres for both male and female subgroups of

schizophrenia patients. In the male subgroup, GMV was

significantly lower in all subregions except for bilateral Ce, Me

and right Co. Conversely, in the female subgroup, all subregions

exhibited significantly reduced GMV except for the bilateral Ce, Me,

PL. There were no inter-sex differences in the observed differences

between the male and female groups (P > 0.05) (Figure 3).
Specific differential GMV covariance
patterns of amygdala subregions

According to the target ROIs defined in the methods, we

selected 28 target ROIs, including pregenual part of anterior

cingulate cortex (ACCpre), subgenual part of anterior cingulate

cortex (ACCsub), supra callosal part of anterior cingulate cortex

(ACCsup), caudate nucleus (CAU), hippocampus (HIP),

accumbens nuc leus (Nacc) , o l f ac tory cor tex (OLF) ,

parahippocampal gyrus (PHG), putamen (PUT), pallidum (PAL),

thalamus (THA) in the bilateral cerebral hemispheres, medial

orbital part of superior frontal gyrus (PFCmed), and fusiform

gyrus (FFG) in the right cerebral hemisphere, and calcarine
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fissure and surrounding cortex (CAL), cuneus (CUN), lingual

gyrus (LING) , and rec tus gyrus (REC) in the l e f t

cerebral hemisphere.

To visualize the specific differential GMV covariance patterns of

each amygdala subregion, we calculated the differential GMV

covariance fingerprints between each amygdala subregion and the

28 target ROIs (Figure 4). Relative to the HC, the L_AAA of

schizophrenia exhibited mostly strengthened covariance with

bilateral PUT; R_AAA had stronger covariance with bilateral HIP

in schizophrenia; L_CAT mainly showed greater covariance with

the OLF_L in schizophrenia; R_CAT had higher covariance with

the LING_L and Nacc_L in schizophrenia; R_Ba showed stronger

covariance with the bilateral Nacc in schizophrenia. In the

validation of subregional GMV covariance specificity between

different centers, we found that our results were consistent in

most centers to an extent (Figure 4). Specifically, the covariance

pattern of L_AAA was not stable in FE_Guangzhou, and the non-

first-episode centers could be verified except for Shanghai and

NMorphCH. The covariance pattern of R_AAA could be

validated except for NFE_BrainGluSchi and NFE_NMorphCH.

The findings of L_CAT could not be validated in the

FE_Guangzhou, NFE_Shanghai, and NFE_NMorphCH centers.

The GMV covariance patterns of R_CAT and R_Ba were not

replicated in the NFE_NMorphCH and NFE_UCLA centers.

In our sex-specific analysis experiment, we found that GMV

covariance fingerprints exhibited distinct patterns across sexes, with

these patterns being more pronounced in women. Specifically, in

R_AAA, there was an observed trend towards sex differences in

HIP_L, PHG_R, HIP_R, PFCmed_R and OLF_R (P< 0.05,

uncorrected). In L_CAT, we identified sex-differentiated trends in

bilateral HIP and CAU (P< 0.05, uncorrected). Similarly, in R_CAT,

there was a trend towards sex differences in bilateral HIP and left

THA (P< 0.05, uncorrected) (Figure 5).
A

B

FIGURE 2

Comparison of the altered GMV covariance between the amygdala subregions and the whole amygdala. (A) Visualization of amygdala subregions in
the brain. (B) The different mask of the significant GMV covariance results for the amygdala subregions (red color) and whole amygdala (blue color).
axi, axial, cor, coronal, sag, sagittal. AAA, anterior-amygdaloid-area; AB, accessory-basal nucleus; Ba, basal nucleus; CAT, corticoamygdaloid-
transition; Ce, central nucleus; Co, cortical nucleus; La, lateral nucleus; Me, medial nucleus; PL, paralaminar nucleus; L, left; R, right.
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Association between the GMV covariance
and clinical information

A Spearman correlation analysis was performed between the

GMV covariance alteration and the clinical information in

schizophrenia patients. There was a weak positive association

between the positive syndrome scale total score and the GMV

covariance of R_AAA & CUN_L (P = 0.034, uncorrected), R_AAA

& PAL_L (P = 0.026, uncorrected), R_AAA & Nacc_L (P = 0.021,

uncorrected). The total score of negative syndrome scale showed a

negative association with the GMV covariance of L_CAT & CAU_L

(P = 0.047), L_CAT & PAL_R (P = 0.038), L_CAT & CAU_R (P =

0.023), R_CAT & ACCsup_R (P = 0.046), R_Ba & CAU_L (P =

0.016), R_Ba & CAU_R (P = 0.017). There was a weak positive

association between general psychopathology scale total score with

the GMV covariance of L_AAA & OLF_L (P = 0.022, uncorrected),

L_AAA & REC_L (P = 0.047, uncorrected), L_AAA & Nacc_L (P =

0.041, uncorrected), L_AAA & PFCmed_R (P = 0.049,
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uncorrected), L_CAT & Nacc_L (P = 0.049, uncorrected),

R_AAA & OLF_L (P = 0.020, uncorrected), R_AAA & CUN_L

(P = 0.014, uncorrected), R_AAA & PHG_R (P = 0.046,

uncorrected), R_AAA & OLF_R (P = 0.032, uncorrected), R_CAT

& Nacc_L (P = 0.037, uncorrected), R_CAT & Nacc_R (P = 0.048,

uncorrected), R_CAT & FFG_R (P = 0.036, uncorrected), R_Ba &

CUN_L (P = 0.034, uncorrected), R_Ba & Nacc_L (P = 0.048,

uncorrected). We identified no association between PANSS total

score and amygdala GMV covariance patterns. We revealed a weak

negative correlation between disease course information and GMV

covariance of L_AAA & ACCsup_R (P = 0.39, uncorrected),

L_CAT & ACCsup_R (P = 0.045, uncorrected), R_AAA &

THA_L (P = 0.038, uncorrected), R_CAT & ACCsup_R (P =

0.036, uncorrected), R_Ba & ACCsup_R (P = 0.018, uncorrected).

Finally, we revealed an uncorrected negative association between

the CPZ with the GMV covariance of L_AAA & CUN_L (P =

0.030), L_AAA & ACCsub_L (P = 0.006), L_AAA & ACCsub_R

(P = 0.007), L_CAT & ACCsub_L (P = 0.031), L_CAT &
FIGURE 3

GMV alteration of the amygdala and its subregions in schizophrenia patients between the male and female subgroups. * indicates corrected by
multiple comparisons. AAA, anterior-amygdaloid-area; AB, accessory-basal nucleus; Ba, basal nucleus; CAT, corticoamygdaloid-transition; Ce,
central nucleus; Co, cortical nucleus; La, lateral nucleus; Me, medial nucleus; PL, paralaminar nucleus; L, left; R, right; SCZ, Schizophrenia; HC,
Healthy control.
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ACCpre_R (P = 0.037), L_CAT & ACCsub_R (P = 0.011), R_AAA

& PAL_L (P = 0.006), R_AAA & ACCsub_R (P = 0.018), R_AAA &

PAL_R (P = 0.005), R_AAA & FFG_R (P = 0.019), R_CAT &

CUN_L (P = 0.008), R_CAT & PHG_R (P = 0.048), R_Ba & HIP_L

(P = 0.043), R_Ba & PHG_L (P = 0.011), R_Ba & PHG_R (P =

0.014), R_Ba & HIP_R (P = 0.016).
Discussion

To our knowledge, this is the first study to investigate the GMV

covariance changes of the amygdala in schizophrenia at the

subregion level. We used extensive data from multicenters and

verified that only 5/18 amygdala subregions in schizophrenia

patients showed replicable increased GMV covariance compared

to healthy controls. Moreover, strengthened GMV covariance

patterns are relatively unique for each of the five amygdala

subregions in individuals with schizophrenia. These findings

support our hypothesis that the GMV covariances of amygdala

subregions are selectively impaired in schizophrenia.
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Combining structural brain MRI data from 807 patients with

schizophrenia and 845 healthy controls from 11 centers, we

calculated the robustness of effect sizes and assessed variability

across centers. Most remarkably, our study found extensive GMV

covariance enhancement between five subregions of the amygdala

and the frontal, occipital, and temporal cortex and in SCZ patients,

which is consistent with the hypothesis that SCZ is a widespread

dysconnection disorder (8, 49, 50). The enhanced GMV covariance

in SCZ patients may indicate coordinated GMV loss throughout

neurodevelopment (51, 52). In fact, schizophrenia patients also

exhibits widespread atrophy in amygdala, frontal, occipital,

temporal cortex, and basal ganglia, which may be caused by

excessive synaptic pruning during adolescence (53, 54). We

speculated that the GMV covariance perturbations between

amygdala subregions and other brain areas may result from

shared common causal factors. Future studies are expected to

focus on the effects of genetic and environmental factors on the

impairment of amygdala subregions’ structure and their covariance,

which may provide new perspectives to unravel the etiology and

mechanisms of amygdala damage in schizophrenia (55, 56).
FIGURE 4

GMV covariance fingerprints of the five amygdala subregions and the heat map exhibiting validation across centers. The scale value of the fingerprint
graph represents the t-value of inter-group differences in GMV covariance. The colorbar of the heat map represents the Hedges’ adjusted g* of the
inter-group GMV covariance fingerprints of the five amygdala subregions in each centers. ACCpre, pregenual part of anterior cingulate cortex;
ACCsub, subgenual part of anterior cingulate cortex; ACCsup, supra callosal part of anterior cingulate cortex; CAL, calcarine fissure and surrounding
cortex; CAU, caudate nucleus; CUN, cuneus; FFG, fusiform gyrus; HIP, hippocampus; LING, lingual gyrus; Nacc, accumbens nucleus; OFCmed,
medial orbital gyrus; OLF, olfactory cortex; PAL, pallidum; PHG, parahippocampal gyrus; PUT, putamen; REC, rectus gyrus; THA, thalamus. L_AAA,
Anterior-amygdaloid-area of left hemisphere; R_AAA, Anterior-amygdaloid-area of right hemisphere; L_CAT, Corticoamygdaloid-transitio of left
hemisphere; R_CAT, Corticoamygdaloid-transitio of right hemisphere; R_Ba, Basal nucleus of right hemisphere.
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Previous postmortem investigations in schizophrenia patients

reported reduced mean total neuron number in the lateral nucleus

of the amygdala (31), as well as alterations in the nuclear area,

nucleolar volume (29), and oligodendrocyte density (57) in the

basolateral complex. Recent in vivo studies have shown that all

amygdala nuclei have reduced in size (30) except the medial

nucleus, and primarily impaired amygdala nuclei are the basal and

lateral nuclei (22) or the right basolateral complex (58), supporting

our findings with regional atrophy of amygdala subfields.

Moreover, we found significantly increased GMV covariance

patterns in five amygdala subregions in schizophrenia patients,

including the right basal nucleus, bilateral anterior-amygdaloid-area,

and bilateral bilateral corticoamygdaloid-transition. The basal nucleus,

a part of the basolateral complex, undergoes marked atrophy in

schizophrenia (59). The basal nucleus receives input from the lateral
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nucleus and transmits signals to the central nucleus, which is involved

in the expression and extinction of fear (60). And has extensive

connections with ventral striatal areas and the orbital prefrontal

cortex (61), which are important in integrating, coordinating, and

processing of external sensory input (27, 62). It has been demonstrated

that the basal amygdala has strong functional connectivity with the

regions of the ventral caudal, medial frontal, and caudal orbitofrontal

cortex. Functional connectivity between the accumbens nucleus

(Nacc) and the basal amygdala is positively associated with negative

emotions (6, 63). Simultaneously, we observed a significant enhanced

GMV covariance pattern between the right basal nucleus and Nacc/

OLF. Thus, the GMV covariance abnormalities in the basolateral

complex (consisting of the basal, lateral, and accessory basal nuclei)

may be linked to dysfunctional emotional regulation and ensuing

deficiencies in adaptive behavior in schizophrenia.
FIGURE 5

The different GMV covariance fingerprints for five amygdala subregions in male and female subjects. * indicates trends in sex differences,
uncorrected. ACCpre, pregenual part of anterior cingulate cortex; ACCsub, subgenual part of anterior cingulate cortex; ACCsup, supra callosal part
of anterior cingulate cortex; CAL, calcarine fissure and surrounding cortex; CAU, caudate nucleus; CUN, cuneus; FFG, fusiform gyrus; HIP,
hippocampus; LING, lingual gyrus; Nacc, accumbens nucleus; OFCmed, medial orbital gyrus; OLF, olfactory cortex; PAL, pallidum; PHG,
parahippocampal gyrus; PUT, putamen; REC, rectus gyrus; THA, thalamus. L_AAA, Anterior-amygdaloid-area of left hemisphere; R_AAA, Anterior-
amygdaloid-area of right hemisphere; L_CAT, Corticoamygdaloid-transitio of left hemisphere; R_CAT, Corticoamygdaloid-transitio of right
hemisphere; R_Ba, Basal nucleus of right hemisphere. M, male, F, female.
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We also found the corticoamygdaloid-transition area (CAT)

had increased GMV covariance with the hippocampus,

parahippocampal gyrus, olfactory cortex, and anterior cingulate

cortex. The hippocampus, as one of the prominently affected brain

areas in the pathogenesis of schizophrenia, is a core region for

learning and episodic memory (64). There is evidence that CAT

receives inputs from the hippocampus and outputs the emotional

context of memories to inferior neurons (63, 65). Hence, disrupting

connections between the amygdala and hippocampus may affect

memories of emotionally relevant events in schizophrenia (29, 66).

Additional studies have demonstrated a negative correlation

between CAT volume and salivary cortisol (67). Stress is one of

the main factors contributing to the production of cortisol, and this

stress exposure greatly increases the risk of schizophrenia (68, 69).

Preliminary evidence suggests that the CAT is involved in assessing

negative emotions (70). Deficits in facial emotion interpretation and

social skills in schizophrenic patients may stem from a reduction in

the volume of the CAT (30). Our finding provides additional

evidence for its involvement in emotional processing. Finally,

athough there is evidence of a significant reduction in GMV of

AAA in schizophrenia patients (30), it is difficult to draw

conclusions regarding the involvement of AAA in schizophrenia

since little is known about its connections and functions.

We further conducted a sex-specific analysis and found that

there were sex differences in GMV covariance fingerprints, the

female was more pronounced. However, the sample size of the male

and female groups was different. The sex differences in GMV

covariance in schizophrenia patients can be attributed to several

biological, genetic, and hormonal factors that interact with the

disease’s pathophysiology (71–73). Understanding these differences

was crucial for developing sex-specific approaches to treatment and

management, which needs further exploration.

A large number of previous studies have shown varying degrees

of correlation between reduced GMV in brain regions and negative or

positive symptoms in patients with schizophrenia (57, 74). However,

we did not obtain significant results in our study on the correlation

between the altered GMV covariance and clinical symptoms,

consistent with the findings of Spreng et al (75). Investigating the

lack of correlation between GMV covariance alterations and the

clinical features in schizophrenia patients offers a nuanced view into

the complexities of the disease. This phenomenon can be attributed to

several factors: 1) Schizophrenia is highly heterogeneous (2), with

significant variability in pathology and progression among

individuals. This heterogeneity might obscure any consistent

correlation between GMV covariance alterations and clinical

features across a broad sample of patients; 2) Different stages of

schizophrenia (e.g., early vs. late) may impact brain structure in

varying ways, and the progression rate can differ among individuals.

Clinical features capture symptoms at a specific point in time,

whereas GMV covariance alterations might reflect the cumulative

effects of the disease, making synchronous correlation unlikely (20,

76). We propose that our findings, while preliminary, have the

potential to be an effective imaging marker for differentiating

schizophrenia from healthy populations and open avenues for

future research. However, further studies are still needed to validate

its differentiation value. We validated the GMV covariance model
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separately for the data between each center, and consistent results

were obtained at most centers. Validation was not obtained from all

centers, and we argued that the possible reasons included

inconsistency in sample size between centers, differences in MRI

models and scanning parameters between centers, and diversity in

the causes of patient morbidity (77–79).

There are some limitations in our study. First, due to a lack of

information on the PANSS, illness history, and antipsychotic

medication usage, it was not feasible to determine if the altered

GMV covariance patterns were correlated with the existence of

clinical measures. Second, the etiology and biological pathways of

GMV covariation in the amygdala subregion of schizophrenia are

still unknown.

In conclusion, our study discovered a selective disruption of

GMV covariance of amygdala subregions in a large sample of

schizophrenia patients for the first time. We validated the

reproducibility of our findings in 11 centers containing first-

episode and non-first-episode schizophrenia patients. Further study

is needed to disentangle the biological mechanisms and clinical

significance of perturbed GMV covariance of amygdala subregions.
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