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Development of a multivariate
prediction model for
antidepressant resistant
depression using reward-
related predictors
Xiao Liu* and Stephen J. Read

Department of Psychology, University of Southern California, Los Angeles, CA, United States
Introduction: Individuals with depression who do not respond to two or more

courses of serotonergic antidepressants tend to have greater deficits in reward

processing and greater internalizing symptoms, yet there is no validated self-

report method to determine the likelihood of treatment resistance based on

these symptom dimensions.

Methods: This online case-control study leverages machine learning techniques

to identify differences in self-reported anhedonia and internalizing symptom

profiles of antidepressant non-responders compared to responders and healthy

controls, as an initial proof-of-concept for relating these indicators to

medication responsiveness. Random forest classifiers were used to identify a

subset from a set of 24 reward predictors that distinguished among serotonergic

medication resistant, non-resistant, and non-depressed individuals recruited

online (N = 393). Feature selection was implemented to refine model

prediction and improve interpretability.

Results: Accuracies for full predictor models ranged from .54 to .71, while feature

selected models retained 3-5 predictors and generated accuracies of .42 to .70.

Several models performed significantly above chance. Sensitivity for non-

responders was greatest after feature selection when compared to only

responders, reaching .82 with 3 predictors. The predictors retained from

feature selection were then explored using factor analysis at the item level and

cluster analysis of the full data to determine empirically driven data structures.

Discussion: Non-responders displayed 3 distinct symptom profiles along

internalizing dimensions of anxiety, anhedonia, motivation, and cognitive

function. Results should be replicated in a prospective cohort sample for

predictive validity; however, this study demonstrates validity for using a limited

anhedonia and internalizing self-report instrument for distinguishing between

antidepressant resistant and responsive depression profiles.
KEYWORDS

depression, treatment-resistant, antidepressants, SSRI, anhedonia, internalizing,
reward, machine learning
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Introduction

Major Depressive Disorder (MDD) is a heterogeneous disorder

with widespread effects (1). Serotonergic antidepressants (e.g.

selective serotonin reuptake inhibitors and serotonin and

norepinephrine reuptake inhibitors; SSRIs and SNRIs) are standard

first-line treatment for MDD, but have high non-response rates and a

6-8 week latency for symptom reduction (2, 3). There is currently no

standard set of self-report items for prediction of response likelihood

to SSRI/SNRIs in a clinical setting. Patients are often asked to

complete extensive questionnaires and multiple self-report scales

upon intake, which increases treatment and diagnostic burden.

Therefore, we aim to identify a limited set of self-report items that

can be administered with minimal burden to clinicians and patients

for identifying pre-morbid treatment resistance to serotonergic

antidepressants. In this study, we provide a proof-of-concept by

first identifying a set of scales related to reward processing that

differentiate between individuals with depression (MDD),

antidepressant-resistant depression (ARD), and non-depressed

adults. We intend to use this set of items in future research to

determine their predictive validity for ARD.

Anhedonia is a symptom frequently present in individuals

with depression following the administration of serotonergic

antidepressants, and presence of anhedonia at pre-treatment

predicts poorer response to these medications (4–11).

Anhedonia arises from impairments in reward processing (12–

14). It is defined in the Diagnostic and Statistical Manual of

Mental Disorders, Fifth Edition (15) as low interest in and

hedonic pleasure for reward. Alternative depression treatments

such as esketamine and neuromodulatory therapies are used after

non-response to multiple rounds of serotonergic medication has

been established, and these treatments often specifically target

anhedonia via the dopaminergic reward system (16–19). There is

strong empirical evidence that traditional antidepressants such as

SSRI/SNRIs can induce emotional blunting and apathy in

individuals with depression (20–23). Fatigue and lack of

concentration have also been reported as persistent residual

symptoms post-treatment (24, 25), which can both be

mechanistically linked to reward processing as they arise due to

dopamine and norepinephrine deficiencies (26–28). Anhedonia in

MDD is multifaceted (12), leading to a need for identifying the

combination of anhedonia subcomponents with the greatest

validity for discriminating between non-resistant MDD and

ARD. We aim to balance discriminant validity with clinical

utility by identifying a set of items that are practical to administer.

The National Institute of Mental Health has incorporated

research delineating the function of reward processing into a

framework of transdiagnostic neurobiological and behavioral

mechanisms. This Research Domain Criteria framework posits that

the domain of Positive Valence Systems is composed of reward

responsiveness, reward valuation, and reward learning. These also

map onto neural models of anticipatory vs. consummatory

anhedonia proposed and validated by Berridge (29) such that

anticipation maps onto “wanting” and consummation maps onto

“liking”. Berridge found these processes to be governed by disparate

brain networks and to operate somewhat independently of each other
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(29–31). Recent studies have presented a more detailed chain of

neural signaling in reward processing: (1) incentive salience

(internally cued desire; wanting), (2) anticipation (readiness for

reward), (3) motivation (effort to obtain the reward), (4) hedonic

response (consummation of reward, or liking), and (5) feedback

integration (learning) (32–34). Additionally, personality traits such as

extraversion have been shown to modulate sensitivity to reward (35).

In line with recent efforts to define the dimensional structure

underlying psychopathology (36–38), we recognize anhedonia as

part of a broader transdiagnostic endophenotype of internalizing

symptomatology (39, 40). An internalizing spectrum of

psychopathology has been well established and includes

depressive disorders, general anxiety disorder, social anxiety

disorder, and panic disorder, all of which are characterized by

high levels of mood and cognitive disturbances (41–43). A common

internalizing mechanism may help explain high rates of

comorbidity between these disorders. Empirical research

converges with a model of internalizing factors consisting of low

positive affect in the form of loss of motivation and interest

(anhedonia) and high negative affect in the form of anxious

arousal and apprehension (39, 40). Thus, comprehensive

measurement is needed to gain information about the type(s) of

anhedonia and related impairments present in ARD.

To advance research, it is necessary to first identify where the

greatest differences exist in individuals with ARD versus

antidepressant responsive MDD, and how these vary from more

general differences between individuals with and without

depression. Machine learning methods have been increasingly

used for complex biological models with limited sample sizes and

have demonstrated utility in finding patterns, especially within high

dimensional data (44–48). For a detailed account of the advantages

to using machine learning methods over traditional regression,

please see Supplementary Materials.

In the current paper, we rely on Random Forests, a non-

parametric statistical technique. Non-parametric statistical

techniques make no assumptions about the underlying distribution

of the data, and similarly, non-parametric machine learning models

do not assume a pre-specified form. Non-parametric classification

algorithms have been used in large naturalistic MDD studies such as

the Sequenced Treatment Alternatives to Relieve Depression

(STAR*D), Combining Medications to Enhance Depression

Outcomes (CO-MED), Genome-based Therapeutic Drugs for

Depression (GENDEP) and the German Research Network on

Depression (GRND) databases to predict treatment outcomes using

sets of clinical and sociodemographic predictors, with reported

accuracy rates ranging between.5 to.8 (44, 49–53). However,

criticisms of using such models for treatment prognosis include

their complexity, requiring comprehensive symptom and treatment

data on each patient. In addition, they have a “black box”

methodology where the process of prediction is either hidden or

uninterpretable. Thus, machine learning techniques have been

leveraged at the basic and translational research phases but require

more simplification and transparency to be useful in clinical

application. To date there has been limited work on using findings

generated from basic and translational research to develop a practical

instrument for predicting antidepressant medication prognosis.
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We will use supervised machine learning methods to

differentiate individuals who are ARD and medication responsive

using a limited but comprehensive set of phenomenological

predictors related to reward. We aim to provide an initial proof-

of-concept for a practical self-report instrument to identify

individuals with ARD based on a limited set of anhedonia and

related items, which can then be refined and validated

longitudinally. Additionally, we will use unsupervised machine

learning to explore empirical patterns in the subset of significant

predictors. To be useful in clinical practice, this proto-instrument

will need to distinguish individuals with ARD from a population of

potential patients who either (1) have depression or (2) do not have

depression. Therefore, unlike previous machine learning studies

that draw only from a population of patients with depression, this

study will assess 3 groups of individuals: ARD, non-resistant

depression (MDD), and non-depressed healthy controls (HC). In

line with recent work using a wider range of clinical and

sociodemographic variables for predicting treatment-resistance

(52), it is hypothesized that we will be able to identify a set of

measures and items to discriminate between groups at clinically

meaningful levels (44, 54).
Materials and methods

Participants

The methods for this study, including sample size and analyses,

were registered prior to viewing any collected data (55). Participants

(N = 399, femaleprop = .49) aged 18 or older were recruited using

Prolific and ResearchMatch from a population pool within the

United States between the months of April-December 2022. The

number of participants deviated from the preregistered sample size

of N = 600, although are achieved sample size is adequate for

Random Forests. Recent evidence suggests a rule of thumb of 5 - 10

events per predictor variable, with the upper end recommended for

samples with 30 events or fewer (56, 57). In this study, the event of

interest was presence of ARD (N = 164), and classification models

used up to 24 predictors, thus falling within in the acceptable range.

ResearchMatch is a national health volunteer registry funded by

the U.S. National Institutes of Health as part of the Clinical

Translational Science Award (CTSA) program. ResearchMatch

volunteers have consented to be contacted by researchers about

health studies for which they may be eligible. Prolific is an online

research platform with behavioral and diagnostic filtering

capabilities that helps researchers post studies and recruit from a

general population. Our sample consisted of a similar proportion of

participants recruited from Prolific (51%) and ResearchMatch

(49%). The proportion of individuals within each group by

platform is provided in Supplementary Materials (S0).

Inclusion criteria were adults fluent in English, who have a self-

identified diagnosis of unipolar depression with either symptom

improvement from at least 1 full course (> 4 weeks) of SSRI/SNRI

medication) or non-improvement with at least 2 full courses of

SSRI/SNRIs. Clinicians frequently use subjective report when

defining depression treatment response (58). This study’s use of
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self-classification aligns with previous research methodology for

identifying treatment resistance and uses the definition of

inadequate response published by the US Food and Drug

Administration (59) and European Medicines Agency (60).

Clinical records were not obtained as we tried to minimize risk to

participants of identification by collecting anonymous data. We

additionally recruited a non-depressed control sample who have

never been diagnosed with depression and scored ≤ 3 on the Patient

Health Questionnaire-2 (PHQ-2) (61). Exclusion criteria were

individuals with bipolar depression, psychosis, ADHD, and any

personality disorder, to minimize confounding variables due to

different treatments for these disorders. We also excluded

individuals regularly taking bupropion, stimulant medications,

pramipexole, or L-dopa medication due to their direct effects on

the dopamine reward system. However, we did not exclude

individuals on the basis of substances of abuse.

We recruited participants who were not treatment naïve so they

could identify whether antidepressants worked for them. This was a

cross sectional study aimed at investigating the differences in

reward processing for individuals with and without ARD, and

determining the predictive validity of these reward measures was

out of the scope of this study. To confirm that minimal or no effects

of serotonergic medication on anhedonia existed in our sample, we

conducted moderation analyses for reported presence of medication

on the effect of group on each anhedonia metric with the intent to

exclude measures moderated by presence of medication.

Screening for individuals recruited from ResearchMatch was

implemented online via the REDCap (Research Electronic Data

Capture; 62, 63) platform hosted at the University of Southern

California. On Prolific, screening was implemented via a study

where participants were compensated based on average time spent.

Screening measures included an author-constructed questionnaire

of depression diagnosis and treatment history for recruitment of the

2 depression groups and the PHQ-2 (61) for recruitment of the

healthy control group. Screening was also used to balance ARD vs.

MDD groups. Review and approval for this study and all procedures

was obtained from the institutional review board at the University

of Southern California.
Procedure

Participants were administered a battery of validated scales

measuring depression, reward anticipation and hedonic

experience, motivation, and personality via the online survey

platform “Psytoolkit” (64, 65). This platform does not allow

surveys to be saved and returned to at a later time. Survey items

were grouped and displayed across 3 pages, and participants were

told that they must reach the end of the study to be compensated.

However, survey items were not mandatory and participants were

able to navigate back and forth across pages. Validated scales were

chosen to represent all stages of reward processing and stable traits

related to reward. Scales were selected for inclusion if they

contained items measuring a distinct component of anhedonia.

Inter-item reliabilities for the scales are reported in Table 1 and

ranged from acceptable to high. Summary statistics of item means
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and standard deviations (SD) for each of the 24 subscales are

displayed in Table 2.
Instrumentation

Depression measure
1. Patient health questionnaire-9 (PHQ-9) (66): 9 item 4-point

Likert-based scale on frequency of depression symptomatology over

the past 2 weeks. The PHQ-9 was validated against the mental

health professional interview in a sample of 3000 patients, with a

reported sensitivity of 75% and a specificity of 90% for

major depression.

Reward processing measures
Fron
1. Inventory of depression and anxiety symptoms expanded

version (IDAS-II) (67) The dysphoria subscale (IDASdy)

contains items related to depressed mood, worthlessness,

and guilt. The lassitude subscale (IDASla) contains items

reflecting low energy. This study only administered the

subset of items contained in these 2 subscales.

2. Temporal experience of pleasure scale (TEPS) (68): 18 item

6-point Likert-based scale consisting of two subscales

measuring consummatory (TEPSc) and anticipatory

(TEPSa) experience of pleasure.

3. Motivation and energy inventory (MEI) (69): 30-item Likert-

based questionnaire with subscales for mental energy

(MEIme), physical energy (MEIpe), and social motivation

(MEIsm). The MEIme subscale is composed of cognitive

functioning items, such as memory, concentration, and

decision-making. The MEIpe subscale is composed of

physical energy items. The MEIsm subscale is composed of

items related to both interest and frequency of social activity

and motivation for recreational activities. Each MEI subscale

significantly distinguished between responders and non-

responders in an 8-week antidepressant vs placebo trial (p

<.001 for all pairwise t-tests).
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4. Mood and anxiety symptoms questionnaire short

adaptation (MASQ-D30) (70): 30-item 5-point Likert-

based short form of the MASQ (71) used to assess trait

symptomatology based on Clark and Watson’s Tripartite

Model (41) of psychopathology, with 10 items each loading

onto general distress (MASQgd), anxious arousal

(MASQaa), and anhedonic depression (MASQad) factors.

5. Depression anxiety stress scale (DASS) (72): 42-item 4-

point Likert-based scale designed to assess functioning

using 3 subscales: depression (low positive affect and

hopelessness; DASSd), anxiety (arousal and hyperarousal;

DASSa), and stress (agitation or negative affect; DASSs).

6. Anticipatory and consummatory interpersonal pleasure

scale (ACIPS) (73): 17 item 6-point Likert-based scale

consisting of 7 anticipatory and 10 consummatory social

pleasure items. Three subscales indicating anhedonia

toward intimate social interactions (ACIPSis), group

social interactions (ACIPSgs), and social bonding and

making connections (ACIPSsb).
Trait measures
1. Behavioral inhibition activation scale (BIS/BAS) (74): 24

item 4-point Likert-based scale consisting of 4 subscales

mapping onto behavioral inhibition (BIS), drive (BASd),

reward responsiveness (BASr), and fun-seeking (BASf).

The latter 3 were found to strongly load onto a second

order factor of behavioral activation.

2. Big five aspect scale (BFAS) (75): 100-item 5-point Likert

scale assessing two factor components of each of the big five

personality constructs. In this study only items related to

extraversion and neuroticism were used, as these traits are

most related to a diathesis for depression. Extraversion is

composed of the enthusiasm (BFASee) and assertiveness

(BFASea) subscales. Neuroticism is composed of the

withdrawn (BFASnw) and emotional volatility (BFASnv)

subscales. Each subscale consists of 10 items for a total of

40 items.
Analysis

Supervised machine learning algorithms are used to solve

prediction problems where data is labeled (a dependent variable is

specified). The full set of observations is split into training and test

datasets, and the algorithm uses labels in the training set to improve

accuracy while balancing generalizability to the test set. Random forest

(RF) is a supervised classifier composed of an ensemble of decision

trees; each of which is grown on a bootstrapped sample with a

randomly selected subset of predictors, where results are aggregated

by majority voting (76). In our pre-registration, we specified use of

regularized regression methods, which can be used for continuous

outcomes. However, RF is widely used for classification due to its
TABLE 1 Inter-item reliabilities for each scale.

Scale Cronbach’s a

PHQ-9 .87

MEI .91

TEPS .82

MASQ .90

BFAS .74

DASS .97

BIS .74

BAS .85

ACIPS .92
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robustness against skewed distributions, outliers, and data

transformations (77). It has been shown to perform well in previous

depression studies predicting treatment outcomes on large

datasets (52).

Model performance was assessed using the following metrics.

“Accuracy” refers to the proportion of cases correctly classified

across all classes. “Sensitivity” refers to the proportion of cases

within a specified class that were correctly classified (e.g.: the

proportion of ARD observations that were predicted to be ARD

by the model). “Specificity” refers to the proportion of cases not

within a specified class that were correctly classified (e.g.: ARD

specificity refers to the proportion of MDD and HC cases not

classified as ARD by the model). As we are interested in the

generalizability of models to new data, hypothesis testing was

employed to assess whether test set prediction accuracy was

significantly different from chance using the “no-information
Frontiers in Psychiatry 05
rate”, which is the prevalence of the largest class (78). Out-of-bag

(OOB) accuracy was reported for each model, which is defined as 1

minus the average error of all predictions made using the training

observations not within the bootstrapped sample. Sensitivity and

specificity for training and test sets are reported for all models.

RF classifiers were implemented using the “RandomForest” (79)

and “caret” (78) packages for the statistical software R (version 4.2.2)

(80). Data were first divided using a pseudorandom 70/30 train/test

split maintaining similar proportions of group sizes in each set (ntrain =

276, ntest = 119). To avoid leakage, missing data for the train and test

sets were imputed separately using predictive mean matching with the

“Multiple Imputation by Chained Equations” (mice) (81) package for

R. 133 observations contained at least 1 item missing in the predictor

set, however total proportion of missingness in the data was low, at.4%.

The variables with the highest percent missing were BFAS item 39

(2.02%), BFAS item 33 (1.77%), and BFAS item 34 (1.77%).
TABLE 2 Summary statistics of predictor means by group. Pre-imputed statistics are calculated from the non-missing items for each subscale.

Raw Data Summary Statistics by Diagnostic Group

Predictor HC, N = 1001 MDD, N = 1291 ARD, N = 1641 p-value2 q-value3

MEIme 7.32 (1.93) 6.10 (2.25) 5.13 (2.01) <.001 <.001

MEIpe 6.18 (1.77) 4.38 (2.33) 4.54 (2.14) <.001 <.001

MEIsm 8.35 (2.85) 6.83 (3.01) 7.04 (3.10) <.001 .001

TEPSc 4.09 (.84) 4.34 (.91) 4.08 (.83) .014 .023

TEPSa 3.84 (.67) 3.81 (.75) 3.59 (.76) .052 .063

MASQaa 2.04 (.91) 2.15 (.89) 2.57 (.90) <.001 <.001

MASQad 3.37 (.69) 3.77 (.87) 3.72 (.98) <.001 <.001

MASQgd 2.54 (.77) 2.77 (.96) 3.21 (.81) <.001 <.001

BFASnw 3.01 (.69) 3.35 (.77) 3.47 (.66) <.001 <.001

BFASnv 2.77 (.77) 3.03 (.85) 3.08 (.73) .008 .013

BFASee 3.00 (.66) 3.02 (.83) 2.72 (.65) .004 .007

BFASea 2.94 (.69) 2.84 (.84) 2.92 (.75) .500 .500

IDASdy 2.42 (.73) 2.77 (.93) 3.21 (.78) <.001 <.001

IDASla 2.48 (.79) 3.01 (.89) 3.23 (.87) <.001 <.001

DASSd .97 (.67) 1.19 (.76) 1.59 (.73) <.001 <.001

DASSa .84 (.76) .85 (.72) 1.18 (.68) <.001 <.001

DASSs 1.06 (.69) 1.13 (.68) 1.47 (.62) <.001 <.001

BIS 2.84 (.46) 3.00 (.47) 2.94 (.47) .021 .030

BASd 2.45 (.61) 2.34 (.70) 2.54 (.64) .025 .033

BASr 2.96 (.58) 3.02 (.65) 2.86 (.60) .051 .063

BASf 2.65 (.55) 2.49 (.66) 2.63 (.65) .200 .200

ACIPSgs 4.00 (1.08) 4.12 (1.34) 3.74 (1.16) .021 .030

ACIPSis 3.99 (.90) 4.13 (1.07) 3.86 (.93) .063 .072

ACIPSsb 3.88 (.94) 4.04 (1.11) 3.90 (1.01) .200 .200
1Mean (SD).
2Kruskal-Wallis rank sum test.
3False discovery rate correction for multiple testing.
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A multiclass target variable (all three groups) and two binarized

target variables (ARD vs. non-ARD and ARD vs. MDD) were used

as labels for separate models. For the first binary model, data were

dummy-coded to compare ARD vs. both non-ARD groups. This

model was used to generate a subset of items for distinguishing

ARD from non-ARD in the general population. The other binary

model was built using only the 2 depression groups. It was used to

generate another subset of items for distinguishing ARD from

MDD in patients with depression. Thus, the variables retained

from this selection process were hypothesized to have the greatest

discriminability for ARD specifically.

We defined “full models” as classifiers that included all items

from the validated scales except PHQ-9, where item means were

computed within each subscale (p = 24; where p is the number of

predictors). Feature selection was applied separately to each model

using the “VarSelRF” (82, 83) package for R, with initial number of

trees = 5000 and number of trees for additional forests = 2000

(default suggested values). The algorithm uses backward

elimination to drop a portion (.2) of the least important variables

from the previous iteration. Using a similar process to Kautzky et al.

(52), we repeated the feature selection procedure with random seeds

of 1 to 500. Only those predictors retained in ≥ 80% of the results

were used in “small models”.

The hyperparameter “mtry” represents the number of predictors

to be randomly sampled for each split. It is set by the experimenter

and can be tuned to optimize model accuracy. We used grid search

to tune mtry separately from feature selection with values ranging

from 1 to p-1 using 10-fold cross-validation with 3 repeats of 500

trees each. Small models were trained and tuned separately using

this method for each target variable.

Lastly, we used unsupervised methods (factor analysis and

cluster analysis) to explore empirical patterns at the item level

with only items from the subscales driving highest RF model

accuracy. This study benefitted from empirically driven analysis

due to the exploratory nature of using a novel combination of

validated self-report subscales. We first conducted an exploratory

factor analysis to assess if further dimension reduction would be

plausible. The number of factors to extract was determined using

parallel analysis (84). Factor analysis was carried out using the

“psych” package for R (85) using an oblique “oblimin” rotation for

factor extraction and a minimum item loading cutoff of.3. Next, k-

means was used to explore empirical groupings of individuals (86).

K-means is a method of clustering observations into an

experimenter defined number of clusters k. This analysis was

carried out using the “kmeans” function in the “stats” package for

R, which is part of the R base code (80). K was determined by

optimizing for within cluster sum-of-squares (WSS) using the

“factoextra” package for R (87) and the “NbClust” package (88),

which provides 30 indices for determining the number of clusters to

use and proposes the best cluster number by majority vote. From

this function, the majority of indices proposed 2 to 4 clusters. The 2-

cluster solution was deemed trivial as one cluster was composed of

individuals with fewer depression symptoms and the other

composed of individuals with more severe depression. 3 and 4

clusters were computed for analysis and discussion.
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Data exclusion

3 subjects were excluded for failed attention checks. An

additional 2 subjects were excluded due to missing multiple items

comprising 1 or more subscales (predictor variable) to be used for

learning, and 1 subject was excluded based on missing the target

group variable. The resulting dataset comprised 393 subjects [49.0%

female, mean (SD) age = 34.6(11.0)].

Results

393 observations were included in the analysis, of which 41.7%

were self-identified individuals with ARD. Unimputed PHQ-9

depression score for the full dataset significantly differed across

groups (F = 24.58, p <.001), with post-hoc Tukey-corrected

comparisons revealing significant differences between ARD vs.

MDD (Mdiff(ARD – MDD) = .32, adjusted-p <.001), ARD vs. HC

(Mdiff(ARD – HC) = .53, adjusted-p <.001) and MDD vs. HC (Mdiff

(MDD – HC) = .21, adjusted-p = .030; see Supplementary Figure S1 for

distribution of PHQ-9 score across groups).

78.1% of the MDD group and 67.7% of the ARD group reported

taking an SSRI or SNRI for greater than 4 weeks at the time of this

study. Of these individuals, 52.7% in the ARD group and 53.9% in

the MDD group were taking an SSRI, 14.3% in the ARD and 20.6%

in the MDD medicated group were taking an SSRI with

augmentation, and 24.11% in the ARD and 18.63% in the MDD

medicated group reported taking an SNRI. 24 logistic regression

analyses examining the interaction effect of medication with each

predictor variable regressed on group were evaluated using the

generalized linear models (“glm”) function in base R (80). After

correcting for multiple comparisons by controlling for a false

discovery rate of <.05 using the Benjamini-Hochberg adjustment

(89), no interaction effects remained significant. Therefore, no

predictors were removed from the analysis. Please see

Supplementary Table S2 for mean predictor scores by group and

medication status as well as their BH-adjusted p-values.
Supervised learning

Multiclass target variable
The first RF model predicted group membership using the full

variable set for all groups and the specified 70/30 train/test split

resulting in 276 training observations with 116 events of interest

(for accuracy metrics see Table 3). In this multiclass model, the test

set accuracy (.54) was significantly higher than the no-information

rate of.42 (p = .004). The model had the highest sensitivity for the

ARD group (.71) and the highest specificity for the HC group (.86).

Test sensitivity was similar to training sensitivity for all groups.

Next, feature selection was implemented, and 5 variables

retained for small model classification. The variables meeting

criteria were: DASSa, MASQaa, IDASdy, MEIme, and MEIpe.

These variables describe anxiety, dysphoria, as well as mental and

physical energy. The ARD group had higher mean DASSa scores

than the MDD group (Mdiff(ARD – MDD) = .33) and a greater
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difference than the MDD vs. HC groups (Mdiff(MDD – HC) = .01)

groups. The ARD and MDD groups had a greater difference in

MASQaa score (Mdiff(ARD – MDD) = .42) than between MDD and HC

groups (Mdiff(MDD – HC) = .11). The ARD group had a higher

IDASdy mean score and a greater difference in score with the MDD

group (Mdiff(ARD – MDD) = .44) than the MDD and HC groups (Mdiff

(ARD – MDD) = .35). MEIme (Mdiff(ARD – MDD) = -.97; Mdiff(MDD –

HC) = -1.22) and MEIpe (Mdiff(ARD – MDD) = .16; Mdiff(MDD – HC) =

-1.80) were both substantially greater in the HC group than the two

depression groups.

A small model was subsequently fit using 10-fold cross

validation to tune mtry on the training set observations with only

the subset of predictors found using feature selection. Accuracy

slightly improved in the training data for HC (sensitivity = .59) and
Frontiers in Psychiatry 07
MDD (.48) but decreased in test (HC sensitivity = .33; MDD

sensitivity = .28; see Table 3); furthermore, no improvements

were seen in ARD train or test sensitivity over the full model.

Therefore, this small model variable set was rejected as a candidate

for prediction of ARD.

Binarized target variables
ARD vs. non-ARD

This model also used 276 training observations with 116 events

of interest. OOB accuracy for the full predictor set (.71) was similar

to test accuracy (.65). Sensitivity was slightly higher in the test set

for predicting ARD instances (.58) than the train set (.55). Full

accuracy metrics for the binary target variables are reported

in Table 4.

Feature selection of the ARD vs. non-ARD target variable

retained 5 variables. All the DASS subscales were retained in

addition to IDASdy and MEIme. The difference in mean score for

these subscales (except MEIme, which had similarly large

differences between all groups) were greater between ARD vs.

MDD than MDD vs. HC (DASSd: Mdiff(ARD – MDD) = .40; Mdiff

(MDD – HC) = .22; DASSs: Mdiff(ARD – MDD) = .34; Mdiff(MDD – HC) =

.07). Fitting a 10-fold cross validated model for mtry on the small set

of variables resulted in improved overall test accuracy and a

significant p-value for the hypothesis test of accuracy evaluated

against the no-information rate of.58 (accuracy = .70, p = .005).

Sensitivity (.63) and specificity (.75) for ARD improved moderately

in the small model.

ARD vs. MDD

This model was specified on 205 training observations and 116

events of interest. OOB accuracy on the full predictor set was.69

and.66 for test accuracy. Sensitivity for ARD cases in the cross-

validated train data reached.79, however the model did not

generalize as well (ARD test sensitivity = .65). Feature selection

resulted in only 2 variables retained under pre-defined criteria:

DASSd and MEIsm. The MEIsm subscale was surprisingly greater

in the ARD group than the MDD group (Mdiff(ARD – MDD) = .21).

Test accuracy (.61) and ARD sensitivity (.71) were somewhat

improved in this model. In the interest of finding a set of

variables with improved discriminability for ARD, we also

computed a 3-predictor (3-P) model including the next most

frequent variable selected (48% of random seed iterations):

DASSa. This model demonstrated a significantly greater test

accuracy over the no-information rate of.56 (accuracy = .67, p =

.020) with a test sensitivity for ARD of.82 and specificity of.49. Both

the 2-P and 3-P small models had the same specificity (.49) for

ARD; thus the 3-P model substantially increased accuracy of

classifying ARD cases, but not at the expense of MDD accuracy.

Generalization of binarized feature selection on
multiclass target variable

The set of predictors resulting in the greatest sensitivity to ARD

included: DASSd, DASSa, andMEIsm. This set was used to generate

predictions for the other target variables. Using the 3-predictor (3-

P) model to train on the multiclass target variable resulted in lower

sensitivities for HC (.27) and MDD (.36) in the test set, but slightly
TABLE 3 Multiclass full vs. small model metrics.

Full Model
Small
Model

3-P
Model

6-P
Model

Train

Optimal
mtry 5 1 1 1

OOB
Accuracy .57 .59 .51 .52

HC
sensitivity .54 .59 .37 .34

HC
specificity .89 .89 .83 .87

MDD
sensitivity .42 .48 .49 .44

MDD
specificity .77 .77 .72 .72

ARD
sensitivity .70 .67 .61 .68

ARD
specificity .68 .69 .69 .65

Test

Accuracy .54** .42 .47 .53*

95% CI (.45,.63) (.33,.52) (.38,.57) (.43,.62)

HC
sensitivity .45 .33 .27 .47

HC
specificity .86 .80 .81 .85

MDD
sensitivity .38 .28 .36 .33

MDD
specificity .80 .78 .76 .73

ARD
sensitivity .71 .59 .69 .71

ARD
specificity .62 .52 .62 .68
*p <.05.
**p <.01.
The full model was specified on all 24 predictors. Small model specification used only the
feature selected predictors trained on the multiclass variable. 3-P and 6-P models were
specified using feature selection on the binarized target variables. The no-information rate of
the test set was.42.
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improved sensitivity for ARD (.69). However, sensitivity did not

improve in the ARD vs. non-ARD target variable using this test set.

We also tested a combined 6-predictor (6-P) model using

predictors retained from both binarized target variables’ feature

selection processes on the multiclass variable. This resulted in a

small increase in overall test accuracy, which was significant over

the no-information rate (p = .010). ARD test sensitivity (.71) was

improved over the other multiclass models, however MDD (.33)

and HC (.47) sensitivity remained low. Full results are reported

in Table 3.
Unsupervised learning

In the following, only individual items from the 6-P model

subscales were analyzed: DASSd, DASSa, DASSs, MEIme, MEIsm,

and IDASdy. Only a very small percentage of observations were

missing from this subset (.03%). Therefore, to increase clarity of

data interpretation without a large risk of introducing bias,

predictive mean matching was used to impute missing data based

only on this subset of items using the “mice” package (81).

Exploratory factor analysis
We used exploratory factor analysis to confirm whether the

factor structure at the item level would be retained when combining

items from multiple validated scales. Parallel analysis suggested 6

factors in the item-level data. The 6-factor solution item loadings

are reported in Supplementary Table S3. Most items grouped into

their theoretically proposed subscales. We interpret the factors in

their order of extraction. The first factor was composed of

anhedonia items (mostly DASSd: “I couldn’t seem to experience

any positive feeling at all”). The second factor was composed mostly

of somatic anxiety items (DASSa: “I had a feeling of faintness”) and

some DASSs items (“I was in a state of nervous tension”). Factor 3
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was composed of cognitive function items (MEIme: “During the

past 4 weeks, how often did you have problems concentrating?”).

Factor 4 was composed solely of DASSs items related to distress (“I

found myself getting upset by quite trivial things”). Factor 5 was

composed almost solely of MEIsm items (“During the past 4 weeks,

to what extent were you interested in talking with others?”). Factor 6

was composed of 4 IDAS dysphoria items related to self-worth and

guilt (“I felt inadequate”). However, other items from the IDASdy

subscale loaded onto the first 3 factors. Only one item did not have a

loading >.3 onto any factors (MEIsm: “During the past 4 weeks, how

often did you avoid social conversations with others?”).

Cluster analysis
We performed cluster analysis of individuals using the subset of

individual items within the 6-P model using 4 clusters, determined

from optimizing for WSS. A cluster by WSS graph is presented in

Figure 1. Due to our sample having 3 diagnostic groups, we also

computed a 3-cluster solution. In the 3-cluster solution: cluster 1

was composed mostly of individuals from the MDD and ARD

groups. Cluster 2 consisted mostly of the ARD group, and cluster 3

consisted mostly of HC and MDD groups. In the 4-cluster solution:

cluster 1 consisted of mostly HC and ARD individuals. Clusters 2

and 3 consisted of mostly the MDD and ARD groups, while cluster

4 was mostly the HC and MDD groups. Cluster by group

frequencies are shown in Figure 2 for the k = 4 solution.

To characterize differences in symptom profiles across clusters,

we computed means of the standardized item scores for each of the

6 factor-analyzed dimensions. Results are summarized in Table 5.

3-cluster solution

The first cluster in the k = 3 solution can be interpreted as

capturing the similarities between the 2 depression groups (nHC/

MDD/ARD = 15/47/63). This cluster had the lowest motivation and

above average levels of anhedonia and dysphoria as well as below
TABLE 4 Binarized target variables’ full vs. small model metrics.

ARD vs. non-ARD ARD vs. MDD

Full Model Small Model 3-P Model Full Model 2-P Model 3-P Model

Train

Optimal mtry 3 1 1 2 1 1

OOB Accuracy .71 .70 .67 .69 .68 .67

ARD Sensitivity .55 .59 .57 .79 .77 .74

ARD Specificity .83 .78 .75 .57 .57 .59

Test

Test Accuracy .65 .70** .64 .66* .61 .67*

95% CI (.56,.74) (.61,.78) (.55,.73) (.55,.76) (.50,.72) (.56,.77)

ARD Sensitivity .57 .63 .59 .86 .71 .82

ARD Specificity .71 .75 .68 .41 .49 .49
*p <.05.
**p <.01.
The mtry hyperparameter was optimized on accuracy, which is the proportion of correct categorizations. OOB accuracy represents the proportion of correct cases not within each bootstrapped
sample for all classes. Test accuracy represents the proportion of correctly classified cases in the test set for all classes. Sensitivity represents correctly classified cases of the selected class. Specificity
represents correctly classified cases not of the selected class. Full model specification included all 24 predictor variables. Small model specification included only the variables meeting selection
criteria when trained on the corresponding target variable’s training set. 3-P and 2-P models were specified using the feature selection procedure with the ARD vs. MDD target variable.
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average anxiety. The second cluster (nHC/MDD/ARD = 36/30/72) was

composed of mostly the ARD group. This cluster displayed the

highest anxiety, anhedonia, distress, and dysphoria coupled with the

lowest cognitive functioning. Interestingly, this cluster also

displayed above average social motivation. The 3rd cluster (nHC/

MDD/ARD = 49/52/29) was composed mostly of the HC group, and

displayed low anhedonia, anxiety, distress, and dysphoria along

with above average cognitive functioning and motivation.

4-cluster solution

The first cluster (nHC/MDD/ARD = 36/22/56) in the k = 4 solution

was composed mostly of commonalities between ARD and HC

groups. This cluster was characterized by the highest anxiety of all

clusters, along with above average anhedonia, distress, and dysphoria

and below average mental functioning. Similar to cluster 2 in the 3-

cluster model, this cluster also had high motivation. Cluster 2 (nHC/

MDD/ARD = 29/49/59) was composed mostly of commonalities

between MDD and ARD groups, and displayed low anhedonia,

anxiety, distress and dysphoria along with low motivation. Cluster

3 (nHC/MDD/ARD = 3/27/37) was composed of mostly ARD

individuals and displayed the highest levels of anhedonia and the

lowest levels of motivation and cognitive functioning. This group also

had the highest levels of dysphoria and above average distress and

anxiety. Cluster 4 (nHC/MDD/ARD = 32/31/12) represented similarities
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between HC and MDD groups, and displayed the lowest levels of

anhedonia, anxiety, distress, and dysphoria. This group also had

above average motivation and cognitive functioning. See Figure 3 for

graphical depiction of cluster profiles.
Discussion

Random forest classification models built using anhedonia and

other internalizing predictors reached accuracy levels ranging

from.42-.71. Sensitivity for ARD ranged from.55-.86 and

specificity ranged from.49 -.83 (proportion of ARD individuals in

the total sample = .42 and in the depression only groups = .56).

Model performance based on anhedonia and related predictors was

comparable to results reported from other studies using

comprehensive sets of demographic, socioeconomic and clinical

predictors from cohort depression databases (44, 49, 52, 90, 91).

Several models including the full multiclass comparison reached

test accuracy levels significantly above chance. The small model

with best overall accuracy and sensitivity for ARD contained 6

predictors and factor analyzed into 6 symptom dimensions at the

item level. Cluster analyses revealed 3-4 empirical groupings

varying in affective and cognitive disturbance along these

6 dimensions.

Optimal mtry varied between 1-5 and was generally smaller for

each cross-validated model than the recommended rule of thumb

(mtry = √predictors; for a plot of accuracy by mtry values for the

multiclass variable full model, see Supplementary Figure S4). Larger

values of this hyperparameter generate more optimized forests, as

the best predictor can more often be chosen for each split. However,

this can also lead to overfitting. Smaller mtry values lead to a weaker

but more diverse forest as only a few predictors are tested at a time,

and models can generalize better when making predictions for test

set observations. All small models performed best with mtry = 1.

Feature selection of the binarized comparisons (the 6-P model)

resulted in a set of variables with greater discriminability for ARD.

The 6-P model performed better in test sensitivity/specificity for

ARD in the multiclass comparison than the set of selected variables

specified using the multiclass target variable itself. These variables

encompassed the measurement of low pleasure (“I couldn’t seem to

experience any positive feeling at all”), motivation (“During the past

4 weeks, how often did you engage in recreational activities or
FIGURE 1

Number of clusters. Total WSS is plotted by number of clusters.
Beyond k = 4, the WSS incrementally decreases at a decreasing rate.
Therefore, a 4-cluster solution was chosen to prevent unnecessary
complexity and inaccuracies to data modeling and interpretation.
FIGURE 2

Cluster composition by group. Cluster number and proportion by group (% of total cluster) are shown for k = 4. Size of each cluster is indicated on
the right vertical axis.
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hobbies?”), cognitive function (“During the past 4 weeks, how often

did you have trouble making minor decisions?”), stress (“I found

myself getting upset rather easily”), and anxiety (“I felt that I was

using a lot of nervous energy”), whereas the set of items specified

using the multiclass target contained predictors related more to
Frontiers in Psychiatry 10
somatic anxiety and physical energy. Therefore, somatic symptoms

may be more important in identifying any depression whereas

anhedonia and cognitive symptoms may be more important for

specifically identifying individuals with ARD.

Cognitive function as measured by MEIme and cognitive distress

as measured by IDASdy displayed similarly large differences across

ARD vs. MDD and MDD vs. HC groups. Cognitive impairment in

the areas of attention, executive function, andmemory are considered

coremarkers of major depression and have been found to persist even

after depression remission (92, 93). Dysphoria, being the opposite of

euphoria, was composed of items representing thoughts of

worthlessness, hopelessness and guilt. It may be related to emotion

dysregulation, and has been associated with depressive episodes and

cognitive impairment (94, 95). These findings suggest that individuals

with ARD are much more cognitively impaired than non-depressed

individuals and aremore likely to suffer from disordered thinking and

worry. Untreated, this may lead to greater risk for recurrent

depressive episodes.

The anxiety and stress scores displayed greater differences

between ARD vs. MDD than MDD vs. HC. This aligns with

previous studies finding comorbid anxiety to be a clinical

predictor of treatment resistance (90, 96, 97). The importance of

anxiety measurement is highlighted again when distinguishing
TABLE 5 Factor means by cluster. Standardized item score factor mean and SDs by cluster are reported for k = 3 (top) and k = 4 (bottom).

6-Factor Standardized Item Scores by Cluster: k = 3

Factor 1, N = 1251 2, N = 1381 3, N = 1301 p-value2 q-value3

Anhedonia .15 (.64) .65 (.47) -.84 (.40) <.001 <.001

Anxiety -.18 (.38) .84 (.34) -.72 (.32) <.001 <.001

Cognitive -.09 (.31) -.22 (.28) .32 (.28) <.001 <.001

Distress .00 (.53) .73 (.42) -.77 (.44) <.001 <.001

Motivation -.44 (.43) .24 (.72) .16 (.60) <.001 <.001

Dysphoria .33 (.73) .40 (.64) -.74 (.65) <.001 <.001
1 Mean (SD).
2 Kruskal-Wallis rank sum test.
3 False discovery rate correction for multiple testing.
6-Factor Standardized Item Scores by Cluster: k = 4

Factor 1, N = 1141 2, N = 1371 3, N = 671 4, N = 751 p-value2 q-value3

Anhedonia .48 (.35) -.32 (.43) .98 (.54) -1.04 (.36) <.001 <.001

Anxiety .83 (.34) -.35 (.36) .30 (.56) -.90 (.18) <.001 <.001

Cognitive -.19 (.28) .04 (.32) -.22 (.30) .41 (.25) <.001 <.001

Distress .69 (.36) -.27 (.46) .48 (.64) -.99 (.37) <.001 <.001

Motivation .52 (.48) -.21 (.46) -.75 (.38) .26 (.65) <.001 <.001

Dysphoria .19 (.54) -.11 (.61) 1.08 (.46) -1.06 (.52) <.001 <.001
1 Mean (SD).
2 Kruskal-Wallis rank sum test.
3 False discovery rate correction for multiple testing.
Positive means denote above-average levels and negative means denote below-average levels of each factor. The anhedonia factor describes low pleasure and interest and was composed mostly of
DASSd items. The anxiety factor was composed mostly of DASSa and DASSs items and describes somatic symptoms of nervousness. The cognitive factor describes cognitive functioning (i.e.
focus, memory and decision-making), and was composed mostly of MEIme items. The distress factor was composed of DASSs items related to emotional upset. The motivation factor was
composed of MEIsm items related to social and recreational motivation, and the dysphoria factor was composed of IDASdy items related to guilt and self-worth.
FIGURE 3

Anhedonia factor cluster profiles. (from left to right) The first 4 factors
are negatively valenced. The last 2 factors are positively valenced
(cognitive functioning and motivation) and depicted using solid bars.
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solely between ARD and MDD groups. In this comparison, the full

model performed significantly above chance whereas the 2-P model

(using only items representing depressed mood and social

motivation) did not. However, the 3-P model performed

comparably to the full model in terms of test sensitivity and

specificity for ARD. Adding an anxiety subscale improved

predictive sensitivity for ARD without sacrificing specificity.

According to these results, high negative emotionality is equally

important as anhedonia (low positive emotionality) for

ARD discriminability.

Reported physical energy (MEIpe: “During the past 4 weeks, how

much of the time did you feel physically tired during the day?”) was

much higher in healthy controls; HC vs. MDD had a substantially

greater difference in mean score than MDD vs. ARD. Similarly, the

MEIsm mean score was much greater in HC than the 2 depression

groups. This subscale captured more than just social motivation; it also

contained items related to interest in recreational activities and projects.

Thus, a physical component of anhedonia may be more important for

distinguishing individuals with and without depression. Physical

activity is a well-established strategy for management of depression

symptoms, and frequently recommended for prevention of depression

(98–100). Furthermore, exercise has been found to be beneficial in the

treatment of anxiety, and in a non-clinically depressed population for

improvement of depression symptoms (101, 102). Individuals with

ARD report low physical energy coupled with high anxiety. Therefore,

these individuals may stand to gain the most from physical activities,

but paradoxically may have the most trouble implementing a regular

exercise protocol.

This study demonstrates the viability of using a limited set of

self-report predictors relating to one broad symptom dimension for

classification of antidepressant response. The range of sensitivity

achieved for ARD in this study (.55-.86) was comparable to other

naturalistic machine learning studies using a more diverse set of

sociodemographic, diagnostic and medical history, genetic and self-

report clinical predictors (.55 -.82) (49–52). Such comprehensive

information can be impractical to gather for every patient and not

readily available in real-life clinical practice. Additionally, unlike the

previously cited studies leveraging national depression databases,

we included a control sample of individuals with no reported

depression diagnosis or treatment history. Therefore, this study

was not limited in scope to binary comparisons of response vs. non-

response and achieved classification accuracy at levels significantly

above chance with a multiclass comparison. Furthermore, the

feature selection process elucidated the existence of distinct

differences in anhedonia profiles within a depression group and

between individuals with and without depression. This study

contributes to our understanding of the nature of SSRI/SNRI

treatment resistance and highlights a novel pathway for

clinical application.

Few prior studies using machine learning to predict treatment

outcomes have examined the meaning of variable and model

selection results for improving our understanding of clinical

phenotypes. In this study we used unsupervised methods to reveal

data-driven insights on the symptom profile(s) of ARD. Exploratory

factor analysis mostly retained the 6-P scale dimensions, except
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IDASdy. Dysphoria is a multifaceted component of depression and

represents a general dissatisfaction and unease toward life. The

IDASdy subscale was composed of items capturing distress, worry,

low self-worth, hopelessness, and guilt (67). Therefore, several items

were split among the other dimensions of anxiety, anhedonia, and

cognitive impairment. However, 4 items loaded together to form a

low self-worth and hopelessness factor (“I felt discouraged about

things”; “I blamed myself for things”), which retained the

name dysphoria.

These dimensions were then examined across empirically

determined data clusters. The 4-cluster solution found 2 large

(capturing around 2/3 of the total cases) and 2 smaller clusters

(approx. 1/3 of the total cases combined) such that ARD was evenly

distributed across the 2 large clusters and dominated one of the

smaller clusters. The first large cluster resembled the symptom

profile of an anxious depression subtype, with greater reported

levels of anxiety and distress than anhedonia and dysphoria. This

cluster also displayed above average levels of motivation,

presumably because motivation can be derived from anxious

avoidance of aversive events or end states (41, 103, 104). This

cluster was composed of proportionally more HC and ARD as well

as fewer MDD individuals than the second large cluster. The second

large cluster was composed of a low-disturbance profile

characterized by slightly below average anxiety, distress,

anhedonia, motivation, and dysphoria. The symptom profile of

this cluster suggests a successfully treated group of participants. The

third cluster was a small group consisting of mostly ARD

participants. The symptom profi le of this cluster was

characterized by exceedingly high anhedonia, dysphoria, low

motivation, plus moderate cognitive impairment, and above

average anxiety and distress. However, unlike cluster 1, the

anhedonia and dysphoria in this cluster was greater than the

anxiety and distress symptom dimensions, while motivation was

much more impaired. Cluster 4 was composed mainly of the HC

and MDD groups. This cluster scored below average on the

negatively valenced symptom dimensions (anhedonia, dysphoria,

anxiety, and distress) and above average on the positively valenced

dimensions (cognitive function and motivation). Therefore, we

found 4 clusters of participants based on internalizing symptom

profiles, loosely resembling the subtypes (cluster 1) anxious-

depression, (cluster 2) low-disturbance/treated, (cluster 3)

anhedonic, and (cluster 4) non-depressed.

These findings suggest the presence of symptom heterogeneity

even in just individuals with ARD, varying along dimensions of

anxiety, anhedonia, and cognitive disturbance. Some of the

variation in profiles may have been driven by the presence of

antidepressant medication. In both the 3- and 4-cluster solution,

a similar low anxiety depression profile was present and contained

the greatest proportion of the non-resistant MDD group. This may

reflect the robust anxiolytic effects of SSRI/SNRI medication;

indeed, several SSRIs are indicated for treatment of anxiety

disorders, post-traumatic stress disorder, and obsessive-

compulsive disorder (105–107). Additionally, emotional blunting

is a commonly reported side-effect of this type of medication

(108–110).
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Previous evidence has suggested a mechanistic difference

underlying the interest and the pleasure facets of reward

processing (19, 32, 34). The TEPSa, BFASee, and BASd subscales

all reflect the interest component of anhedonia related to function

of the dopaminergic reward circuit. To be in line with recent

evidence for the successful treatment of anhedonia using neural

stimulation of reward circuit regions, we would expect much larger

differences between these subscales for the ARD vs. MDD groups

(111–113). However, to the extent that this can be captured in self-

report data, we did not find differences in anticipatory anhedonia

and apathy between ARD and MDD to be robust at the level of

granularity posited. We did, however, find the importance of a

broad internalizing dimension composed of affective and cognitive

disturbances in contributing to prediction of a treatment-

resistant phenotype.

Lastly, it is important to note that the majority of individuals with

depression in both the MDD and ARD groups were taking some

form of serotonergic medication, and SSRIs were the most common

treatment even for individuals who self-identified as ARD. This

demonstrates the pervasiveness of serotonergic medication use in

depression treatment, even as its high non-response rate is widely

accepted (58). The dominant narrative of the monoamine hypothesis

of depression was a major limiting factor for identifying new

treatment mechanisms (114). Additionally, current perspectives on

alternative treatments are that they carry greater risks; for example,

deep brain stimulation and electroconvulsive therapy are well-

established for treating non-responsive depression (16, 115, 116),

but use invasive surgical techniques. Esketamine and other

pharmacotherapies are nascent treatments with promise for

efficacy, but some researchers still question long-term safety and

tolerability (117). However, there is increasing acknowledgment of

the heterogeneity in major depression, and many recognize the need

for diversification and individualization of treatment protocols (118).
Limitations

Several limitations were present due to the cross-sectional nature of

this study. First, treatment at time of study adds a complex confound to

the interpretation of these results, as people were prescribed varying

doses of medications from different antidepressant classes and may

augment with differing classes of medications or alternative therapies.

However, the overwhelming majority of participants who were on

medication listed an antidepressant within the SSRI/SNRI

pharmacological classes, and these medications are ineffective at

reducing anhedonia (7). Similarly, chronic use of recreational

substances and drugs of abuse may contribute another confound.

The survey items generally measured across multiple days or weeks and

trait-level effects, which may somewhat reduce bias from acute

substance use. Yet these are two sources of bias that must be

considered when interpreting findings.

A second limitation arises from the online case-control study

design and self-diagnosed group labels. Reliance on online self-

report modality is a simple way to streamline large-scale data

collection from a broad geographical area with a greater level of

confidentiality for participants. However, it can impact internal
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validity due to the inability to verify accuracy of self-reporting and

standardize phenomenological measurement. Furthermore, there

may be impacts to external validity and generalizability to patient

populations who do not participate in online research platforms.

Therefore, more extensive research is needed to validate these

findings through both verification of patient records and in-

person data collection across several geographic locations.

Clinicians frequently use subjective reports of symptom

improvement when making treatment modifications. However, in

this study the measure of improvement from medication was not

standardized and must be interpreted with caution. We were not able

to measure pre to post change in depression, as we only captured

respondents at one time point. Because of these limitations, we are not

able to draw conclusions about pre-treatment anhedonia profile. In our

data, there were large ranges for depression severity in each self-

identified group; distributions can be seen in Supplementary Figure S1.

Despite efforts to limit the presence of depression in the HC group by

pre-screening based on PHQ-2, a substantial portion of this group still

averaged a moderate score on the PHQ-9 and reported presence of

other internalizing symptoms such as anxiety on the other measures.

Therefore, the HC group had somatic and cognitive symptoms (as only

affective symptoms are assessed by PHQ-2). This suggests a substantial

portion of the population may express anxious depression symptoms

while not considering themselves depressed or not seeking a diagnosis.

This may be due to (1) a component of alexithymia that may be present

in mood disorders, or (2) lack of general knowledge around the

heterogeneity of depression criteria and failure to recognize the

somatic and cognitive impairments that define both depression and

anxiety. In addition, the MDD group appeared to have a bimodal

distribution on PHQ-9 scores, and some also reported various

internalizing symptoms based on the cluster analysis. Therefore,

some individuals may have self-identified as responding to

medication while contending with residual symptoms, due to the

heterogeneous nature of depression symptom dimensions they may

have felt improvement in some domains while remaining static in

others. This demonstrates a limitation of self-identified diagnosis;

significant variability exists in these groups.

Third, Random Forests is limited in its use outside the bounds

of this dataset because it cannot extrapolate predictions for new

values. Therefore, it is bound by the largest and smallest values of

predictors in the training set. Additionally, sample size differences

across classes can sometimes contribute to variation in sensitivity

and specificity for the models, with sensitivity skewed toward the

larger class. In the multiclass models, ARD sensitivity was generally

greater than the other 2 groups. The sample size of the ARD group

was slightly greater than the HC (1.64:1) and MDD (1.27:1) groups.

The binarized models performed better in accuracy than the

multiclass, with the ARD vs. non-ARD model performing better

for classifying non-ARD cases and the ARD vs. MDD model better

at classifying ARD cases. In the first binarized model, the combined

sample size for the HC andMDD groups was slightly larger than the

ARD group (1.4:1), while the sample size in the second binarized

model was slightly larger in the ARD group (.8:1). Data balancing is

sometimes used with RF classifiers to prevent this issue, and can be

performed by a combination of under-sampling the majority class

and over-sampling the minority class (119). However, this can
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introduce some bias in the data; therefore, it is commonly used for

extremely unbalanced data (minority class prevalence < 10%). The

results are thus better interpreted by comparing full to small model

accuracy across all groups. To address these limitations, results

should be replicated in a sample of pre-treatment individuals with

depression who are followed longitudinally from pre- to post-

treatment and assessed by a clinician for depression improvement.
Conclusions

These findings highlight the efficacy of using a limited set of self-

reported anhedonia and internalizing predictors to evaluate SSRI/

SNRI treatment-resistance. This case-control study attained

comparable model performance to prior naturalistic cohort studies

exploiting a broader range of sociodemographic and clinical

predictors without using a non-depressed control group. Specific

components of internalizing symptomatology (i.e. depressed mood)

were found to have greater importance for distinguishing ARD in

particular, whereas other components (i.e. physical energy) were

more relevant for distinguishing any presence of depression.

Furthermore, an abridged set of items relating to anxiety,

anhedonia, and cognitive function were found to differentiate ARD

from non-ARD individuals at levels significantly above chance. This

study found (1) the qualitative components of anhedonia differ when

comparing across treatment response groups vs. overall presence of

disorder, and (2) produced a reasonable sized set of items consisting

of the DASS, MEI mental energy and social motivation subscales, and

IDAS dysphoria subscale for practical clinical use. Self-report items

are easy to administer, standardized, and cost friendly. To enhance

usability by clinicians as a predictive tool for ARD in pre-treatment

individuals, further study should aim to replicate results in a

prospective cohort sample.
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