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neural networks for
MDD classification
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Intelligence), Hubei Polytechnic University, Huangshi, China, 2Electronic information and electrical
engineering institute, Hubei Polytechnic University, Huangshi, China
Major Depression Disorder (MDD), a complex mental health disorder, poses

significant challenges in accurate diagnosis. In addressing the issue of gradient

vanishing in the classification of MDD using current data-driven

electroencephalogram (EEG) data, this study introduces a TanhReLU-based

Convolutional Neural Network (CNN). By integrating the TanhReLU activation

function, which combines the characteristics of the hyperbolic tangent (Tanh)

and rectified linear unit (ReLU) activations, the model aims to improve

performance in identifying patterns associated with MDD while alleviating the

issue of model overfitting and gradient vanishing. Experimental results

demonstrate promising outcomes in the task of MDD classification upon the

publicly available EEG data, suggesting potential clinical applications.
KEYWORDS
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1 Introduction

Major Depression Disorder (MDD), characterized as a multifaceted mental health

disorder, poses formidable challenges in achieving precise and reliable diagnostic outcomes

(1). Accurate classification of MDD is crucial for effective treatment and personalized

interventions. In contrast to subjective measurement tools such as electroencephalogram

(EEG), functional magnetic resonance imaging (fMRI) (2, 3), and computed tomography

(CT) present notable advantages in terms of objectivity within the domain of MDD

diagnosis. Of particular interest among these, EEG is characterized by (1) exceptional

temporal resolution, enabling the real-time capture of neural activity, and (2) a relatively

heightened cost-effectiveness in comparison to both fMRI and CT. This cost efficiency

renders EEG a pragmatic choice for both research endeavors and clinical applications (4),

thus garnering substantial attention from the scholarly community.

The burgeoning field of data-driven approaches (5), particularly the utilization of EEG

data, holds promise in enhancing diagnostic accuracy. Specifically, the paradigm of deep

learning has emerged as a potent tool for unraveling intricate patterns inherent in the

complex domain of MDD. For example, in the early stage of MDD classification, in pursuit
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of leveraging EEG signals for nonlinear analysis and subsequent

discrimination between individuals with MDD and a control

cohort, Hosseinifard et al. undertook the extraction of power

spectra from four EEG frequency bands along with four distinct

nonlinear features. The discriminative task involved the application

of classifiers, including k-nearest neighbors, linear discriminant

analysis, and logistic regression, to differentiate between 45

unmedicated individuals with MDD and 45 demographically

matched controls and achieved a classification accuracy of 83.3%

(6). From then on, Rajendra et al. employed Convolutional Neural

Networks (CNNs) for the screening of MDD based on EEG signals.

The CNN model autonomously adapts and learns discriminative

features from input EEG signals, distinguishing between EEGs

originating from individuals with MDD and those from normal

subjects. Experimental evaluation, conducted on EEG data from 15

normal individuals and 15 patients with MDD, yielded classification

accuracies of 93.5% and 96.0%, respectively (7). Recently, in the

pursuit of monitoring mental MDD through EEG data, a

comparative analysis involving four neural network-based deep

learning architectures (MLP, CNN, RNN, RNN with LSTM) and

two Supervised Machine Learning Techniques (SVM and LR) was

conducted. The experimental findings pertaining to the

classification performance in discerning the presence of mental

MDD from EEG data reveal an intriguing outcome—the

classification performance of SVM surpassed that of deep

learning methodologies (8). Nowadays, Chen et al. introduce

DCLNet, a short time series model based on CNN, designed for

the classification of MDD. While DCLNet relies on conventional

signal preprocessing procedures, it demonstrates outstanding

performance in the task of MDD classification (9).

Despite the outstanding performance of deep learning in MDD

classification, the vulnerability to overfitting in these models presents

a significant challenge that warrants careful consideration. In the

realm of mitigating model overfitting, predominant strategies

encompass data augmentation, regularization, feature selection, and

the reconfiguration of activation functions, among others, each

exhibiting distinct advantages and drawbacks across diverse

domains. Data augmentation, exemplified by its capacity to

enhance data diversity, contributes to heightened model

generalization, albeit with the potential introduction of noise (10).

Regularization, through the introduction of penalty terms to curtail

model parameter magnitudes, mitigates overfitting risks Santos and

Papa (11). However, the optimal regularization strength necessitates

careful tuning, as excessive regularization may overly simplify the

model, impairing its ability to capture intricate patterns. Feature

selection, a technique for eliminating redundant or irrelevant

features, streamlines models and reduces overfitting potential, yet

the issue of selection remains a quintessential NP-hard problem (12).

These methodologies collectively underscore the nuanced landscape

of overfitting alleviation, demanding meticulous consideration of

their applicability and trade-offs within specific contexts. The

phenomenon of gradient vanishing can adversely impact the

efficacy of model training, preventing the model from adequately

learning the features of the data. This, in turn, can diminish the

model’s generalization capability and increase the risk of overfitting.
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Therefore, addressing the issue of gradient vanishing can enhance the

efficiency and quality of model training, thereby reducing the

likelihood of overfitting.

To this end, this study endeavors to address the overfitting and

gradient vanishing challenge in the classification of MDD by

introducing a novel approach: a TanhReLU-based Convolutional

Neural Network (CNN). The TanhReLU activation function,

amalgamating the advantageous characteristics of Tanh and

rectified linear unit (ReLU) activations, is employed to augment

the model’s capability in recognizing intricate patterns associated

with MDD. The primary objective is not only to improve

classification performance but also to mitigate the common issue

of overfitting, thereby enhancing the model’s generalization to new

data. Thus, the contributes are summarized as below:
1. This study addresses the challenge of gradient vanishing by

introducing a TanhReLU-based CNN by combining

characteristics of Tanh and ReLU activations, to enhance

MDD pattern identification and mitigate issues

of overfitting.

2. Experimental results on publicly available EEG data

demonstrate promising outcomes in MDD classification,

indicating potential clinical applications for the

proposed approach.
In summary, this study introduces a TanhReLU-based CNN to

address the challenge of accurate diagnosis of MDD using EEG data.

By integrating the TanhReLU activation function, the model aims to

improve performance in identifying MDD-related patterns while

mitigating issues such as model overfitting and gradient vanishing.

In the subsequent sections, we delve into the intricacies of our

proposed TanhReLU-based CNN, elucidating its architectural

nuances and the rationale behind the integration of the

TanhReLU activation function. The study’s findings, rooted in

comprehensive experimentation using publicly available EEG

data, are presented to underscore the promising outcomes in

MDD classification. These results, in turn, suggest potential

applications of our proposed model in clinical settings, thereby

contributing to the advancement of accurate and data-driven

approaches to MDD diagnosis.
2 Methodology

This section initially discusses the design of TanhReLU,

followed by an introduction to the design of a TanhReLU-based

CNN. Finally, the training process of the TanhReLU-based CNN

is described.
2.1 TanhReLU activation function

The use of saturating activation functions, such as Sigmoid or

Tanh, in neural networks can lead to the problem of gradient

vanishing, especially in deep neural networks. This is because when
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the input values are too large or too small, the derivatives of these

activation functions approach zero, resulting in the attenuation of

the error gradients during backpropagation. This can hamper the

learning process and the convergence of the model parameters.

Despite these drawbacks, Tanh function has several advantages as

an activation function in neural networks. First, it is a smooth and

differentiable function, which allows the use of gradient-based

optimization algorithms. Second, it maps the input values to a

bounded interval of (-1,1), which helps to regulate the output range

and prevent numerical issues. Third, it introduces a nonlinear

transformation, which enhances the expressive power of the

neural network. Fourth, it has a symmetric output range, which

reflects fairness. The Tanh function is also closer to the identity

function than the sigmoid function, which can facilitate the

convergence of the neural network.

Balancing the issues of gradient vanishing and gradient exploding

is a crucial challenge in deep learning models. Currently, the main

solutions include using ReLU activation function (13), batch

normalization (14) and gradient clipping (15). However, these

methods have their own advantages and disadvantages. For

example, the effect of batch normalization depends on the choice of

batch size, and gradient clipping may alter the direction of the

original gradient, thus affecting the learning process of the model.

ReLU activation function performs well in computational efficiency,

but suffers from the so-called “dying ReLU” problem, that is, when

the input is zero or negative, the gradient of ReLU becomes zero,

resulting in the inability of the network to perform backpropagation.

These problems suggest that we need more careful and

comprehensive considerations when designing and optimizing deep

learning models.

A natural motivation for addressing the drawbacks of Tanh and

ReLU activation functions is to combine them in a hybrid way,

which can eliminate the saturation problem of Tanh in the tails and

the problem of “dying ReLU”. The graphical representation of the

function is depicted in Figure 1. The function is defined as follows:

TanhReLU (x) =
ex−e−x

ex+e−x ,   xj j ≤ a

    0:5x,   xj j > a

(
(1)

where the a is the segmentation parameter for the fused

activation function (a = 0.25 in this study).

The graphical representation elucidates that Equation (1) exhibits

a non-linear profile, indicative of its capacity for capturing intricate

patterns and features. Notably, within the proximity of zero, the

function manifests a smooth transition, akin to the characteristics

observed in the tanh function. This attribute facilitates stable gradient

propagation, thereby mitigating the issue of gradient vanishing.

Moreover, for input values exceeding 1, the TanhReLU function

mirrors the behavior of the conventional ReLU function, directly

returning the input value. This retention of ReLU characteristics,

including sparse activation and computational simplification, serves

to alleviate the long-tail gradient vanishing problem. Importantly, the

function avoids “dead ReLU” issues by ensuring non-zero values in

the negative range. The graphical representation showcases symmetry

about the origin (0, 0), highlighting fairness in its behavior. These
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characteristics collectively underscore the potential advantages of the

TanhReLU function in neural network applications, particularly in

addressing challenges associated with gradient vanishing and

ensuring robust activation patterns.
2.2 Architecture of TanhReLU-based CNN

Figure 2 delineates the architectural framework of the

TanhReLU-based Convolutional Neural Network (CNN),

strategically designed to maximize classification accuracy with a

minimized layer count. The CNN commences with dual

convolutional layers employing identical receptive maps (5 × 5)

followed by three fully connected (FC) layers. The figure provides a

visual representation of the activation functions employed in each

layer. Culminating in the Sigmoid activation function, the CNN

produces conclusive outcomes for the identification of specific EEG

segments. The salient features of this design are succinctly

encapsulated as follows.

The objective of the “high-filter convolutional layer” is to

engage with high-dimensional raw EEG segments by strategically

deploying a substantial number of convolutional filters (20) within a

singular convolutional layer. Each filter within this configuration is

specifically tasked with processing data from an individual channel.

Within the context of each temporal window, the time series data

(1024) originating from each electrode undergoes reshaping into a

square matrix format (32 × 32). Subsequently, the entire EEG

segment is systematically structured into a three-dimensional data

block, cascading along channels. This architectural design aims to

enhance the network’s capacity for discerning intricate patterns

within the EEG data.

The objective of the “Hourglass” FC layer block (16) is to

expediently diminish the number of neurons, thereby curtailing the

overall count of model parameters. This block encompasses

multiple FC layers, with a diminishing number of neurons as one

approaches the output layer. In the current study, the “Hourglass”
FIGURE 1

The graphical representation of TanhReLU with segmentation
parameter of 1.
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fully connected layer block corresponds to the terminal three

FC layers.
2.3 Training of TanhReLU-based CNN

The streamlined TanhReLU-based CNN undergoes training

utilizing Stochastic Gradient Descent (SGD). A weight decay of 1e-

6 is employed to maintain a low training error for the model. Weight

initialization and batch normalization is applied across the network.

Following the shuffling of the complete sample space, it is partitioned

into training sets, validation sets, and test sets. A Leave-One-Out

validation algorithm is employed to assess the training performance

of the classifier using training and test sets, which is evaluated to

report the classification performance. The weights and biases

of the TanhReLU-based CNN are then trained utilizing the

backpropagation algorithm. The primary objective of this optimizer

is the minimization of the Mean Squared Error loss function,

achieved by employing a learning rate of 0.01, thereby contributing

to the overall enhancement of the model’s performance. The

optimization process involves iteratively refining the model’s

parameters through the Backpropagation algorithm. This iterative

training process continues until a predefined termination criterion is

met, specifically at Epoch 40, employing a batch size of 15, and

incorporating early termination with a Patience value of 10.

This optimizer’s objective is the minimization of the Mean

Squared Error loss function with a learning rate of 0.01,

consequently contributing to the enhancement of the model’s

performance. This optimization endeavor is facilitated through

the continual refinement of the model’s parameters, a feat

achieved via the Backpropagation algorithm. This iterative

process of training persists until a specified termination criterion

is satisfied (notably, at Epoch 40, with a batch size of 15, and early

termination employing a Patience of 10). Upon the culmination of

the training phase, an evaluation of the model’s efficacy is

conducted through its deployment on an autonomous testing

dataset. This assessment offers an impartial estimation of the

model’s capacity to generalize to hitherto unseen data instances.
3 Results

The experiments conducted in this section serve as a validation

and assessment of the classification performance of the proposed

model. Initially, we introduce the dataset (refer to Section 3.1) after

describing the experimental platform utilized for these assessments.
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Finally, the classification effectiveness of the TanhReLU-based

Convolutional Neural Network (CNN) is evaluated using metrics

such as accuracy, sensitivity, and specificity (see Section 3.2). The

experiments were executed on a desktop equipped with an Intel i7

CPU operating at 3.33GHz, an Nvidia RTX 1080Ti GPU, 32GB

RAM, and runningWindows 10. This system configuration ensured

consistent testing conditions throughout the experiments.
3.1 Dataset

The MPHC EEG Data Mumtaz et al. (17) were obtained from

34 Major Depressive Disorder (MDD) patients, including 17 males

with a mean age of 40.3 ± 12.9, and 30 healthy subjects (the control

group), comprising 21 males with a mean age of 38.227 ± 15.64. The

data collection took place at the hospital of University Sains

Malaysia. Exclusion criteria for MDD participants encompassed

those with psychotic symptoms, pregnant individuals, alcoholics,

smokers, and patients with epileptic problems. The healthy control

group underwent screening for potential mental or physical

illnesses and was confirmed to be disease-free. EEG sensors,

following the 10–20 international system, were positioned on the

scalp with 20 electrodes (Fp1, Fp2, F3, F4, F7, T3, T5, C3, C4, Fz, Cz,

Pz, F8, T4, T6, P3, P4, O1, O2, ECG) at a sampling rate of 256 Hz.

The time window size was set to 1024 (4 seconds), resulting in a

total sample space of 18,442 segments (MDD: 9789, HC: 8653).
3.2 Performance on identifying MDD

For monitoring the training process, learning curves were

employed. The results, as illustrated in Figure 3, reveal that our

classifier underwent stable learning, demonstrating the absence of

overfitting or underfitting. This observation suggests the

generalizability of our approach. Moreover, the classifier exhibited

exceptional performance on the test set, indicating its robust

discriminative power in identifying MDD.

Finally, the model’s classification efficacy was evaluated on the

designated test set. Our proposed approach achieved a remarkable

accuracy of 98.59%, sensitivity of 98.77%, and specificity of 98.38%,

as outlined in Table 1. A comparative analysis with foundational

classifiers, including the multivariate logistic regression classifier-

based wavelet (MLRW) (17), Resnet-16 (18), and CapsuleNet (19),

demonstrates a notable enhancement in performance with our

proposed methodology. Moreover, we conducted comparative

analyses between TanhReLU and mainstream activation functions

such as ReLU, Tanh, etc. This comparative study in Table 1 will
FIGURE 2

The graphical representation of the TanhReLU-based CNN.
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enable us to better understand the relative performance of

TanhReLU and its suitability for MDD classification tasks. From

the table, it can be observed that TanhReLU exhibits a slight

advantage over ReLU and Tanh activation functions.
4 Discussions and conclusions

4.1 Generalizability and stability of
the classifier

The learning curves presented in Figure 3 underscore the stability

and generalizability of our classifier during the training process. The

absence of overfitting or underfitting is crucial for ensuring that the

model performs well not only on the training data but also on unseen

test data. The classifier’s ability to maintain stable learning patterns is

indicative of its potential applicability to diverse datasets and

scenarios, bolstering its reliability in real-world applications.
4.2 Implications for personalized medicine

The success of our classifier in discerning MDD holds promise

for personalized medicine in the context of MDD. Tailoring
Frontiers in Psychiatry 05
classifier approaches based on individual MDD is a longstanding

goal in mental health care. The discriminative power demonstrated

by our classifier suggests that it could contribute to a more nuanced

and personalized understanding of MDD, potentially guiding

clinicians in optimizing therapeutic strategies for individuals.
4.3 Limitations and future directions

While our study yields promising results, it is essential to

acknowledge certain limitations. The dataset’s size and

heterogeneity may impact the model’s generalizability to broader

populations. Future research endeavors should involve larger and

more diverse datasets to further validate and refine the classifier’s

performance. Additionally, incorporating longitudinal data could

enhance the model’s ability to capture dynamic changes in MDD

severity over time.

Moving forward, future research could also explore additional

enhancements to the CNN architecture, such as incorporating

attention mechanisms or multimodal data fusion, to further

improve classification performance. Furthermore, the application

of this method could extend beyond MDD diagnosis, with potential

utility in other medical domains such as anxiety disorders or

neurodegenerative diseases.
4.4 Conclusions

This study introduces a TanhReLU-based CNN for EEG-based

classification of MDD. The model effectively distinguishes between

depressed and non-depressed individuals, as evidenced by rigorous

evaluation. The integration of TanhReLU activation enhances the

model’s ability to capture complex EEG patterns. Learning curves

indicate stable training, ensuring generalizability. Evaluation on a

separate test set yields impressive accuracy (98.59%), sensitivity

(98.77%), and specificity (98.38%). Comparative analysis highlights

the superior performance of the TanhReLU-based CNN. In

conclusion, our model offers a robust and generalizable approach

for MDD classification, with potential implications for personalized

medicine and mental health care advancement. Further research is

needed to fully explore its clinical utility.
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