AUTHOR=Tortora Leda TITLE=Beyond Discrimination: Generative AI Applications and Ethical Challenges in Forensic Psychiatry JOURNAL=Frontiers in Psychiatry VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2024.1346059 DOI=10.3389/fpsyt.2024.1346059 ISSN=1664-0640 ABSTRACT=
The advent and growing popularity of generative artificial intelligence (GenAI) holds the potential to revolutionise AI applications in forensic psychiatry and criminal justice, which traditionally relied on discriminative AI algorithms. Generative AI models mark a significant shift from the previously prevailing paradigm through their ability to generate seemingly new realistic data and analyse and integrate a vast amount of unstructured content from different data formats. This potential extends beyond reshaping conventional practices, like risk assessment, diagnostic support, and treatment and rehabilitation plans, to creating new opportunities in previously underexplored areas, such as training and education. This paper examines the transformative impact of generative artificial intelligence on AI applications in forensic psychiatry and criminal justice. First, it introduces generative AI and its prevalent models. Following this, it reviews the current applications of discriminative AI in forensic psychiatry. Subsequently, it presents a thorough exploration of the potential of generative AI to transform established practices and introduce novel applications through multimodal generative models, data generation and data augmentation. Finally, it provides a comprehensive overview of ethical and legal issues associated with deploying generative AI models, focusing on their impact on individuals as well as their broader societal implications. In conclusion, this paper aims to contribute to the ongoing discourse concerning the dynamic challenges of generative AI applications in forensic contexts, highlighting potential opportunities, risks, and challenges. It advocates for interdisciplinary collaboration and emphasises the necessity for thorough, responsible evaluations of generative AI models before widespread adoption into domains where decisions with substantial life-altering consequences are routinely made.