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Mendelian randomization and
single-cell expression analyses
identify the causal relationship
between depression and
chronic rhinosinusitis
Fangwei Zhou †, Yan Yang †, Jianyao Li , Ying Jin,
Tian Zhang * and Guodong Yu *

Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical
University, Guiyang, China
Background: The causative relationship between chronic rhinosinusitis (CRS)

and depression remains unclear. Herein we employed Mendelian randomization

(MR) coupled with single-cell analysis to investigate the causality between CRS

and depression.

Methods: Data pertaining to CRS and depression were mined from the genome-

wide association study database, and a single-cell dataset was sourced from the

literature. To explore causality, we conducted bidirectional MR analysis using

MR-Egger, weighted median, inverse variance weighted (IVW), simple mode, and

weighted mode, with IVW representing the most important method. Further,

sensitivity analysis was performed to evaluate the robustness of MR analysis

results. Candidate genes were analyzed via single-cell combined MR analysis.

Results: Forward MR analysis indicated depression as a risk factor for CRS when

depression was the exposure factor and CRS was the outcome (OR = 1.425, P <

0.001). Reverse MR analysis revealed the same positive relationship between CRS

and depression when CRS was the exposure factor and depression was the

outcome (OR = 1.012, P = 0.038). Sensitivity analysis validated the robustness of

bidirectional MR analysis results. Ten cell types (endothelial, ciliated, basal, myeloid,

mast, apical, plasma, glandular, fibroblast, and T cells) were identified in the single-

cell dataset. The network of receptor–ligand pairs showed that in normal samples,

cell–cell interactions were present among various cell types, such as epithelial,

mast, myeloid, and endothelial cells. In contrast, CRS samples featured only one

specific receptor–ligand pair, confined to myeloid cells. TCF4 and MEF2C

emerged as potentially crucial for CRS-associated depression development.

Conclusions: Our findings suggest a bidirectional causal relationship between

CRS and depression, offering a new perspective on the association between CRS

and depression.
KEYWORDS

chronic rhinosinusitis, depression, causality, Mendelian randomization, single-cell
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1342376/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1342376/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1342376/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1342376/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1342376/full
https://orcid.org/0009-0003-1150-3842
https://orcid.org/0000-0001-9864-1313
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2024.1342376&domain=pdf&date_stamp=2024-05-16
mailto:entzhangtian@126.com
mailto:entygd@126.com
https://doi.org/10.3389/fpsyt.2024.1342376
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2024.1342376
https://www.frontiersin.org/journals/psychiatry


Zhou et al. 10.3389/fpsyt.2024.1342376
1 Background

Chronic rhinosinusitis (CRS) is one of the most prevalent chronic

nasal diseases characterized by prolonged inflammation of the nose

and paranasal sinus, with symptoms persisting for more than 12

weeks (1). The main symptoms of CRS include nasal obstruction,

nasal discharge, olfactory dysfunction, and facial pain/pressure (2).

Furthermore, CRS is evidently associated with several non-sinonasal

symptoms, including cognitive dysfunction, sleep dysfunction, and

significantly low productivity levels (3). Its global prevalence is

estimated to be >10%, with varying rates in different regions, such

as approximately 5% in Canada, 7% in South Korea, 11% in Europe,

12% in the United States, and 13% in China (4, 5). The diagnosis of

CRS is a comprehensive process, typically relying on clinical

symptoms, imaging results, and nasal endoscopy, all evaluated

using globally recognized criteria. Variations or broader diagnostic

standards may result in disparities in the reported prevalence of CRS

among various studies. The economic burden of CRS remains

substantial, with direct costs ranging from 10 to 13 billion dollars

annually and indirect costs exceeding 20 billion dollars (6). Some

patients continue to experience symptoms despite optimal medical

treatments and appropriate surgical interventions, which can be

challenging. In such cases, subjective symptoms of sinusitis persist

even when radiologic or endoscopic evidence suggests improvement,

and these symptoms may be influenced by various factors, such as

mental and physical capabilities (7).

A recent cohort study revealed a significant association between

CRS and an increased risk of depression, indicating that patients

with CRS are 1.51 times more likely to develop depression

compared to the general population (8). Depression is a prevalent

disorder that not only significantly affects patient quality of life and

productivity but also amplifies the perceived burden of chronic

illnesses. Moreover, depression can influence the degree of

improvement achieved following surgical interventions (9).

Notably, the coexistence of depression with other health

conditions often heightens the risk of adverse health outcomes

(10). Comorbid depression, unfortunately, frequently goes

undiagnosed in patients with chronic disorders, including CRS.

This could be attributed to the fact that healthcare providers

primarily focused on treating the primary chronic condition

might not give adequate attention to or recognize the significance

of underlying depression. Accurate diagnosis of comorbid

depression may also serve as an important prognostic indicator

for CRS treatment outcomes. However, the precise relationship

between depression and CRS is still largely unknown.

Mendelian randomization (MR) is a powerful tool to investigate

causal associations by employing common genetic variants as

unconfounded and unbiased proxies (11). Unlike observational

studies, MR is a statistical approach that utilizes single nucleotide

polymorphisms (SNPs), which remain independent of confounding

factors due to the random allocation of alleles from parental to filial

generations and the unidirectional flow from genotype to

phenotype. These SNPs function as instrumental variables (IVs)

to evaluate the causal relationship between an exposure and an
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outcome (12). Genome-wide association studies (GWAS) focused

on diverse complex traits have emphasized that genetic variants are

notably enriched in non-coding regions with cis-regulatory

activities, and these regions are further enriched in expression

quantitative trait loci (eQTL) (13). By combining genetic data

with bulk RNA sequencing, downstream effects of genetic risk

factors associated with diseases have been linked to eQTL (14).

This novel analytical framework, which integrates eQTL and

GWAS data, has been successful in determining gene expressions

that are pleiotropically or potentially causally linked to different

phenotypes. This approach holds promise as a prospective tool to

explore genes with pleiotropic associations with complex traits (15).

Despite its relevance to various chronic disease processes,

depression has not been thoroughly investigated as a risk factor

for CRS. Considering the existing uncertainty regarding the causal

relationship between depression and CRS, herein we first performed

a bidirectional MR analysis that integrated GWAS data on

depression and CRS to evaluate the causal relationship between

these conditions. Besides, we performed single-cell analyses of CRS

in conjunction with MR to investigate the role of SNPs in gene

expression in a single-cell dataset. Our findings hold significant

implications for enhancing our understanding of the causal

relationship between depression and CRS. This knowledge can

aid healthcare providers and policymakers in designing more

effective treatment and management strategies for CRS.
2 Methods

2.1 Data source

We downloaded the finn-b-J10_CHRONSINUSITIS dataset for

CRS, containing 16,380,288 SNPs from 176,373 samples, and the

ieu-b-102 dataset for depression, containing 500,199 samples, from

the IEU Open GWAS database (https://gwas.mrcieu.ac.uk/). A

single-cell dataset for CRS was sourced from the literature (16).
2.2 Data pre-processing

Exposure factors were extracted and filtered using the “extract

instruments” function of the TwoSampleMR package (17), with P <

5×10−8 for forward and P < 5×10−5 for reverse MR analyses. The

initial analysis indicated that, using a strict threshold (P < 5×10–8),

the number of IVs was exceedingly limited. Thus, we adopted a less

restrictive threshold (P < 5×10–5) to acquire a broader range of IVs,

striving for comprehensive outcomes. IVs in linkage disequilibrium

were removed to ensure independence, with the criteria set at r2 =

0.001 and kb = 10000 for both forward and reverse MR analyses.

We retained IVs with strong correlations with exposure factors.

Three fundamental assumptions underlie MR studies (18): (1) a

robust and noteworthy relationship between IVs and exposure; (2)

IVs are unrelated to confounding factors; and (3) IVs exclusively

influence outcomes through exposure, not through other channels.
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2.3 Bidirectional MR analysis

Following IV filtering, we obtained input data for both forward

and reverse MR analyses. We conducted bidirectional MR analysis

using MR-Egger, weighted median, inverse variance weighted

(IVW), simple mode, and weighted mode, with IVW being the

most important method (19). For our analysis, odds ratio (OR) > 1

indicated a risk factor and OR < 1 indicated a protective factor.

Scatter, forest, and funnel plots were used for result visualization.
2.4 Sensitivity assessment of bidirectional
MR analysis

To assess the reliability of our forward and reverse MR analysis

results, we performed sensitivity analysis. First, we conducted a

heterogeneity test, with Q_pval > 0.05 indicating no heterogeneity.

Next, we performed a horizontal pleiotropy test using the

TwoSampleMR function “mr_pleiotropy_test” in R; P > 0.05

indicated no horizontal pleiotropy, implying no confounding

factors. Finally, we implemented the leave-one-out (LOO)

method by iteratively excluding each SNP. If the effect of the

remaining SNPs on the outcome variable did not markedly

change, it indicated the reliability of the MR analysis results.
2.5 Single-cell data analysis

Single-cell analysis was performed using the Seurat package on

a single-cell dataset for CRS (with nasal polyps) (20). Before

analyzing single-cell gene expression data, we first need to filter

out low-quality cells. The purpose of filtering out low-quality cells is

to ensure that counting errors do not affect downstream analysis.

Cells with too small or too large libraries, or with excessively low or

high feature expression levels, are inferred as low-quality cells. Such

cells may correspond to dead cells, membrane-damaged cells, or

doublets, which can affect downstream analysis. For example, this

group of low-quality cells may cluster together and then influence

our judgment of cell subpopulations. Low-quality cells typically

have smaller libraries, and a normalization of the library size is

usually performed before differential analysis. We initiated the

analysis by performing quality control on library size and total
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gene count distribution. Subsequently, highly variable genes in the

log-normalized data were retrieved using the “vst” method in the

FindVariableFeatures function. Principal components (PCs) were

then selected by downscaling analysis using the ScaleData function.

Unsupervised cluster analysis of the filtered cells was then

performed using the FindNeighbors and FindClusters functions,

and the results were visualized using t-SNE and UMAP. We also

explored marker cell expression for each cluster in the single-cell

dataset and determined the cell type of each cluster. The number of

cells and differentially expressed genes (DEGs) in normal and CRS

samples were then counted. Cell communication and interactions

were analyzed using CellPhoneDB.
2.6 Single-cell combined MR analysis

Phenotype-related candidate genes were identified based on

single-cell eQTLs and SNPs associated with depression obtained

from forward MR analysis. We collected genes with remarkable

differences in expression across various cell types, and the

expression patterns of these candidate genes were analyzed.
3 Results

3.1 Depression as a risk factor for CRS

We identified 49 SNPs as IVs (Supplementary Table S1).

Subsequently, we performed forward MR analysis to determine the

effect of depression on CRS, with depression being the exposure

factor and CRS being the outcome. Our results demonstrated that

depression (P < 0.001) had a causal association with CRS (Table 1)

based on IVW, with OR of 1.425, signifying that depression was a risk

factor for CRS. The scatter plot showed a positive slope for

depression, revealing that depression led to increased risk of CRS

(Figure 1A). The forest plot showed that all-IVW was on the right,

which further supported depression as a risk factor for CRS

(Figure 1B). Finally, the funnel plot revealed that MR conformed to

Mendel’s second law of random grouping (Figure 1C).

Sensitivity analysis was performed to determine the reliability of

MR analysis results. The heterogeneity test yielded a Q_pval of

0.518, suggesting no heterogeneity among the samples (Table 2).
TABLE 1 Causal effects of depression on CRS.

Exposure Outcome Method P value OR OR_lci95 OR_uci95

Depression CRS

MR Egger 0.233 1.921 0.666364311 5.539574256

Weighted median 0.003 1.458 1.129336861 1.882524107

IVW 0.000 1.425 1.191737712 1.704075962

Simple mode 0.051 1.879 1.013934418 3.48401269

Weighted mode 0.046 1.832 1.026057373 3.271516154
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Horizontal pleiotropy testing also indicated no horizontal

pleiotropic effects (P = 0.578) between depression and CRS.

Further, LOO analysis results were consistent with IVW analysis

results, reinforcing the reliability of our findings (Figure 1D). In

conclusion, depression was causally related to CRS development,

with depression serving as a risk factor.
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3.2 CRS as a risk factor for depression

Following screening, we identified 117 SNPs as IVs

(Supplementary Table S2). In reverse MR analysis, with CRS as

the exposure factor and depression as the outcome, our results

showed that CRS was a risk factor for depression (IVW: P = 0.038
A B

DC

FIGURE 1

Causal effects of depression on CRS. (A) Scatter plot illustrating the association between depression and CRS. (B) Forest plot showing the causal
effects of depression-associated SNPs on CRS. (C) Funnel plot testing the significance of observed associations for heterogeneity. (D) Leave-one-out
analysis evaluating the effect of each SNP on causality.
TABLE 2 Sensitivity analyses of the forward MR study.

Exposure Outcome
SNP
(n)

Heterogeneity
tests

Cochran’s
Q

Q_
pval

Horizontal
Pleiotropy tests

Intercept
P
value

Depression CRS 49
MR Egger 44.602 0.489 MR Egger

intercept test
-0.009 0.578

IVW 44.917 0.518
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and OR = 1.012) (Table 3). The scatter plot exhibited a positive

IVW slope, indicating an increased risk of depression due to CRS

(Figure 2A). The funnel plot showed that MR conformed to

Mendel’s second law of random grouping (Figure 2B). The forest

plot indicated that all-IVW was on the right, supporting CRS as risk

factor for depression (Figure 2C).

Sensitivity analysis for reverse MR also showed promising

results. The heterogeneity test yielded a Q_pval of 0.076 and P for

IVW was >0.05, indicating no heterogeneity among the samples

(Table 4). Horizontal pleiotropy testing also indicated no horizontal

pleiotropic effects between CRS and depression (P = 0.151). In

addition, LOO analysis results verified that the results were reliable

(Figure 2D). In summary, CRS was causally related to the

occurrence of depression, with CRS leading to an increased risk

of depression.
3.3 Identification of 10 cell types in normal
and CRS samples

Figure 3 shows the characteristics of the single-cell dataset, such

as distribution of library size, gene counts, and mitochondria percent.

Overall, we identified 2,000 highly variable genes and selected 20 PCs

for subsequent analyses (Figures 4, 5). Visualization through t-SNE

and UMAP graphs revealed 26 cell clusters in the polyp and healthy

samples (Figure 6). By evaluating marker gene expression in these

clusters (Figure 7), we identified 10 cell types: endothelial, ciliated,

basal, myeloid, mast, apical, plasma, glandular, fibroblast, and T cells

(Figure 8). The levels of plasma, glandular, myeloid, mast, and T cells

were significantly different between normal and CRS samples

(Figure 8). We then conducted differential expression analysis to

determine the number of significantly DEGs in these 10 cell types, as

shown in Supplementary Table S3.

The normal samples exhibited a noteworthy presence of 18

specific receptor–ligand pairs, which mediated communication

between 45 cell types (Supplementary Figure S1A). The network

of receptor–ligand pairs between these various cell types in normal

samples revealed a rich landscape of cell–cell interactions, involving

various cell types, such as epithelial, mast, myeloid, and endothelial

cells (Supplementary Figures S1B, C). In contrast, CRS samples

featured only one specific receptor–ligand pair, confined to myeloid

cells (Supplementary Figures S1D, E).
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3.4 Single-cell combined MR analysis
revealed 15 candidate genes with
remarkable differences in various cell types

Leveraging the 49 SNPs associated with depression from

forward MR analysis, we identified 121 phenotype-related

candidate genes based on single-cell eQTLs and the GWAS

database. These candidate genes were assessed for their

expression across 10 cell types (Figure 9A). Fifteen of them

exhibited significant differences in expression across more than

five cell types (Figure 9B). TMEM258, NAA38, and EIF5 were

expressed across almost all cell types, indicating limited cell

specificity for these three genes. TCF4 was more highly expressed

in endothelial cells in healthy samples and in fibroblasts in patient

samples. MEF2C was more highly expressed in endothelial cells in

healthy samples. These findings suggested that TCF4 and MEF2C

might play a vital in development of CRS with depression.
4 Discussion

The prevalence of depression among patients with CRS is high

and considerably exceeds the level observed in the general

population (21). The exact underlying mechanisms remain

unknown. A myriad of non-sinonasal symptoms experienced by

these patients, such as chronic pain, sleep dysfunction, frustration,

cognitive impairment, and embarrassment, may contribute to the

onset of depression (22). Similar to many chronic conditions, the

loss of leisure time spent caring for CRS can be burdensome as well

as expensive, leading to heightened anxiety and depression.

Moreover, elevated systemic inflammatory cytokine levels seem to

contribute to the development of depression. While treatment for

comorbid depression may not directly affect the specific quality of

life related to CRS, a holistic approach to managing related

comorbidities can enhance overall patient care (23).

Most previous epidemiologic studies have employed a case-

control design with a vague temporal sequence, making causal

inferences difficult. Furthermore, previous observational studies

have often struggled with avoiding the interference of

confounding risk factors. In contrast, in this study, we leveraged

MR methods to elucidate causality while mitigating bias (24, 25).

MR analysis is a powerful tool for discerning potential causal
TABLE 3 Causal effects of CRS on depression.

Exposure Outcome Method P value OR OR_lci95 OR_uci95

CRS Depression

MR Egger 0.904 0.999 0.978205537 1.019661809

Weighted median 0.459 1.005 0.991029062 1.020174584

IVW 0.038 1.012 1.000632919 1.023018792

Simple mode 0.339 0.984 0.950718662 1.017442879

Weighted mode 0.774 0.997 0.973659244 1.020045207
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TABLE 4 Sensitivity analyses of the reverse MR study.

Exposure Outcome SNP (n)
Heterogeneity
tests

Cochran’s
Q

Q_pval
Horizontal
Pleiotropy tests

Intercept P value

CRS Depression 117
MR Egger 161.829 0.076 MR Egger

intercept test
0.001 0.151

IVW 164.797 0.068
F
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FIGURE 2

Causal effects of CRS on depression. (A) Scatter plot illustrating the association between CRS and depression. (B) Funnel plot testing the significance
of observed associations for heterogeneity. (C) Forest plot showing the causal effects of CRS-associated SNPs on depression. (D) Leave-one-out
analysis evaluating the effect of each SNP on causality.
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A

B

C

FIGURE 3

Distribution of library size and total number of genes. (A) Distribution of library size. (B) Distribution of library size, gene counts, mitochondria
percent, and HB percent. (C) Distribution of UMI counts, gene counts, mitochondria percent, and HB percent in feature scatter.
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relationships between various exposures (risk factors) and disease

outcomes (26). Earlier MR analyses have suggested a causal

relationship between depression and several chronic diseases,

including inflammatory bowel disease, metabolic syndrome,

atopic dermatitis, and type 2 diabetes mellitus (25–27).

To date, the causal relationship between CRS and psychiatric

disorders remains poorly understood. It is unclear whether
Frontiers in Psychiatry 08
depression and anxiety exacerbate CRS symptoms or if these

symptoms are a consequence of CRS. Herein we report robust

evidence for a bidirectional causal relationship between CRS and

depression. As research delves deeper into chronic inflammatory

diseases, co-occurring psychiatric disorders are increasingly

recognized. A dynamic link is believed to exist between chronic

inflammatory diseases and psychiatric disorders, with respiratory
A

B

FIGURE 4

Selection of genes with high variability. (A) Highly variable and (B) PCA-related genes (top9 dimensions).
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inflammation potentially originating at the site of the disease and

gradually spreading to other areas (e.g., the central nervous system)

(28). Nasal congestion, runny nose, and mucosal lesions are

reportedly more severe in CRS patients with comorbid depression

than in those without depression (29). This could be because severe

nasal symptoms can induce adverse emotional experiences, such as

discomfort and lowered self-esteem (30), which can eventually lead
Frontiers in Psychiatry 09
to depression. In addition, the nasal congestion or runny nose

phenomena involve crucial central mechanisms that merit

consideration. These mechanisms are finely tuned by trigeminal

autonomic reflexes, whose significance becomes evident, for

instance, in specific primary headache disorders (31). Such

disorders, interestingly, bear a strong correlation with depression

(32). Furthermore, depression can lead to immune dysfunction,
A

B

FIGURE 5

Selection of genes with high variability. (A) Heatmap of PCA-related genes (top9 dimensions). (B) PCA results with elbow plot.
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causing an increase in inflammatory cytokines in peripheral blood,

which may serve as a potential factor contributing to the onset of

CRS. However, the specific mechanism behind this remains to be

further explored.

Herein our single-cell combined MR analysis led to the

identification of two novel genes that may be associated with

CRS-associated depression. TCF4 is a basic helix-loop-helix

transcription factor involved in early neuronal differentiation,

cognitive functions, and immune responses in the brain (33).

TCF4 has been associated with several psychiatric conditions,

such as major depressive disorder, schizophrenia, and autism
Frontiers in Psychiatry 10
spectrum disorders. Further, its expression at the mRNA and

protein levels evidently plays a key role in the pathogenic

mechanism of recurrent depression (34). MEF2C is a critical

member of the myocyte enhancer factor family, integral to early

brain development as well as to neuronal development and

electrical activity (35). Mutations or dysfunctions in MEF2C have

been reported to cause, for example, autism-like symptoms,

intellectual deficits, and epilepsy (36). The association between

MEF2C and cognitive disorders is extremely similar to the role of

MEF2C in autism spectrum disorders and Alzheimer’s disease (37).

At present, no study has reported on TCF4 and MEF2C in CRS-
A B

DC

FIGURE 6

Clustering of cell groups. (A) Clustering map of cells (t-SNE). (B) Clustering map of cells (UMAP). (C) Clustering of cells between groups (t-SNE).
(D) Clustering of cells between groups (UMAP).
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related research. We aim to conduct further investigations to

comprehensively explore the role of TCF4B and MEF2C in CRS-

associated depression.

This study has several strengths. It represents the first

bidirectional MR analysis exploring the causal relationship

between depression and CRS. Our study design is the closest

approximation to a randomized controlled trial, ensuring random
Frontiers in Psychiatry 11
allocation based on genotype. By avoiding the limitations of

conventional observational studies, such as confounding factors

and reverse causality, MR analysis offers a more accurate assessment

of causality. Further, we leveraged large sample sizes from the

included studies as well as IVs closely related to depression. MR-

Egger analysis suggested that all observed causal relationships were

unaffected by directional pleiotropy. We also performed sensitivity
A

B C

FIGURE 7

Identification of each cluster cell type. (A) Heatmap of genes. (B) Clustering map of cells after naming (t-SNE). (C) Clustering map of cells after
naming (UMAP).
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analyses to determine the impact of pleiotropy on causality

estimates, and our results remained robust throughout these

various tests.

Some limitations should also be acknowledged. First, all

participants included in this study were from Europe,

necessitating further research to confirm the generalizability of
Frontiers in Psychiatry 12
our findings to other populations. Second, although MR analysis

has been demonstrated to be a powerful approach to evaluate

causality, its results require validation through additional studies

incorporating experimental evidence. Finally, data related to CRS

subtypes, disease severity, and comorbidities were not available in

the utilized databases, limiting our exploration of factors
A

B

C

FIGURE 8

Single-cell analysis of CRS. (A) Heatmap of genes. (B) Proportional bar chart of cells. (C) Proportional boxplot graph of cells. **P < 0.01,
ns, no significance.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1342376
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhou et al. 10.3389/fpsyt.2024.1342376
influencing depression in CRS. CRS manifests in diverse

phenotypes that exhibit distinct biological characteristics.

Specifically, type 2 CRS (characterized by the presence of polyps)

differs significantly from non-type 2 CRS in terms of its immune

mechanisms and underlying genetic factors (38). That limits the

application of the results presented in this study, especially in regard

to cells lines analysis (only CRS with polyps included).
5 Conclusions

To summarize, our MR analysis revealed a bidirectional causal

relationship between depression and CRS. TCF4 and MEF2C are

potential therapeutic targets for CRS with depression. Further

studies are warranted to validate our findings. Future evidence

from more randomized controlled trials and basic experimental

studies can further enhance our understanding of the role of

depression in CRS prevention and treatment.
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