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Introduction: Patients with alcohol use disorder (AUD) often experience

repeated withdrawal. Impulsivity is the most relevant factor influencing

successful withdrawal. Brain-derived neurotrophic factor (BNDF) and fibroblast

growth factor 21 (FGF21) are associated with impulsivity. Previous studies on the

differential effects of BDNF or FGF21 on impulsivity have focused on single-gene

effects and have inconsistent results. We aim to investigate the effects of BDNF

rs6265 and FGF21 rs11665896, individually and together, on impulsivity during

alcohol withdrawal in patients with AUD.

Methods: We recruited 482 adult Han Chinese males with AUD and assessed

their impulsivity using the Barratt Impulsivity Scale. Genomic DNA was extracted

and genotyped from peripheral blood samples. Statistical analysis was conducted

on the data.

Results: The T-test and 2 × 2 analysis of variance were used to investigate the

effects of the genes on impulsivity. There was a significant BDNF × FGF21

interaction on no-planning impulsiveness (F = 9.15, p = 0.003, h2p = 0.03).

Simple main effects analyses and planned comparisons showed that BDNF

rs6265 A allele × FGF21 rs11665896 T allele was associated with higher no-

planning impulsiveness. Finally, hierarchical regression analyses revealed that

only the interaction of BDNF and FGF21 accounted for a significant portion of the

variance in no-planning impulsiveness.
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Conclusion and significance: The combination of BDNF rs6265 A allele and

FGF21 rs11665896 T allele may increase impulsivity and discourage alcohol

withdrawal. Our study provides a possible genetic explanation for the effects of

associated impulsivity in patients with AUD from the perspective of gene-

gene interactions.
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1 Introduction

Alcohol is the most widely used addictive substance in the

world, and China’s alcohol market has become one of the world’s

largest (1). People with harmful drinking patterns often suffer from

alcohol use disorder (AUD) that impairs health and functioning (2).

AUD is a global health problem ranking seventh among the leading

causes of death (3). When long-term drinkers suddenly stop

drinking, AUD can cause alcohol withdrawal syndrome, which is

an understudied subtype of AUD (4).

Alcohol withdrawal syndrome can lead to impulsivity, which is

a constituent of human behavior in which individuals assume

appropriate risks and pursue novel opportunities (5, 6).

Impulsivity is associated with many at-risk behaviors, including

suicidality, substance abuse, and criminal actions (7, 8). It is

essential to identify subjects with high impulsivity tendencies,

which can help alcohol-dependent patients successfully quit

drinking quickly and reduce the risk of harmful behaviors. Not all

individuals experience impulsivity in the context of alcohol

withdrawal (9). Studies showed that impulsive behavior is

associated with genetics linking individual differences to specific

allelic variants arising from single-nucleotide polymorphisms (10,

11). Several genes are associated with impulsivity and aggression in

alcohol-dependent individuals, including brain-derived

neurotrophic factor (BDNF) (12), FGF21 (13), tryptophan

hydroxylase type 2 (14), 5-HT receptor 2A (15), and catechol-O-

methyl transferase (16).

BDNF is the most prevalent growth factor in the central nervous

system. BDNF participates in developing the central nervous system

and neuronal plasticity (17). The most common BDNF single-

nucleotide polymorphism (SNP) in humans is at codon 66 (rs

6265), which can lead to a val-to-met (V66M) protein variant (18).

Studies showed that BDNF is associated with impulsivity, and can be

a biological marker for impulsive behavior (19). Findings regarding

the BDNF rs6265 Met allele and impulsivity have been inconsistent.

Bergman and Su et al. found that the BDNF rs6265 Met allele was

associated with higher impulsivity in children with attention-deficit

hyperactivity disorder and methamphetamine abusers (20, 21). In

contrast, Boscutti et al. found that the BDNF rs6265 Met/Met

genotype was associated with reduced impulsivity levels (22).
02
Fibroblast growth factor 21 (FGF21) is a member of the FGF19

superfamily (23). It mediates its biological effects by binding to a co-

receptor, b-klotho (24). FGF21 can cross the blood-brain barrier

(25) and is significantly associated with alcohol craving (26). FGF21

can modulate the functions of hypothalamic-pituitary-adrenal axis,

which is associated with suicide and impulsive aggression (27, 28).

A study found that a decrease in FGF21 level associated with

serotonin and dopamine in the cerebrospinal fluid leads to higher

impulsivity (29); the transcription level of FGF21 was influenced by

miRNA. FGF21 rs11665896 is located at the 3′UTR region, where

target sites for miRNAs are located, and the change of G for T

resulting from this SNP could affect miRNA binding, reducing

FGF21 transcription (30).

Studies found that BDNF and FGF21 are associated with

alcohol dependence and impulsivity (31, 32). In addition, the link

between BDNF SNP and AUD has been reported in some critical

literature. An epidemiological study of 377 Japanese male alcoholics

reported that, for the G196A genotype, people with the A allele

develop alcohol abuse earlier than those who do not (33). Regarding

the effect of Val66Met polymorphism of the BDNF gene on AUD,

epidemiological studies have shown that BDNF gene Val66Met

polymorphism increases vulnerability to alcohol dependence (34).

However, another animal study suggests that BDNF Val66Met

polymorphism dose not play a significant role in the genetic

predisposition to alcohol dependence or violent tendencies (35).

The association of BDNF and FGF21 genes’ variations and

interactions with AUD-related impulsivity needs further

investigation. Therefore, this study investigated the effects of two-

gene variants, BDNF rs6265 and FGF21 rs11665896, individually

and in combination, on impulsivity in AUD patients during

alcohol withdrawal.
2 Materials and methods

2.1 Participants

We recruited 482 participants from several hospitals in

northern China. All participants are Han Chinese men

hospitalized for alcohol use disorders. The inclusion criteria were
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diagnosis of alcohol dependence by at least two trained psychiatrists

according to the DSM-IV and sufficient literacy skills. The

exclusion criteria were 1) a history of substance abuse or

dependence other than nicotine, 2) participants or their first-

degree relatives with a history of severe psychiatric or

neurological disorders, and 3) cardiovascular, liver, or

kidney disease.

All AUD patients voluntarily or passively came to the hospital

on the day of drinking or the day after their last drinking session

due to mental and behavioral disorders caused by alcohol

consumption. Then, they experienced three weeks of abstinence

in the hospital. After that, the participants were asked to complete

questionnaires and provide a blood sample for DNA extraction. All

patients provided written informed consent and were told the blood

sample would be subjected to a gene assay. The institutional review

board of the Inner Mongolian Medical University approved the

study. All procedures performed in this study involving human

participants followed the Helsinki Declaration.
2.2 Impulsivity

Impulsivity was assessed using the Barratt Impulsiveness Scale

(BIS-11) Chinese Version. The BIS contains 30 items rated on a

five-point Likert scale ranging from “no” to “always.” The BIS

evaluates impulsivity in three domains: no-planning, motor, and

cognitive impulsiveness (36). A higher score on the BIS indicates a

higher level of impulsivity. The BIS has high internal consistency

with a Cronbach’s a of 0.80 (37).
2.3 Genotyping

Genomic DNA was extracted from each participant 5 mL of

peripheral blood using standard techniques. The BDNF rs6265 and

FGF21 rs11665896 SNPs were genotyped using 5’ nuclease

fluorescent TaqManTM primers (Applied Biosystems, Foster City,

CA). Reactions were performed according to the manufacturer’s

protocol. All laboratory procedures were carried out in a manner

blind to case-control status. The conditions of polymerase chain

reaction were as follows: 50°C for 2 min, 95°C for 10 min, followed

by 50 cycles of 95°C for 15 s and 60°C for 1 min. BDNF rs6265 was

genotyped with primers: (forward) 5’ GGACTCTGGAG

AGGTGAAT-3’ and (reverse) 5’ CTCATCAGCTCTTCTATC -3’.

FGF21 rs11665896 was genotyped with primers: (forward) 5’

TGTGTGGTGTCTGAGGGAAG-3’ and (reverse) 5’ GAAGTC

AAGAGATGGAGAGCA-3’. Ten percent of the DNA samples

were duplicated randomly and tested, and no-fault genotyping

was found.

For the BDNF gene, there were 125 GG, 108 AA and 249 AG

carriers. We grouped AA with AG to form an “A allele” (n = 355),

with the remaining carriers categorized as “GG homozygote”

(n = 125) genotype. For the FGF21 gene, there were 233 GG, 52

TT and 197 GT carriers. We grouped TT with GT to form a
Frontiers in Psychiatry
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“T allele” (n = 249) with the remaining carriers categorized as

“GG homozygote” (n = 233) genotype.
2.4 Statistical analyses

Pearson correlations were examined between marital status,

living status, age, educational years, no-planning, cognitive, and

motor impulsiveness. Then, the Hardy-Weinberg equilibrium for

genotype distributions of BDNF rs6265 and FGF21 rs11665896 was

tested using the c2 test for goodness of fit. To investigate the effects

of genes on impulsivity, we conducted independent t-tests for each

genotype and a 2 × 2 analysis of variance to examine BDNF rs6265

× FGF21 rs11665896 interaction on individual dimensions of

impulsivity. Significant interactions were explored using simple

main effects analyses and planned comparisons. Finally, we

conducted hierarchical regression analyses to determine the

specific and interactional effects of BDNF rs6265 × FGF21

rs11665896 on no-planning impulsiveness.
3 Results

3.1 Descriptive statistics

We included 482 participants. The mean age was 41.42 ± 10.24

years. The average number of education years was 11.18 ± 2.81

years. Most participants were married (71.6%) and living with

family (78.4%). The impulsivity scores were no-planning

impulsiveness (41.54 ± 19.30), cognitive impulsiveness (40.47 ±

17.47), and motor impulsiveness (33.60 ± 18.06). Correlation

analyses revealed that general demographic, age and educational

years were significantly correlated with impulsivity (Table 1). Age

was significantly positively associated with impulsivity (|r|s ≥ 0.12,

ps < 0.01), and educational years were significantly negatively

associated with impulsivity (|r|s ≥ 0.21, ps < 0.001). Marital status

and l iv ing status showed no significant correlat ions

with impulsivity.
3.2 Effect of BDNF rs6265 and FGF21
rs11665896 genotypes on impulsivity

Before performing a single-gene effect test, Hardy-Weinberg

equilibrium was established for each gene (Table 2). BDNF rs6265

and FGF21 rs11665896 were in Hardy-Weinberg equilibrium

(c2 = 0.573, p = 0.449; c2 = 1.128, p = 0.288). The results of

single-gene effect showed that there were no significant differences

of impulsivity between BDNF rs6265 A allele carriers and GG

homozygote carriers (ts < 1.56, p > 0.10), and there were no

significant differences of impulsivity between FGF21 rs11665896

T allele carriers and GG homozygote carriers (ts < 0.95, p > 0.19)

(Table 3). There were no significant single-gene effects of BDNF

rs6265 or FGF21 rs11665896 on AUD-related impulsivity.
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3.3 Effect of the interaction of BDNF
rs6265 and FGF21 rs11665896 genotypes
on impulsivity

Figure 1 displays the impulsivity scores for the four allelic groups.

BDNF rs6265 A allele and FGF21 rs11665896 T allele carriers showed

higher levels of impulsivity. BDNF rs6265 GG homozygote and FGF21

rs11665896 T allele carriers showed lower levels of impulsivity. We

subjected these impulsivity scores to analysis of variance with two

between-subjects factors of BDNF rs6265 (A allele/GG homozygote)

and FGF21 rs11665896 (T allele/GG homozygote) (Table 4). There was

a significant BDNF × FGF21 interaction on no-planning impulsiveness

(F = 9.15, p = 0.003, h2p = 0.03). However, this interaction effect was

absent on cognitive impulsiveness (F = 3.55, p = 0.060, h2p = 0.01) and

motor impulsiveness (F = 1.57, p = 0.21, h2p = 0.003).
Frontiers in Psychiatry 04
Simple main effects analysis (Table 5) and planned comparisons

(Table 6) were conducted to explore this significant interaction.

There was a significant BDNF effect in FGF21 T allele carriers

(F = 6.32, p = 0.01) but not in FGF21 GG homozygote carriers

(F = 3.32, p = 0.07). There was a significant FGF21 effect in BDNF A

allele carriers (F = 7.35, p = 0.007) but not in BDNF GG

homozygote carriers (F = 1.85, p = 0.18). The planned

comparisons showed higher no-planning impulsiveness for the

BDNF rs6265 A allele than for BDNF rs6265 GG homozygote

carriers (t = -2.51, p = 0.01) in the FGF21 T allele group and higher

no-planning impulsiveness for FGF21 rs11665896 T allele relative

to FGF21 rs11665896 GG homozygote carriers (t = -2.71, p = 0.007)

in the BDNF A allele group. This significant difference was also

absent in the FGF21 GG homozygote group (t = 1.80, p = 0.07) and

the BDNF GG homozygote group (t = 1.36, p = 0.18).
TABLE 2 Hardy-Weinberg equilibrium of BDNF rs6265 and FGF21 rs11665896.

BDNF rs6265 FGF21 rs11665896

Genotype AA AG GG GG GT TT

Number of people 108 249 125 233 197 52

Percentage 22.4% 51.7% 25.9% 48.3% 40.9% 10.8%

c2 0.573 1.128

p 0.449 0.288
TABLE 3 Impulsivity scores for single-gene genotypes.

BDNF rs6265 FGF21 rs11665896

BDNF:
A allele
(n =357)

BDNF:
GG homozygote

(n = 125)
t

FGF21:
GG homozygote

(n = 233)

FGF21:
T allele
(n = 249)

t

No-planning Impulsiveness 41.87 ± 19.64 40.60 ± 18.32 -0.63 41.75 ± 18.88 41.35 ± 19.71 0.82

Cognitive Impulsiveness 41.20 ± 18.04 38.38 ± 15.61 -1.56 40.42 ± 17.68 40.52 ± 17.31 0.95

Motor Impulsiveness 33.78 ± 18.26 33.10 ± 17.55 -0.36 32.50 ± 17.72 34.64 ± 18.39 0.19
fron
TABLE 1 Descriptive statistics and correlations among study variables.

1. 2. 3. 4. 5. 6. 7.

1.Marital status 1

2.Living status 0.33*** 1

3.Age 0.30*** 0.16*** 1

4.Educational years -0.15** -0.10* -0.47*** 1

5.No-planning Impulsiveness -.003 0.05 0.13** -0.22*** 1

6.Cognitive Impulsiveness 0.04 0.08 0.12** -0.22*** 0.77*** 1

7.Motor Impulsiveness 0.05 0.05 0.12** -0.21*** 0.33*** 0.26*** 1

M (–) (–) 41.42 11.18 41.54 40.47 33.60

SD (–) (–) 10.24 2.81 19.30 17.47 18.06
*p < 0.05; **p < 0.01; ***p < 0.001.
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Finally, multivariate regression analysis was performed for the

primary and interaction effects of BDNF and FGF21 on impulsiveness.

BDNF rs6265 and FGF21 rs11665896 were entered as predictors of

impulsiveness. Only the interaction of BDNF and FGF21 accounted

for a significant portion of the variance in no-planning impulsiveness

(b = -0.14, t = 2.195, p = 0.029). This significant interaction was absent

for cognitive impulsiveness and motor impulsiveness.
4 Discussion

We investigated the effects of BDNF rs6265 and FGF21

rs11665896 on impulsivity with alcohol dependence during
Frontiers in Psychiatry 05
withdrawal. Previous studies showed that BDNF played a

significant role in the processes of alcohol withdrawal syndrome

(31), and FGF21 is related to AUD (32). The present study found no

significant single-gene effect of BDNF rs6265 or FGF21 rs11665896

on AUD-related impulsivity. However, in the interaction analysis

with two genes, we found that the interaction of BDNF rs6265 ×

FGF21 rs11665896 had a significant effect on no-planning

impulsiveness in participants with AUD. When the BDNF rs6265

A allele was combined with the FGF21 rs11665896 T allele, no-

planning impulsiveness was higher in patients with AUD.

BDNF rs6265 A allele and FGF21 rs11665896 T allele caused

the production of mature protein (BNNF and FGF21) to decrease

(30, 38). In a sample of individuals who had attempted suicide (39)
FIGURE 1

Impulsivity scores for BDNF rs6265 and FGF21 rs11665896.
TABLE 4 The interaction effects between BDNF and FGF21 polymorphisms on impulsiveness.

Parameter Factor SS df MS F p h2p

No-planning
Impulsiveness

BDNF 54.76 1 54.76 0.149 0.700 0.000

FGF21 997.08 1 997.08 2.714 0.100 0.006

Interaction 3362.47 1 3362.47 9.154 0.003 0.03

Residual 175585.37 478 367.33

Cognitive
Impulsiveness

BDNF 603.12 1 603.12 1.99 0.159 0.004

FGF21 194.03 1 194.03 0.64 0.424 0.001

Interaction 1075.57 1 1075.57 3.55 0.060 0.01

Residual 144967.01 478 303.28

Motor
Impulsiveness

BDNF 32.80 1 32.80 0.101 0.751 0.000

FGF21 95.81 1 95.81 0.294 0.588 0.000

Interaction 511.79 1 511.79 1.570 0.211 0.003

Residual 155786.21 478 325.91
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and in attention-deficit hyperactivity disorder patients (40), low

blood BDNF concentrations were associated with high levels of

impulsivity. Low FGF21 levels in the cerebrospinal fluid led to

impulsivity (29). Studies have shown that the higher the impulsivity,

the higher the risk of being drink. Impulsivity can motivate alcohol

consumption in a variety of ways. Stamates et al. found that

individuals with high levels of impulsivity appear to have more

significant negative internal and external motives for drinking (41).

Moreover, high trait impulsivity, as measured with the BIS-11, may

result in/from heavy drinking patterns in young social drinkers

(42). In addition, impulsivity is related to a higher risk of relapse in

alcohol use disorders (43, 44). FGF21 and BDNF have many similar

biological effects. They have neuroprotective effects such as

improving cognitive function and neurodegeneration (45–48).

BDNF and FGF21 levels change after drinking alcohol (49, 50),

suggesting there may be an interaction between BDNF and FGF21.

Studies found that muscle-derived mediators such as FGF21 and

cathepsin-B (CTSB) can pass through the blood-brain barrier and

enhance neuroprotective markers including irisin and BDNF (51).

Kang et al. found that FGF21 activated the AMPKa/SIRT1
signaling pathway, directly or indirectly inhibiting NF-kB
expression and enhancing BDNF expression (45). Mice with the

livers of BDNF mutants fed a high-fat diet contained abnormal

levels of peroxisome proliferator-activated receptor and FGF21

transcripts (52).

In the present study, the BDNF rs6265 A allele or FGF21

rs11665896 T allele corresponded to lower BDNF and FGF21

protein levels. Decreases in FGF21 or BDNF may lead to a

decrease in the other protein. The combination of the BDNF

rs6265 A allele and the FGF21 rs11665896 T allele may

correspond to the lowest BDNF and FGF21 levels in vivo.

Long-term heavy drinking can lead to inflammation and

apoptosis (53, 54). Pro-BDNF and BDNF may produce opposite

biological functions by signaling through p75NTR and TrkB,

respectively (55). Anastasia et al. found that Met66proBDNF

binds more effectively to the p75NTR/sortilin complex receptor
Frontiers in Psychiatry 06
than Val66proBDNF (56). Pro-BDNF-p75NTR activates the JNK

pathway to upregulate p53 expression and initiate apoptosis (57).

BDNF depletion is associated with neuroinflammation and

neuronal apoptosis in Alzheimer’s disease (58). FGF21 relieved

numerous inflammation-related metabolic disorders, including

metabolic syndrome and cardiovascular diseases (59). Lu et al.

found that FGF21 reduced senescence, apoptosis, and extracellular

matrix degradation in osteoarthritis via the SIRT1-mTOR signaling

pathway (60). These findings suggest that the effects of BDNF and

FGF21 on impulsivity may be mediated by inflammation

and apoptosis.

The mechanisms underlying higher impulsivity may also be

associated with neurotransmitter changes, including serotonin and

dopamine (61, 62). BDNF regulates mood, cognition, and response

to stress and interacts with serotonergic, glutamatergic, cholinergic

and dopaminergic neurotransmission (63, 64). Xu et al. found that

the effect of CSF FGF21 on impulsivity may be related to the

regulating effects of FGF21 on serotonin and dopamine in CSF (29).

These findings suggest that BDNF and FGF21 may affect

impulsivity by regulating neurotransmitters such as serotonin

and dopamine.

The present study has some limitations. First, the measure of

impulsivity used self-report scales, and data were collected using

self-rating scales; therefore, reporting bias is unavoidable. Second,

our study was cross-sectional and should be extended to

longitudinal studies. Third, this study only included male

patients. Nevertheless, some studies have found sex differences in

drinking behavior, neural systems, and AUD treatment (65, 66).

Schulte et al. found that while girls and boys may be facing similar

vulnerabilities to problems with alcohol, boys begin to carry more

risk as they move toward young adulthood (67). Agabio et al. found

that women were older than men at the age of first drink, regular

drinking, and onset of AUD, and progressed faster than men from

regular use to AUD onset (68). More importantly, the sex difference

occurs in BDNF SNP reported by alcohol-related studies. Female

hBDNFVal/Val mice exhibited a greater propensity toward stable

ethanol self-administration than male mice of the same genotype in

the operant paradigm (6). Male Met68BDNF mice exhibited a

preference for alcohol over social interaction and were insensitive

to the acute anxiolytic action of alcohol, which was driven by

malfunction of BDNF in the ventral hippocampus of male mice

(69). Therefore, further research in female patients with AUD is

warranted in the future. Fourth, our study examined only one

genotype of BDNF or FGF21 and should be investigated using gene

set analysis. Finally, specific mechanisms should be explored using
TABLE 5 Sample main effect.

Effect Fixed F p

BDNF FGF21 GG 3.23 0.07

BDNF FGF21 T 6.32 0.01

FGF21 BDNF GG 1.85 0.18

FGF21 BDNF A 7.35 0.007
TABLE 6 Planned comparisons.

Fixed Contrast Diff (se) t p

FGF21 GG BDNF GG – BDNF A 5.28 (2.94) 1.80 0.07

FGF21 T BDNF GG – BDNF A -6.82 (2.71) -2.51 0.01

BDNF GG FGF21 GG – FGF21 T 2.76 (2.03) 1.36 0.18

BDNF A FGF21 GG – FGF21 T -9.35 (3.45) -2.71 0.007
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relevant molecular biomolecular methods. The strengths of this

study include our more profound understanding of the impact of

AUD-related impulsivity at the two-gene level.
5 Conclusion

In summary, our findings suggest that combinations of

genotypes of BDNF and FGF21 have different effects on

impulsivity during withdrawal in alcohol-dependent patients. The

BDNF rs6265 A allele × FGF21 rs11665896 T allele is associated

with higher no-planning impulsiveness. The combination of BDNF

rs6265 A allele and FGF21 rs11665896 T allele maybe a risk to

increase impulsivity, which is not conducive to quitting in alcohol-

dependent patients. There is a lack of research on AUD based on

genetic variations. Further study on genetic targets may improve

understanding of AUD and provide treatment methods for

AUD patients.
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