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Background and purpose: There are distinct challenges in the preprocessing of

spinal cord fMRI data, particularly concerning the mitigation of voluntary or

involuntary movement artifacts during image acquisition. Despite the notable

progress in data processing techniques for movement detection and correction,

applying motion correction algorithms developed for the brain cortex to the

brainstem and spinal cord remains a challenging endeavor.

Methods: In this study, we employed a deep learning-based convolutional neural

network (CNN) named DeepRetroMoCo, trained using an unsupervised learning

algorithm. Our goal was to detect and rectify motion artifacts in axial T2*-

weighted spinal cord data. The training dataset consisted of spinal cord fMRI data

from 27 participants, comprising 135 runs for training and 81 runs for testing.

Results: To evaluate the efficacy of DeepRetroMoCo, we compared its

performance against the sct_fmri_moco method implemented in the spinal

cord toolbox. We assessed the motion-corrected images using two metrics:

the average temporal signal-to-noise ratio (tSNR) and Delta Variation Signal

(DVARS) for both raw and motion-corrected data. Notably, the average tSNR in

the cervical cord was significantly higher when DeepRetroMoCo was utilized for

motion correction, compared to the sct_fmri_moco method. Additionally, the

average DVARS values were lower in images corrected by DeepRetroMoCo,

indicating a superior reduction in motion artifacts. Moreover, DeepRetroMoCo

exhibited a significantly shorter processing time compared to sct_fmri_moco.

Conclusion: Our findings strongly support the notion that DeepRetroMoCo

represents a substantial improvement in motion correction procedures for fMRI

data acquired from the cervical spinal cord. This novel deep learning-based

approach showcases enhanced performance, offering a promising solution to

address the challenges posed by motion artifacts in spinal cord fMRI data.
KEYWORDS

fMRI, spinal cord, motion correction, deep learning, unsupervised
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1323109/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1323109/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1323109/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1323109/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2024.1323109&domain=pdf&date_stamp=2024-06-28
mailto:m.khatibitabatabaei@bham.ac.uk
https://doi.org/10.3389/fpsyt.2024.1323109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2024.1323109
https://www.frontiersin.org/journals/psychiatry


Mobarak-Abadi et al. 10.3389/fpsyt.2024.1323109
1 Introduction

Spinal cord functional magnetic resonance imaging (fMRI) has

become increasingly popular for exploring intrinsic neural networks

and their role in pain modulation, motor learning, and sexual

arousal (1, 2). There are unique challenges in data acquisition and

preprocessing, such as relatively small cross-sectional dimension,

the variable articulated structure of the spine between individuals,

low signal intensity in standard gradient-echo echo-planar T2*-
weighted fMRI, and voluntary (bulk motion) or involuntary

(fluctuation of cerebrospinal fluid due to respiration and

heartbeat) movements during image acquisition (3–5). Spinal

cord motions can cause signal alterations across volumes, which

decrease the temporal stability of the signal and ultimately increase

false-positive and -negative discovery rates (6–8).

Despite advances in fMRI motion correction, there are

problems in extrapolating the motion correction algorithm

developments in the brain to the brainstem and spinal cord. In

brain fMRI, we generally utilize six degrees of freedom rigid-body

registration of a single volume to a reference, which can be a

preselected volume or an average volume (9, 10). This method is

non-robust and insufficient for spinal cord fMRI preprocessing due

to the non-rigid motion of the spinal column and physiological

motion from swallowing and the respiratory cycle (3, 11). Along

with the release of the Spinal Cord Toolbox (SCT), sct_fmri_moco

was introduced for motion correction in the spinal cord (12). The

basis of sct_fmri_moco is slice-by-slice regularized registration for

spinal cord algorithm (SliceReg) that estimates slice-by-slice

translations of axial slices while ensuring regularization

constraints along the z-axis (13).

In the past few years, we have seen an interest in the application

of artificial intelligence in medical image processing (14–16). In

spinal cord imaging, deep learning has been used for the

segmentation of the spinal cord and CSF in structural T1- and

T2-weighted images. DeepSeg as a fully automated framework

based on convolutional neural networks (CNNs) is proposed to

apply spinal cord morphometry for segmenting the spinal cord, as

part of SCT (17–19). More recently, the K-means clustering

algorithm has been employed specifically for delineating segments

of the spinal cord within the thoracolumbar region, demonstrating

its utility in identifying distinct anatomical structures within this

complex area (20) This application is particularly notable for its

ability to differentiate between the spinal cord and surrounding

tissues, offering a promising automated approach for spinal cord

morphometry. A robust and automated CNN model with two

temporal convolutional layers is introduced for motion correction

in brain fMRI, and the following regression employs derived motion

regressors (21).

Studies in the field of registration are generally divided into two

categories: learning-based and non-learning based. In the non-

learning category, extensive work has been done in the field of 3D

medical image registration (22–27). Some models are based on

optimizing the field space of displacement vectors, which include

elastic models (22, 28), statistical parametric mapping (29), free-

form deformations with b-spline (29), and demons (23). Common

formulations include Large Diffeomorphic Distance Metric
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Mapping (LDDMM) (30, 31), DARTEL (24), and standard

symmetric normalization (SyN) (25). There are several recent

articles in learning-based studies that have suggested neural

networks for registering medical images, and most of them

require ground truth data or any additional information such as

segmentation results (32–35).

To the best of our knowledge, no prior study utilized AI for

motion correction in the spinal cord fMRI. This study aimed to

train a deep learning-based CNN via unsupervised learning to

detect and correct motions in axial T2*-weighted spinal cord

data. We hypothesize that our method can improve the outcome

of motion correction and reduces the preprocessing time as

compared to the existing methods.
2 Methods

2.1 Fixing centerline as preprocessing

In our preprocessing approach, data alignment in each slice

over time was conducted using a centerline within the spinal cord,

extracted using the spinal cord toolbox. To adjust for points outside

the expected range or missing, we used third-degree b-spline

interpolation and the interquartile range method to determine the

centerline coordinates’ boundaries. This interpolation not only

corrects for misalignments but also preserves the natural

curvature of the spinal cord in three-dimensional space,

maintaining the anatomical fidelity of the neck—a critical aspect

when considering the complex geometry of the spinal cord.

In our pursuit of optimizing efficiency and effectiveness, we

meticulously evaluated computational costs, particularly during the

initial centerline realignment stage. This evaluation focused on

correct ing displacements along two axes : the x-axis ,

corresponding to lateral shoulder movements, and the y-axis,

associated with vertical chest movements due to breathing.

Our comprehensive analysis revealed a notable finding: y-axis

corrections were significantly more effective, a result that was

anticipated given the constant position of shoulders during scans.

Our numerical analysis underscored this, showing a higher variance

in the y-direction (1.1) compared to the x-direction (0.52),

indicating a more pronounced scattering in the y-direction and

underscoring the predominance of chest movements.

Consequently, y-axis corrections alone captured the essential

adjustments required in our dataset and model architecture

during the centerline realignment phase.

Adjustments for x-axis movements were addressed in

subsequent stages for full spatial transformation. However,

integrating both x and y corrections at the initial stage did not

markedly improve outcomes over y-axis corrections alone (Table 1)

but led to increased computational costs and extended processing

time by approximately 45%.

Given these insights, we strategically focused on y-axis

corrections for centerline realignment, aiming for an optimal

balance between model performance and operational efficiency.

This approach streamlined our procedures and reduced

unnecessary computational expenditure, emphasizing our
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commitment to refining and improving our methodologies with a

focus on cost efficiency and effectiveness (see Figure 1).

However, given that literature and empirical observations suggest

minimal movement in the z-direction in spinal cord fMRI (36), we did

not perform corrections in the z-direction. This targeted approach in

preprocessing was designed to enhance the training efficiency and

accuracy of our DeepRetroMoCo algorithm. Notably, the final output

of DeepRetroMoCo’s spatial transformationmap offers full freedom for

correction across all considered directions, ensuring a comprehensive

and effective motion correction for the entire dataset.
2.2 Unsupervised deep learning
network architecture

2.2.1 Convolutional neural network architecture
AssumeM and F are two images of the same slice defined in the

N-dimensional spatial domain W ⊂ RN. We are focusing on N = 2
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because the type of data we are using is “functional,” containing

single-channel grayscale data. Additionally, our network focuses on

the Axial view. The fixed image F is the reference volume, so it can be

the first, middle, average, or any of the volumes, and M is the rest of

the time-series images. Before training the network, we align F andM

using our fixing Centerline method, which we describe in the

following section, so that the only misalignment between the

volumes is nonlinear. We then use a CNN structure similar to

UNet (37, 38) to model a Nq (F,M) = Ø function, which includes

an encoder and decoder with skip connection (Figure 2): where ∅ is

the register map between the two input images and the q learned

parameter of the network. In this map, for each voxel p∈W, there is a
position where F(p) and the warped image M(∅ (p)) have the same

anatomical position. Therefore, our network takes the concatenated

images F and M as input and calculates the registration flow field

based on q . In the next step, it uses the spatial transformation

operator to warp the moving image based on the flow field and

evaluates the similarity between M and F and q update. Figure 3

shows our introduced architecture and an integrated input by

concatenating F and M in two channels of the 2D image.

In both the encoder and decoder stages, we use two-

dimensional convolution with a 3×3 kernel size and leaky Relu

activation. The hierarchical properties of the concatenated image

pair are captured by the convolution layer, which is required to

estimate ∅. We also use stride convolution to decrease the spatial

dimensions and get to the smallest layer. During the encoding steps,

features are extracted by downsampling, and during the decoding

and upsampling steps, the network propagates the trained features

from the previous step directly to the layer that generates the

registry by using a skip connection. A decoder’s output size   (∅ )

is equal to the input image M.

We used two architectures to examine a trade-off between speed

and accuracy. These two structures, DRM_1 and DRM_2, differ in

their architectural complexity at the end of the decoder. DRM_1,

being the more complex model, uses additional layers at the end of

the decoder and more channels throughout, resulting in a total of

467,474 parameters. In contrast, DRM_2 is designed with fewer

parameters, totaling 116,370, making it a more compact model.

This difference in the number of parameters reflects the variations

in computational complexity and capacity between the two models.

To find the optimal theta parameter, we used the stochastic

gradient descent method to minimize the loss function L: (Equation
1)

q̂ = argmin
q

E(F,M)∼D½L(F,M, gq(F,M))�� �
(1)

where D is the empirical distribution. It should be noted that we

do not need supervisor information such as Atlas or T1 images.

The LUnsupervised consists of two parts: (Equation 2) Lsim, which

measures the similarity between F and M(∅ ), and  Lreg , which

measures the smoothness of the registration field. Thus, our total

loss function is as follows:

L(F,M,∅ ) = Lsim  (F,M(∅ )) + lLreg  (∅ ) (2)

l is the regulation parameter.
TABLE 1 Impact of Y-only vs. X and Y centerline correction on tSNR
and DVARS.

Methods Spinal
cord

CSF Mean (S)

Mean (SD)

tSNR

Post-
correction
Y only

7.1
(2.41)

4.03
(1.17)

DVARS

0.03
(0.010)

Post-
correction X

and Y 6.9 (1.9)
4.13
(1.31)

0.03
(0.009)
FIGURE 1

Axial (bottom right), coronal (bottom left), and sagittal (top right)
views of data with the centerline. The image on the top left also
shows tSNR with the x and y guidelines.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1323109
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Mobarak-Abadi et al. 10.3389/fpsyt.2024.1323109
We used two different cost functions for Lsim: mean square

error (Equation 3) and normalize cross-correlation (Equation 4),

which is a common metric due to robust intensity variations. The

first cost function, the mean square error, is as follows:

MSE =
1

(Image   sigma)2
� 1

N
�opi∈W F(pi) −M(∅ (pi))ð Þ2 (3)

Here, pi is the position of the pixels and Image sigma is equal to

1 in this work. In addition, the fact that MSE is close to 0 indicates

better alignment. The second cost function, normalizing cross-

correlation, is as follows:
Frontiers in Psychiatry 04
CC =op∈W
opi

(F(pi) − F̂ (p))(M(∅ (pi)) − M̂ (∅ (p)))
� �2

opi
(F(pi) − F̂ (p)))(opi

(M(∅ (pi)) − M̂ (∅ (p)))
� �

(4)

Let F(pi) and M(∅ (pi)) be the image intensities of fixed and

moving images, respectively, and F̂ (p) and M̂ (∅ (p)) be the local

mean at position p, respectively. The local mean is computed over a

local n2 window centered at each position p with n = 3 in this work.

By minimizing Lsim, we seek to approximate M(∅ (p)) from

F(p), but it may cause a discontinuity in ∅, so we used spatial

gradients to regulate the deformation field between the voxel’s
FIGURE 2

Proposed convolutional architectures implementing g_q (F,M). Each rectangle shows a 2D volume in which two fixed and moving images are
connected. The number of channels inside each rectangle is shown and the spatial resolution is printed below it according to the input volume. The
first model has a larger architecture and more channels than the second model.
FIGURE 3

Overview of DeepRetroMoco. As a preprocess, we align the data in two dimensions based on the centerline, and then we register the moving image
(M) to the fixed image (F) by learning function parameters (N). During training, an ST was used to warp the moving image with the registration field,
and in this operation, the loss function compares M(Ø) and F using the smoothness of Ø.
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neighborhood, as follows: (Equation 5)

Lregularization  = o
p∈W

m∅ (p)k k2=o
∂∅
∂ x

����
����
2

+
∂∅
∂ y

����
����
2

+
∂∅
∂ z

����
����
2

    (5)

This cost function is applied to the network’s output vectors and

controls the size of the vectors by deriving the vectors in

each direction.

2.2.2 Spatial transformation function
Our spatial transformation function (STF) is critical for

learning the transformation parameters q, which align the moving

image (M) with the fixed image (F) by minimizing their

dissimilarity (39). This process is distinct from Pix2pix’s

approach, which typically relies on paired examples in a

supervised learning context for image-to-image translation. Our

unsupervised method, instead, leverages the inherent structure

within the data, learning q directly from the alignment of M and

F without the need for such pairs.

The STF generates a sampling grid using the predicted

transformation parameters q, creating a deformed version of M

[notated as M(∅)]. It is worth noting that the STF in our network

learns this deformation field in an unsupervised manner, which is

not directly comparable to the Pix2pix model that requires paired

training data. Moreover, our method uses bilinear interpolation at

non-integer positions to ensure a smooth and continuous

transformed image, which is critical for maintaining anatomical

structure after transformation.

To further distinguish our work from Pix2pix, we use a unique

loss function that balances the similarity between F and the warped

image M(∅) with the regularization of the deformation field to

ensure smoothness. This loss function is key for our network to

produce a deformation field that enables precise alignment while

preserving the structural integrity of the images.
2.3 Experiments

2.3.1 Dataset
The data used for this experiment include 30 subjects with T2*-

weighted MRI scans acquired from a 3T TIM Trio Siemens scanner

(Siemens Healthcare, Erlangen, Germany) equipped with a 32-

channel head coil, and a 4-channel neck coil was used for the

imaging to investigate the functional activity in the brain and the

spinal cord (40). All subjects were scanned twice. Five runs were

collected in the first session and three runs were collected in the

second session. Sessions were acquired 1 week apart. This resulted

in 240 runs. We only used the data from the neck coil and cervical

spinal cord in this study.

The dataset included 8–10 slices that covered the cervical spinal

cord from C3 to T1 spinal segmental levels and were oriented

parallel to the spinal cord at the C6 level. The FoV of the slices was

132� 132  mm2, with voxel sizes of 1:2� 1:2� 5  mm3 and a 4-

mm gap between them. The flip angle was 90°, and the bandwidth

per pixel was 1,263 Hz, resulting in an echo spacing of 0.90 ms. 7/8
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partial Fourier and parallel imaging (R = 2, 48 reference lines) was

utilized again, resulting in a 43.3-ms echo train length and a 33-ms

echo time. Finally, the TR for all slices was 3,140 ms, except for

three subjects, who had TRs of 3,050 ms or 3,200 ms (depending on

each participant’s coverage within the field of view). In the data

preprocessing phase, we removed any instances of data that were

deemed to be of low quality or exhibited discrepancies in data

points when benchmarked against other datasets. Consequently, we

curated a dataset comprising 27 subjects across 216 functional runs,

of which 135 were allocated for the training set and the remaining

81 were allocated for the testing set. The training dataset was further

partitioned into a 70:30 split for model training and validation,

respectively. The validation subset played a crucial role in both the

selection and performance evaluation of our proposed deep-

learning models.

2.3.2 Evaluation
Since there is no gold standard for direct evaluation of

functional registration or motion correction performance, we

used two functional measures to check the signal strength of each

subject or to examine signal variations in the group of volumes after

predicting them by the network.

2.3.2.1 Temporal signal-to-noise ratio

Temporal signal-to-noise ratio (tSNR) is used to quantify the

stability of the BOLD signal time series and is calculated by dividing

the mean signal by the standard deviation of the signal over time

(Equation 6).

tSNR =
�S

st _ noise
                                                          (6)

where �S is the mean signal over time and s is the standard

deviation across time. A better motion correction algorithm will

result in greater tSNR values by reducing signal variations in the

BOLD time series due to motion.

2.3.2.2 DVARS

DVARS (D, temporal derivative of time courses, VARS, variance

over voxels) shows the signal rate changes in each fMRI data frame.

In an ideal data series, its value depends on the temporal standard

deviation and temporal autocorrelation of the data (41) and calculates

the changes in the values of each voxel at each time point compared

to its previous time point (42). DVARS was calculated in the whole

image to find a metric that demonstrated the standard deviation of

temporal difference images in the 4D raw data (43). DVARS was

calculated using the following equation: (Equation 7)

DVARS(DI)i =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(DIi(x))2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Ii(x) − Ii−1(x))

2  
q

(7)

In this equation, DIi(x)   is used as local image intensity on the

frame. DVARS could result in more accurate modeling of the

temporal correlation and standardization because it is obtained by

the most short-scale changes (41). The best value for this parameter

is zero, and the closer it is to zero, the better the result.
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We extracted the tSNR and DVARS parameters of output

results by using the SCT toolbox and the FSL toolbox (44). For

more accurate analysis of the tSNR parameter, we manually

segmented the data into two parts, spinal cord and CSF, using the

FSLeyes toolbox. Analyses compared the outcome of SCT and our

method (DeepRetroMoco).

2.3.3 Statistical analysis
All statistical analyses were carried out using IBM SPSS

Statistics (V. 25 IBM Corp., Armonk, NY, USA) with a< 0.05 as

the statistical significance threshold. The Kolmogorov–Smirnov test

was used to determine the normality of the parameters. For

statistically significant results, the mean of normal data for each

method was processed using one-way ANOVA with repeated

measures in within-subjects comparison, followed by a multiple

comparison post-hoc test with Bonferroni correction.

2.3.4 Implementation
In the course of our experiment, we evaluated our deep learning

network’s performance both with and without the application of the

“Fixing Centerline” preprocessing step. Our network underwent

training over 200 epochs, each consisting of 150 iterations. The

training process was executed using the Keras library with a

TensorFlow backend (45) on an NVIDIA GEFORCE RTX 1080

GPU, which, on average, took 23 h to complete a full training cycle.

To enhance our efficiency, we utilized the high-powered

computational environment of Google Colab for model

assessment and hyperparameter tuning, resulting in a more

expedited analysis and learning process.

The optimization parameter we used was Adam, with a learning

rate of 1e−4 (46). We trained our two models, the simpler DRM_2

and the more complex DRM_1, using two different cost functions,

namely, normalized cross-correlation (NCC) and mean squared

error (MSE), each with varying lambda values until convergence.

Batch normalization was implemented to stabilize the training

process, and min–max normalization was used during

preprocessing to normalize the input data.

In our study, we designed an optimized data generator to deliver

fMRI data to the network efficiently. This data generator operates by

randomly selecting subjects and slices, ensuring that the training

and validation sets are disjoint at the subject level. It then chooses a

pair (fixed and moving images) from the corresponding volume,

adhering to the specified batch size of 100 images. This approach of

random selection at the subject level allows for the assessment of the

model’s performance on new, unseen data, providing a robust

evaluation of its noise-correction capabilities in a real-world

setting where each subject’s data presents unique variations.

In comparison between the models, we chose the model that has

better results in terms of our desired metric (tSNR) on the

validation data. Then, we select one of the cost functions. Our

code and model parameters are available online at https://

github.com/mahdimplus/DeepRetroMoco.
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3 Results

3.1 Model selection

Table 1 displays the average of our method’s tSNR values in the

validation data utilizing two distinct cost functions. The first model,

DRM 1, outperforms DRM 2 in both Losses MSE and NCC by a

slight margin. Furthermore, when the validation data of two cost

functions in the first model are examined, NCC with an average of

10.13 ± 1 has better outcomes for the motion correction target based

on the tSNR and statistical analysis, t(39) = 2.63, p< 0.05.
3.2 Visual comparison of motion
correction protocols

Figure 4 presents a comparative evaluation of two motion

correction techniques applied to fMRI data: sct_fmri_moco and

Deepretromoco (DRM), juxtaposed with raw data. The results are

demonstrated for a randomly selected subject at slice 4, with

corrections displayed in two axes: the vertical (x-direction) and

the horizontal (y-direction).

The center point on the reference volume, indicated on the

figure, serves as the benchmark for evaluating the displacement of

the centerlines across the volumes. The lines track the center points

through subsequent volumes, highlighting the deviations from

the reference.

In the vertical axis, the alignment of volume 94’s centerline with

the reference illustrates the motion correction in the x-direction.

The DRM method shows a fixed centerline, indicative of precise

realignment, as opposed to the sct_fmri_moco method, where the

centerline exhibits a discernible shift from the reference.

Conversely, in the horizontal axis, the alignment of the center

points for volume 75 is examined. Here, the DRM method

demonstrates a better match with the reference center point,

suggesting a more accurate correction in the y-direction

compared to the sct_fmri_moco method.
3.3 Statistical comparison of motion
correction protocols

A one-way repeated-measures ANOVA was used to compare

the influence of motion correction techniques on test data in

sct_fmri_moco (12) and DeepRetroMoco, a deep neural network-

based motion correction tool.

In a statistical comparison of tSNR parameters in the spinal cord,

this parameter increased significantly from 7.104 ± 2.41 to 16.072 ±

3.09 arbitrary units (AU) (Table 2). Mauchly’s Test of Sphericity

revealed that the assumption of sphericity had been violated, c2(9) =
2.324, p< 0.313, and thus a Greenhouse–Geisser correction was used.

The motion correction algorithm had a significant effect on the tSNR
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parameter in the spinal cord, F(2, 160) = 862.572, p< 0.0001. Post-hoc

multiple comparisons using the Bonferroni correction revealed that

the DeepRetroMoCo had a significantly higher mean tSNR in the

spinal cord than the other motion correction method and raw data

(p< 0.0001). Figure 5 depicts the significant difference between the

groups using a violin plot.

The tSNR in CSF increased significantly from 4.038 ± 1.17 to

10.315 ± 2.25 AU (Tables 2, 3). Mauchly’s Test of Sphericity

revealed that the sphericity assumption had been violated, c2(9) =
27.772, p< 0.0001, and thus a Greenhouse–Geisser correction was

applied. The motion correction algorithm had a significant effect on

the tSNR parameter in CSF, F(2, 160) = 949.72, p< 0.0001. Post-hoc

multiple comparisons using the Bonferroni correction revealed that

the DeepRetroMoCo’s mean tSNR in CSF was significantly higher

than the other motion correction method and raw data (p< 0.0001)

(Table 2). Figure 5 depicts the significant difference between the

groups using a violin plot.
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DVARS decreased statistically significantly from 0.034 ± 0.009 to

0.018± 0.006 AU (Table 4). Mauchly’s Test of Sphericity revealed that

the sphericity assumption had been violated, c2(9) = 64.966, p< 0.0001,

and thus a Greenhouse–Geisser correction was applied. The motion

correction algorithm had a significant effect on the DVARS parameter,

F(2, 160) = 309.349, p< 0.0001. Post-hoc multiple comparisons using

the Bonferroni correction revealed that the DeepRetroMoCo had

significantly lower DVARS than the other motion correction

methods and raw data (p< 0.0001) (Table 4). Figure 5 depicts the

significant difference between the groups using a violin plot.

3.3.1 Reference volume impact on
motion correction

To elucidate the impact of different reference volumes on motion

correction efficacy in spinal cord fMRI, our study systematically

evaluates first, mid, and mean volume references. Our findings, as

depicted in Table 5, aim to establish a guideline for selecting the most
TABLE 2 Summary of tSNR as an image quality parameter between different motion correction methods (df = 4).

tSNR Mean (SD) F-value p-value

Spinal cord

Raw image 7.1043 (2.41)

1,004.249 <0.001sct_fmri_moco 12.90 (2.44)

DeepRetroMoCo 16.072 (3.09)

CSF

Raw Image 4.0387 (1.17)

938.842 <0.001sct_fmri_moco 7.1469 (1.31)

DeepRetroMoCo 10.3156 (2.25)
FIGURE 4

Comparative analysis of 3 protocols: SCT_fmri_moco (SCT), Deppretromoco (DRM), and raw data for Slice 4, showcasing precise centerline
alignment across the x- and y-directions.
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FIGURE 5

This figure depicts the mean and standard deviation of the SNR on the Spine and CSF sections (two top figures) that were manually segmented, as
well as DVARS (bottom figure) with three types of results. RAW data that have not been corrected, SCT results, and DeepRetroMoco results are the
three groups. The absolute mean difference + standard error (p-value) between groups is also reported. The mean difference is significant at the
0.05 level.
TABLE 3 Average tSNR for two types of our model, DRM-1 and DRM-2.
Standard deviations are in parentheses.

Model Loss type Mean tSNR (SD) F-
value

p-
value

DRM_1 MSE 6.18(0.6) 12.408 <0.001

DRM_2 5.96 (0.7)

DRM_1 NCC 10.13(1) 2.632 <0.05

DRM_2 10.07 (1.3)
F
rontiers in
 Psychiatry
The averages are computed over all validation data. In both models, regardless of the type of
cost function, the first model is selected (df = 39).
08
TABLE 4 Summary of DVARS as an image quality parameter between
different motion correction methods (df = 4).

DVARS Mean (SD) F-value p-value

Raw image 0.0343 (0.009)

176.446 <0.001sct_fmri_moco 0.0316 (0.009)

DeepRetroMoCo 0.0182 (0.006)
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1323109
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Mobarak-Abadi et al. 10.3389/fpsyt.2024.1323109
effective reference volume to maximize motion correction accuracy,

enhancing spinal cord fMRI’s reliability for both research and clinical

applications. It is noteworthy that while the first and mid-volume

references were derived post-centerline alignment (the first stage of

correction), the mean volume reference utilized was obtained before

this alignment stage. This delineation underscores a significant area

for methodological refinement. Employing the mean volume result

from the initial correction stage as a reference for subsequent analyses

presents a promising avenue for future research, potentially offering a

more accurate basis for motion correction. This strategic adjustment

could further improve motion correction outcomes, contributing to

the precision and dependability of spinal cord fMRI analyses.
3.4 Statistical comparison with
other methods

In this study, we employed FSL’s MC_FLIRT for movement

estimation across three groups of data: RAW (uncorrected), SCT

toolbox results (sct_fmri_moco), and DeepRetroMoCo outcomes.

The first volume served as the reference with a 6-degree of freedom

setting for motion estimation. We analyzed the results using the

MSE parameter, aligning actual movement to a zero baseline and

comparing against movements predicted by FSL. Table 6 shows the

raw data demonstrating the most movement in all directions,

followed by SCT and DeepRetroMoCo results. This approach

allowed us to assess the effectiveness of our DeepRetroMoCo

method in comparison to the established methods.
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3.5 Processing speed

The implementation and calculation are carried out in a

workstation with Intel® Core (TM) i7–4720HQ CPU at 2.60 Hz

and 16.0 GB memory. No explicit parallelization was implemented

in the Python script. The computation time of the motion

correction procedure in sct_fmri_moco and DeepRetroMoco

changes with the number of volumes of fMRI raw data (Figure 6).

Average computation times (± SD) were 222.54 ± 63.64 s and

131.91 ± 35.94 s for sct_fmri_moco and DeepRetroMoco

respectively and demonstrates a significant reduction of ~40.72%

in computation time. This operation for SCT contains the slice-by-

slice registration plus regularization across the Z, and that for

DeepRetroMoCo contains fixing the centerline plus registration

via a network.
3.6 Regularization analysis

With different lambda parameters, we examined the mean tSNR

for the test data. With the NCC cost function, the optimal tSNR for

model 1 occurred when lambda was 0.01. In this section, the mean

tSNR is applied to the entire spinal cord; lambda = 0 indicates no

regularization. As shown, the results deteriorate dramatically as the

regularization term is increased (Figure 7). As a result, lambda’s

actions do not help to improve performance and may have a

negative impact on the results for the NCC cost function and the

first model, which is more complex.
TABLE 5 Summary of tSNR and DVARS for spinal cord and CSF across different methods (post-correction*, SCT, and DRM) with varied
reference volumes.

Methods Spinal cord CSF Mean (SD)

Mean (SD)

tSNR

Post-correction * 7.1 (2.41) 4.03 (1.17)

DVARS

0.03 (0.010)

SCT_first-volume 12.9 (2.44) 7.14 (1.31) 0.03 (0.009)

SCT_mean-volume 12.1 (2.52) 7 (1.15) 0.03 (0.009)

DRM_first-volume 16.07 (3.09) 10.31 (2.25) 0.02 (0.011)

DRM_mid-volume 13.65 (2.51) 9.06 (1.78) 0.02 (0.012)

DRM_mean-volume 13.17 (2.99) 8.59 (2.3) 0.02 (0.010)
*Post-correction refers to the results after centerline alignment. See section 3.2.1 for more information.
TABLE 6 Mean square error of three groups of our data in six directions such as translation in X, Y, and Z and rotation in X-, Y-, and Z-directions.

MSE Translation (mm) Rotation (radian)

Dir X Y Z RX RY RZ

DeepRertoMoco 1.41E-07 2.06E-07 5.43E-07 0.001 0.0001 0.0023

SCT 5.54E-06 3.91E-07 1.47E-06 0.0012 0.0103 0.0054

RAW data 5.61E-06 1.15E-05 1.55E-06 0.1435 0.1073 0.0017
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3.7 Correlation coefficient analysis

In our comparative analysis, we also evaluated the performance

of SCT’s sct_fmri_moco method by calculating the Pearson

correlation coefficient (CC) between the corrected and reference

volumes. The CC value for SCT’s sct_fmri_moco was observed to be

0.82 ± 0.03, which, while indicating an improvement over the raw

data (0.70 ± 0.17), is notably lower than the CC value achieved with

DeepRetroMoCo (0.90 ± 0.02). This comparative assessment

further highlights the superior performance of DeepRetroMoCo

in enhancing the linear similarity of the images post-correction,

demonstrating its effectiveness in motion correction while

preserving the integrity of the original image structure. The

inclusion of SCT’s sct_fmri_moco in our analysis provides a
Frontiers in Psychiatry 10
comprehensive perspective on the advancements our method

offers over existing techniques in the domain of spinal cord fMRI

data correction.
4 Discussion

Since the spinal column’s voluntary and non-voluntary

movements lead to non-optimal shimming, the effects of motion

artifacts cannot be fully eliminated even after perfect conventional

retrospective motion correction of successive functional volumes in

the image space (47). If spinal column movements are small,

motion correction is a useful step to improve the data quality for

subsequent statistical data analysis. Our findings demonstrate that
FIGURE 7

Effect of different l modes for DRM_1 based on tSNR. Lambda 0.01 has a maximum tSNR and shows the best results.
FIGURE 6

Comparing the speed of the two methods sct_fmri_moco (SCT) and DeepRetroMoco (DRM). Processing time is measured in seconds to correct the
motion on all volumes.
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deep learning-based motion correction, DeepRetroMoco, improves

the quality of spinal cord fMRI data acquired in the axial field of

view that influences the pre-processing step. These improvements

are at least in part due to improved tSNR and DVARS parameters

compared to conventional algorithms introduced in the SCT data

processing toolbox. Instead, here we aimed to use a deep learning-

based method potential to decrease the preprocessing step for spinal

cord fMRI data strongly affected by motion. We found significant

differences in the time of processing to implement DeepRetroMoco

compared to the sct_fmri_moco algorithm.

As previously mentioned, the majority of leaning-based

methodologies require additional data or ground truth. We do

not need this information, which is another clear distinction

between our approach and earlier research. The previous two

works (48, 49) reported unsupervised methods that are close to

ours. Both use the CNN neural network with STF (39), which warps

images on top of each other and has significant problems: they only

operate on a limited subset of volumes and only support small

transformations. In addition, a recent study (50) and our network

improved the problems mentioned and helped to solve them by

designing a satisfactory model in the spinal cord data. Other

methods (49) use regularization that is determined only by

interpolation methods.

DeepRetroMoco replaces a costly optimization problem for

each image pair, with a function optimization that is collected

over a dataset during a training step. This notion could be replaced

with previous motion correction algorithms, especially on spinal

cord data that traditionally rely on complex, non-learning-based

optimization algorithms for each input. Although implementing

this network requires a one-time network training on a single

NVIDIA TITAN X GPU with training data, it takes less than a

second to register a pair of images. Because of the growing need for

medical images for further investigation in less time, our solution,

which is a learning-based method, is preferable to non-learning-

based methods.

Our DeepRetroMoCo method’s effectiveness is partly due to the

initial centerline alignment preprocessing. Initially, the model

without preprocessing showed limited improvement in motion

artifact correction. Integrating the centerline alignment step

marked a significant enhancement, facilitating more effective

motion correction, particularly in the key directions of spinal

movement. This preprocessing step, in conjunction with the

neural network’s capabilities, forms a cohesive strategy,

s ignificantly improving motion correction efficacy as

demonstrated by our improved tSNR and DVARS metrics.
4.1 Limitations and future works

The acquisition of spinal cord fMRI data is made in two ways:

GRE-EPI acquisition sequence in axial and FSE or SE-HASTE

acquisition sequence in sagittal field of view. The field of view

and dataset orientation were axial in this study, and all motion
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correction methods and preprocessing steps were performed

specifically on axially oriented data in the cervical spine; however,

some studies performed spinal cord fMRI acquisition in the

sagittal orientation.

Furthermore, we had access to two variables during this

method: the centerline reference and the fixed image reference. It

was set to the first volume in our network. We discovered that the

proper selection of these two parameters could have a significant

impact on the final results. Because our network is flexible enough

to accept any reference, including first, mean, middle, and any other

desired volume, we propose that the best reference for each data be

selected by designing the appropriate method for future work.

An additional limitation to consider is the effect of B0 field

fluctuations on the apparent translational motion in spinal cord EPI

images. Our DeepRetroMoCo method, in its current state, does not

explicitly differentiate between motion artifacts stemming from

subject movement and those induced by temporal fluctuations in

the B0 field. This distinction is particularly relevant because B0

fluctuations can significantly affect GRE-EPI images, which is the

acquisition sequence used in our study. In future iterations of our

research, we intend to address this limitation by integrating B0 field

map information into the DeepRetroMoCo framework to enhance

its capability to accurately correct for these specific types of artifacts.

While our study provides a solid foundation for the application

of DeepRetroMoCo in spinal cord fMRI data processing, it is

important to acknowledge that the method was trained and tested

on a single, highly homogeneous dataset. This approach was chosen

to initially establish the method’s efficacy under controlled

conditions. Moving forward, our research aims to evaluate the

performance of DeepRetroMoCo across additional, more varied

datasets. This expansion is crucial for assessing the method’s

generalizability and robustness to different imaging characteristics

and to ensure its applicability in broader clinical settings.

Furthermore, incorporating datasets not used in the current study

will allow us to test the method’s adaptability and fine-tune its

parameters for a wider range of applications. This future work will

be pivotal in determining the full potential of DeepRetroMoCo for

widespread clinical use and will contribute significantly to its

development to meet the diverse needs of spinal cord

imaging research.

Our observations also highlighted the presence of ghosting

effects, particularly in slices closer to the lungs, where respiratory

motion significantly impacts image quality. Such artifacts, driven by a

combination of respiratory and cardiac motion, patient movement,

field inhomogeneities, and phase encoding artifacts, underscore the

complexity of spinal cord fMRI data acquisition. Despite the robust

motion correction capabilities of DeepRetroMoCo, slices exhibiting

pronounced ghosting effects due to these factors presented a

challenge, with a slight decrease in performance observed in terms

of tSNR. This underlines the inherent difficulty in completely

eliminating motion artifacts, especially in areas with severe

geometric distortions or near intervertebral discs where shimming

is suboptimal. These findings further emphasize the need for
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sophisticated motion correction strategies that are sensitive to the

unique challenges presented by spinal cord fMRI data.
5 Conclusion

Owing to the bulk and physiological motion corrupted spinal cord

fMRI data, the statistical significance of the activation maps decreases,

and the likelihood of false activations increases. As a result, a motion

correction algorithm is required for acceptable single and group fMRI

data analysis. In this study, we proposed DeepRetroMoco, an

unsupervised learning-based approach based on advanced CNN

models, which requires no supervised information such as ground

truth registration fields or anatomical landmarks. Additionally, when

compared to conventional methods, the use of the DeepRetroMoco

motion correction method for spinal cord fMRI shows remarkable

effectiveness in enhancing tSNR, decreasing false positives, and

improving sensitivity, particularly in scenarios involving the

substantial motion of the spinal cord. Additionally, our evaluation of

DVARS as an fMRI quality metric, along with its timely

implementation on a cervical spinal cord fMRI dataset, underscores

the superiority of our proposed framework in our experimental

investigation. Moreover, this method serves as a straightforward and

seamless tool for achieving more precise and efficient motion

correction for denoising purposes in spinal cord fMRI applications.
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